[Phénomènes de coarsening]
Le présent article donne une brève description du processus de formation de motifs et du phénomène de coarsening ; il met l'accent sur les développements expérimentaux et théoriques récents dans ces domaines. Il tient lieu d'introduction à la cinétique de croissance d'ordre dans le dossier « Dynamique de coarsening » des Comptes rendus Physique, coordonné par Federico Corberi et Paolo Politi.
This article gives a short description of pattern formation and coarsening phenomena and focuses on recent experimental and theoretical advances in these fields. It serves as an introduction to phase ordering kinetics as part of the dossier ‘Coarsening dynamics’ in Comptes rendus Physique, edited by Federico Corberi and Paolo Politi.
Mots-clés : Coarsening, Cinétique de croissance d'ordre, Croissance de domaines
Leticia F. Cugliandolo 1
@article{CRPHYS_2015__16_3_257_0, author = {Leticia F. Cugliandolo}, title = {Coarsening phenomena}, journal = {Comptes Rendus. Physique}, pages = {257--266}, publisher = {Elsevier}, volume = {16}, number = {3}, year = {2015}, doi = {10.1016/j.crhy.2015.02.005}, language = {en}, }
Leticia F. Cugliandolo. Coarsening phenomena. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 257-266. doi : 10.1016/j.crhy.2015.02.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.02.005/
[1] Rev. Mod. Phys., 65 (1993), p. 851
[2] Rev. Mod. Phys., 49 (1977), p. 435
[3] Adv. Phys., 43 (1994), p. 357
[4] Philos. Trans. R. Soc. Lond., 361 (2003), p. 781
[5] Kinetics of phase transitions (S. Puri; V. Wadhawan, eds.), Kinetics of Phase Transitions, Taylor and Francis, 2009
[6] Complex fluids: the physics of emulsions, Les Houches XCVIII (2015)
[7] Phase Transition Dynamics, Cambridge University Press, 2004
[8] Kinetics of Phase Transitions (S. Puri; V. Wadhawan, eds.), Taylor and Francis Group, 2009
[9] A Kinetic View of Statistical Physics, Cambridge University Press, 2010
[10] Non-Equilibrium Phase Transitions: Ageing and Dynamical Scaling Far from Equilibrium, Springer-Verlag, 2010
[11] J. Phys. Condens. Matter, 12 (2000), p. 8035
[12] et al. Phys. Rev. Lett., 101 (2008), p. 197801
[13] Phys. Rev. E, 55 (1997), p. 3191
[14] Rev. Mod. Phys., 85 (2013), p. 1473
[15] J. Phys. Condens. Matter, 25 (2013), p. 363201
[16] et al. New J. Phys., 14 (2012), p. 035014
[17] Europhys. Lett., 97 (2012), p. 30002
[18] New J. Phys., 15 (2013), p. 045029
[19] Phys. Rev. Lett., 110 (2013), p. 207206
[20] Phys. Rev. Lett., 75 (1995), p. 3012
[21] Macromolecules, 28 (1995), p. 4782
[22] Phys. Rev. Lett., 78 (1997), p. 2248
[23] Phys. Rev. E, 59 (1999), p. R2554
[24] Adv. Polym. Sci., 170 (2004), p. 115
[25] Phys. Rev. Lett., 112 (2014), p. 245701
[26] et al. Nat. Commun., 1 (2010), p. 125
[27] Using the lattice Boltzmann algorithm to explore phase ordering in fluids (S. Puri; V. Wadhawan, eds.), Kinetics of Phase Transitions, Taylor and Francis, 2009
[28] Statistical mechanics of driven diffusive systems (C. Domb; J.L. Lebowitz, eds.), Phase Transition and Critical Phenomena, vol. 17, Academic Press, London, 1995
[29] Adv. Phys., 50 (2001), p. 431
[30] Exactly solvable models for many-body systems far from equilibrium (C. Domb; J.L. Lebowitz, eds.), Phase Transition and Critical Phenomena, vol. 19, Academic Press, London, 2001
[31] Exact results and open questions in first principle functional RG | arXiv
[32] Phase separation in soft matter: concept of dynamic asymmetry, Les Houches XCVIII (2015)
[33] Dynamics of glassy systems, Les Houches LXXVII (2003)
[34] An overview of the theories of the glass transition (L. Berthier; G. Biroli; J.-P. Bouchaud; L. Cipelletti; W. van Saarloos, eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Oxford University Press, 2011
[35] Slow dynamics and aging in spin-glasses, Complex Behaviour of Glassy Systems, Lect. Notes Phys., vol. 492, Springer-Verlag, Berlin, 1997
[36] Growing length scales in aging systems (L. Berthier; J.-P. Bouchaud; G. Biroli; L. Cipelletti; W. van Saarloos, eds.), Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, Oxford University Press, 2011
[37] Rev. Mod. Phys., 66 (1994), p. 1125
[38] Statics and dynamics of disordered elastic systems (A.P. Young, ed.), Spin Glasses and Random Fields, World Scientific, 1997
[39] Adv. Phys., 49 (2000), p. 607
[40] J. Phys. IV Proc., 131 (2005), p. 189
[41] Phys. Rev. B, 80 (2009), p. 094201
[42] J. Phys. A, 38 (2005), p. R133
[43] J. Stat. Mech. (2007), p. P07002
[44] J. Phys. A, 44 (2011), p. 483001
[45] Phys. Rev. B, 43 (1991), p. 3699
[46] Phys. Rev. Lett., 98 (2007), p. 145701
[47] Phys. Rev. E, 76 (2007), p. 061116
[48] Phys. Rev. E, 80 (2009), p. 031121
[49] Phys. Rev. E, 80 (2009), p. 040101
[50] Phys. Rev. E, 83 (2011), p. 051104
[51] Phys. Rev. E, 83 (2011), p. 030104
[52] Phys. Rev. Lett., 109 (2012), p. 195702
[53] Phys. Rev. E, 88 (2013), p. 032131
[54] Europhys. Lett., 106 (2014), p. 66001
[55] Phys. Rev. E, 54 (1996), p. 2513
[56] Phys. Rev. E, 56 (1997), p. 3788
[57] Phys. Rev. E, 76 (2007), p. 041129
[58] Phys. Rev. E, 81 (2010), p. 021129
[59] Phys. Rev. E, 85 (2012), p. 021135
[60] Slicing the 3d Ising model: critical equilibrium and coarsening dynamics | arXiv
[61] Phys. Rev. Lett., 86 (2001), p. 240
[62] Phys. Rev. E, 66 (2002), p. 046121
[63] Macromolecules, 34 (2001), p. 1953
[64] Nature, 317 (1985), p. 505
[65] Phys. Rep., 276 (1996), p. 177
[66] Phys. Today, 60 (2007), p. 47
[67] Phys. Rev. E, 81 (2010), p. 050101
[68] J. Stat. Mech. (2011), p. P02032
[69] J. Stat. Mech. (2010), p. P02014
[70] Phys. Rev. B, 89 (2014), p. 054307
[71] Annu. Rev. Phys. Chem., 60 (2009), p. 469
[72] Noise Induced Transitions, Springer-Verlag, Berlin, 1984
[73] Phys. Rev. Lett., 71 (1993), p. 1542
[74] Phys. Rev. Lett., 73 (1994), p. 3395
[75] Phys. Rev. E, 55 (1997), p. 4084
[76] Dynamics of the two-dimensional directed Ising model in the paramagnetic phase | arXiv
[77] Lect. Notes Phys., 716 (2007), p. 261
[78] Rev. Mod. Phys., 79 (2007), p. 829
[79] Phys. Rev. Lett., 102 (2009), p. 245701
[80] Phys. Rev. E, 81 (2010), p. 051135
[81] Universal post-quench dynamics at a quantum critical point | arXiv
[82] Phys. Rev. Lett., 80 (1998), p. 4979
[83] Phys. Rev. Lett., 102 (2009), p. 050404
[84] Phys. Rev. B, 75 (2007), p. 144418
[85] Nature, 443 (2006), p. 312
[86] Rev. Mod. Phys., 81 (2009), p. 591
[87] Spatial Ecology – The Role of Space in Population Dynamics and Interspecific Interactions (D. Tilman; P. Kareiva, eds.), Princeton University Press, Princeton, 1997
[88] Phys. Rev. Lett., 87 (2001), p. 045701
[89] J. Phys. A, 32 (1999), p. 249
- General properties of the response function in a class of solvable non-equilibrium models, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 43, p. 435001 | DOI:10.1088/1751-8121/ad7faa
- Kinetics of the one-dimensional voter model with long-range interactions, Journal of Physics: Complexity, Volume 5 (2024) no. 2, p. 025021 | DOI:10.1088/2632-072x/ad4dfb
- Ordering kinetics of the two-dimensional voter model with long-range interactions, Physical Review E, Volume 109 (2024) no. 3 | DOI:10.1103/physreve.109.034133
- Effective Hamiltonian approach to kinetic Ising models: Application to an infinitely long-range Husimi-Temperley model, Physical Review E, Volume 109 (2024) no. 4 | DOI:10.1103/physreve.109.044123
- From Inverse-Cascade to Subdiffusive Dynamic Scaling in Driven Disordered Bose Fluids, Physical Review Letters, Volume 133 (2024) no. 23 | DOI:10.1103/physrevlett.133.233403
- Machine learning based prediction of phase ordering dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 33 (2023) no. 6 | DOI:10.1063/5.0156611
- Landau theory for finite-time dynamical phase transitions, New Journal of Physics, Volume 25 (2023) no. 2, p. 023034 | DOI:10.1088/1367-2630/acbc41
- Asymmetric space-dependent systems: partial stabilization through the addition of noise and exact solutions for the corresponding nonlinear Langevin equations, Physica Scripta, Volume 98 (2023) no. 11, p. 115001 | DOI:10.1088/1402-4896/acfb45
- Anomalous scaling at nonthermal fixed points of the sine-Gordon model, Physical Review A, Volume 107 (2023) no. 4 | DOI:10.1103/physreva.107.043303
- Phase separation on surfaces in the presence of matter exchange, Physical Review E, Volume 108 (2023) no. 1 | DOI:10.1103/physreve.108.l012801
- Universal Dynamics of Rogue Waves in a Quenched Spinor Bose Condensate, Physical Review Letters, Volume 131 (2023) no. 18 | DOI:10.1103/physrevlett.131.183402
- Critical Percolation in the Ordering Kinetics of Twisted Nematic Phases, Physical Review Letters, Volume 131 (2023) no. 26 | DOI:10.1103/physrevlett.131.268101
- Porous crystals in charged sphere suspensions by aggregate-driven phase separation, Soft Matter, Volume 19 (2023) no. 27, p. 5076 | DOI:10.1039/d3sm00660c
- Universal dynamics and non-thermal fixed points in quantum fluids far from equilibrium, The European Physical Journal Special Topics, Volume 232 (2023) no. 20-22, p. 3393 | DOI:10.1140/epjs/s11734-023-00974-7
- Coarsening dynamics of ternary polymer solutions with mobility and viscosity contrasts, The Journal of Chemical Physics, Volume 159 (2023) no. 21 | DOI:10.1063/5.0173992
- Influence of roughening transition on magnetic ordering, Physical Review E, Volume 105 (2022) no. 4 | DOI:10.1103/physreve.105.044142
- Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments, Reports on Progress in Physics, Volume 85 (2022) no. 11, p. 116001 | DOI:10.1088/1361-6633/ac906c
- Phase-ordering kinetics in the Allen-Cahn (Model A) class: Universal aspects elucidated by electrically induced transition in liquid crystals, Physical Review E, Volume 104 (2021) no. 5 | DOI:10.1103/physreve.104.054103
- The Interplay between Phase Separation and Gene-Enhancer Communication: A Theoretical Study, Biophysical Journal, Volume 119 (2020) no. 4, p. 873 | DOI:10.1016/j.bpj.2020.07.007
- Universal late-time dynamics in isolated one-dimensional statistical systems with topological excitations, Physical Review B, Volume 101 (2020) no. 10 | DOI:10.1103/physrevb.101.104313
- Field-induced freezing in the unfrustrated Ising antiferromagnet, Physical Review E, Volume 102 (2020) no. 3 | DOI:10.1103/physreve.102.032112
- Strong ergodicity breaking in aging of mean-field spin glasses, Proceedings of the National Academy of Sciences, Volume 117 (2020) no. 30, p. 17522 | DOI:10.1073/pnas.1910936117
- Growth kinetics of the two-dimensional Ising model with finite cooling rates, Physical Review E, Volume 99 (2019) no. 2 | DOI:10.1103/physreve.99.022113
- Ablation of water drops suspended in asphaltene/heptol solutions due to spontaneous emulsification, Science Advances, Volume 5 (2019) no. 10 | DOI:10.1126/sciadv.aax8227
- Morphologies, metastability, and coarsening of quantum nanoislands on the surfaces of the annealed Ag(110) and Pb(111) thin films, Journal of Applied Physics, Volume 124 (2018) no. 17 | DOI:10.1063/1.5052641
- Coarsening and percolation in the Ising Model with quenched disorder, Journal of Physics: Conference Series, Volume 956 (2018), p. 012018 | DOI:10.1088/1742-6596/956/1/012018
- Dynamical Crossovers in Prethermal Critical States, Physical Review Letters, Volume 118 (2017) no. 13 | DOI:10.1103/physrevlett.118.135701
- Arrested and temporarily arrested states in a protein–polymer mixture studied by USAXS and VSANS, Soft Matter, Volume 13 (2017) no. 46, p. 8756 | DOI:10.1039/c7sm01434a
- Aging and coarsening in isolated quantum systems after a quench: Exact results for the quantumO(N)model withN→∞, Physical Review E, Volume 92 (2015) no. 4 | DOI:10.1103/physreve.92.042151
- Percolation and coarsening in the bidimensional voter model, Physical Review E, Volume 92 (2015) no. 4 | DOI:10.1103/physreve.92.042109
Cité par 30 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier