Comptes Rendus
Jamming in granular materials
[Le blocage des matériaux granulaires]
Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 10-25.

Les matériaux granulaires appartiennent à une classe de matériaux qui subissent une transition d'instabilité mécanique à stabilité tandis que les paramètres du système changent. Les travaux novateurs de Liu et Nagel et O'Hern et al. ont considéré des grains sans frottement. Dans ce cas, la densité, qui est caractérisée comme d'habitude par la fraction volumique des solides ϕ, revêt une importance particulière. Par exemple, O'Hern et al. ont trouvé qu'il existe un minimum ϕ=ϕJ tel que, en dessous de cette valeur, il n'existe pas de blocage et que, au-dessus, tous les états où la contrainte est isotropique sont bloqués. Recemment, des simulations et des expériences ont exploré le cas de grains frottants, qui est à la fois plus subtil et où ϕ n'a plus un rôle aussi simple. Dernièrement, plusieurs expériences ont montré qu'il existe un domaine de petites valeurs de ϕ où coexistent des états bloqués, libres ou fragiles au sens de Cates et al. Cette revue aborde une partie de ces récents travaux, et compare les cas de blocage pour les systèmes granulaires frottants ou non.

Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ=ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.

Publié le :
DOI : 10.1016/j.crhy.2015.02.001
Keywords: Granular materials, Jamming, Shear jamming, Impact, Force networks
Mot clés : Matériaux granulaires, Blocage, Blocage au cisaillement, Impact, Chaînes de force
Robert P. Behringer 1

1 Department of Physics & Center for Non-linear and Complex Systems, Duke University, Durham, NC, USA
@article{CRPHYS_2015__16_1_10_0,
     author = {Robert P. Behringer},
     title = {Jamming in granular materials},
     journal = {Comptes Rendus. Physique},
     pages = {10--25},
     publisher = {Elsevier},
     volume = {16},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crhy.2015.02.001},
     language = {en},
}
TY  - JOUR
AU  - Robert P. Behringer
TI  - Jamming in granular materials
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 10
EP  - 25
VL  - 16
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.02.001
LA  - en
ID  - CRPHYS_2015__16_1_10_0
ER  - 
%0 Journal Article
%A Robert P. Behringer
%T Jamming in granular materials
%J Comptes Rendus. Physique
%D 2015
%P 10-25
%V 16
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.02.001
%G en
%F CRPHYS_2015__16_1_10_0
Robert P. Behringer. Jamming in granular materials. Comptes Rendus. Physique, Volume 16 (2015) no. 1, pp. 10-25. doi : 10.1016/j.crhy.2015.02.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.02.001/

[1] B. Chakraborty; R. Behringer Jamming of granular matter, Encyclopedia of Complexity and Systems Science, vol. 39, 2009, pp. 4997-5021

[2] M. van Hecke J. Phys. Condens. Matter, 22 (2010), p. 033101

[3] Gijs Katgert; Brian P. Tighe; Martin van Hecke Soft Matter, 9 (2013), p. 9739

[4] Ludovic Berthier; Giulio Biroli Rev. Mod. Phys., 83 (2011), pp. 587-645

[5] A.J. Liu; S.R. Nagel Nature, 396 (1998), pp. 21-22

[6] C.S. O'Hern; L.E. Silbert; A.J. Liu; S.A. Langer Phys. Rev. E, 68 (2003), p. 011306

[7] Leonardo E. Silbert; Gary S. Grest; James W. Landry Phys. Rev. E, 66 (2002), p. 061303

[8] C.S. O'Hern; S.A. Langer; A.J. Liu; S.R. Nagel Phys. Rev. Lett., 88 (2002), p. 075507

[9] A. Donev; S. Torquato; F.H. Stillinger Phys. Rev. E, 71 (2005), p. 011105

[10] J. Brujić; S.F. Edwards; D.V. Grinev; I. Hopkonson; D. Brujić; H.A. Makse Faraday Discuss., 123 (2003), pp. 207-220

[11] M.E. Cates; J.P. Wittmer; J.P. Bouchaud; P. Claudin Phys. Rev. Lett., 81 (1998), p. 1841

[12] S. Henkes; M. van Hecke; W. van Saarloos Europhys. Lett., 90 (2010), p. 14003

[13] Stefanos Papanikolaou; Corey S. O'Hern; Mark D. Shattuck Phys. Rev. Lett., 110 (2013), p. 1908002

[14] D. Bi; J. Zhang; B. Chakraborty; R.P. Behringer Nature, 480 (2011), pp. 355-358

[15] S. Dagois-Bohy; B.P. Tighe; J. Simon; S. Henkes; M. van Hecke Phys. Rev. Lett., 109 (2012), p. 095703

[16] C.P. Goodrich; S. Dagois-Bohy; B.P. Tighe; M. van Hecke; A.J. Liu; S.R. Nagel Phys. Rev. E, 90 (2014), p. 022138

[17] D. Howell; C. Veje; R.P. Behringer Phys. Rev. Lett., 82 (1999), p. 5241

[18] J. Geng; R.P. Behringer Phys. Rev. E, 71 (2005), p. 011302

[19] T.S. Majmudar; R.P. Behringer Nature, 435 (2005), p. 1079

[20] M. Jerkins; M. Schröter; H.L. Swinney Phys. Rev. Lett., 101 (2008), p. 018301

[21] G.E. Schröder-Turk; W. Mickel; M. Schröter; G.W. Delaney; M. Saadatfar; T.J. Senden; K. Mecke; T. Aste Europhys. Lett., 90 (2010), p. 34001

[22] J. Zhang; T.S. Majmudar; A. Tordesillas; R.P. Behringer Granul. Matter, 12 (2010), p. 159

[23] J.-F. Métayer; D.J. Suntrup; C. Radin; H.L. Swinney; M. Schröter Europhys. Lett., 93 (2011), p. 64003

[24] J. Ren; J. Dijksman; R.P. Behringer Phys. Rev. Lett., 110 (2013), p. 018302

[25] Hu Zheng; Joshua A. Dijksman; R.P. Behringer Europhys. Lett., 107 (2014), p. 34006

[26] C.T. Veje; D.W. Howell; R.P. Behringer Phys. Rev. E, 59 (1999), p. 739

[27] G. Scott Nature (London), 188 (1960), p. 908

[28] G.Y. Onoda; E.G. Liniger Phys. Rev. Lett., 64 (1990), p. 2727

[29] R. Ojha; N. Moenon; D.J. Durian Phys. Rev. E, 62 (2000), p. 4442

[30] I. Albert; P. Tegzes; B. Kahng; R. Albert; J.G. Sample; M. Pfeifer; A.L. Barabasi; T. Vicsek; P. Schiffer Phys. Rev. Lett., 84 (2000), p. 5122

[31] E. Kolb; J. Cviklinski; J. Lanuza; P. Claudin; E. Clement Phys. Rev. E, 69 (2004), p. 031306

[32] Y. Takehara; S. Fujimoto; K. Okumura Europhys. Lett., 92 (2010), p. 44003

[33] T.S. Majmudar; M. Sperl; S. Luding; R.P. Behringer Phys. Rev. Lett., 98 (2007), p. 058001

[34] P.A. Cundall; O.D.L. Strack Geotechnique, 29 (1979), pp. 47-65

[35] P.A. Cundall; O.D.L. Strack Modeling of microscopic mechanisms in granular materials (J.T. Jenkins; M. Satake, eds.), Mechanics of Granular Materials: New Models and Constitutive Relations, Elsevier, Amsterdam, 1983, pp. 137-149

[36] F. Radjai; M. Jean; J.J. Moreau; S. Roux Phys. Rev. Lett., 77 (1996), p. 274

[37] L. Kondic; A. Goullet; C.S. O'Hern; M. Kramar; K. Mischaikow; R.P. Behringer Europhys. Lett., 97 (2012), p. 54001

[38] O. Reynolds Philos. Mag., 20 (1885), pp. 469-481

[39] B. Tighe Granul. Matter, 16 (2014), p. 201

[40] A.P.F. Atman; P. Brunet; J. Geng; G. Reydellet; P. Claudin; R.P. Behringer; E. Clément Eur. Phys. J. E, 17 (2005), pp. 93-100

[41] Junfei Geng; Emily Longhi; R.P. Behringer Phys. Rev. E, 64 (2001), p. 060301(R)

[42] R.R. Hartley; R.P. Behringer Nature, 421 (2003), p. 928

[43] J. Krim; R.P. Behringer Phys. Today, 66–67 (2009)

[44] J. Geng; D. Howell; E. Longhi; R.P. Behringer; G. Reydellet; L. Vanel; E. Clément; S. Luding Phys. Rev. Lett., 87 (2001), p. 0335506

[45] J.G. Puckett; K.E. Daniels Phys. Rev. Lett., 110 (2013), p. 058001

[46] Junfei Geng; R.P. Behringer; G. Reydellet; E. Clément Physica D, 182 (2003), pp. 274-303

[47] M. Da Silva; J. Rajchenbach Nature (London), 406 (2000), p. 708

[48] A. Tordesillas; J. Zhang; R.P. Behringer Geomech. Geoengin., 4 (2009), pp. 3-16

[49] P. Dantu Geotechnique, 18 (1968), p. 50

[50] T. Wakabayashi J. Phys. Soc. Jpn., 5 (1950), pp. 383-385

[51] A. Drescher; G. De Josselin De Jong J. Mech. Phys. Solids, 20 (1972), p. 337

[52] A. Drescher Geotechnique, 26 (1976), pp. 591-601

[53] B. Utter; R.P. Behringer Phys. Rev. Lett., 100 (2008), p. 208302

[54] D.S. Bassett; E.T. Owens; K.E. Daniels; Mason A. Porter Phys. Rev. E, 86 (2012), p. 041306

[55] R.P. Behringer; Daping Bi; Bulbul Chakraborty; Abram Clark; Joshua Dijksman; Jie Ren; Jie Zhang J. Stat. Mech. (2014), p. 494626

[56] J. Zhang; R.P. Behringer; I. Goldhirsch Prog. Theor. Phys. Suppl., 184 (2010), pp. 16-30

[57] A.H. Clark; P. Mort; R.P. Behringer Granul. Matter, 14 (2012) | DOI

[58] Junyao Tang; R.P. Behringer Chaos, 21 (2011), p. 041107

[59] Sumantra Sarkar; Dapeng Bi; Jie Zhang; R.P. Behringer; Bulbul Chakraborty Phys. Rev. Lett., 111 (2013), p. 068301

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres

Fatih Göncü; Orencio Durán; Stefan Luding

C. R. Méca (2010)


Pastes: lubricated and cohesive granular media

Henri Van Damme; Sandrine Mansoutre; Pierre Colombet; ...

C. R. Phys (2002)


Micromechanical study of plasticity of granular materials

Niels P. Kruyt

C. R. Méca (2010)