Comptes Rendus
Coarsening versus pattern formation
[Coarsening contre formation de motifs]
Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 267-279.

Il est connu que des systèmes physiques similaires peuvent révéler deux comportements assez similaires, le coarsening, qui crée un état uniforme ou une structure à grande échelle, ou la formation de motifs ordonnés ou désordonnés, qui ne sont jamais homogénéisés. Nous présentons une description du coarsening utilisant deux modèles basiques simples, l'équation d'Allen–Cahn et celle de Cahn–Hilliard, et discutons les facteurs qui peuvent ralentir et arrêter le processus de coarsening. On trouve parmi ceux-ci l'ancrage de parois de domaines sur des inhomogénéités, les queues oscillatoires de parois de domaines, ainsi que d'autres. Le coarsening de domaines de motifs est aussi discuté.

It is known that similar physical systems can reveal two quite different ways of behavior, either coarsening, which creates a uniform state or a large-scale structure, or formation of ordered or disordered patterns, which are never homogenized. We present a description of coarsening using simple basic models, the Allen–Cahn equation and the Cahn–Hilliard equation, and discuss the factors that may slow down and arrest the process of coarsening. Among them are pinning of domain walls on inhomogeneities, oscillatory tails of domain walls, nonlocal interactions, and others. Coarsening of pattern domains is also discussed.

Publié le :
DOI : 10.1016/j.crhy.2015.03.004
Keywords: Coarsening, Pattern formation, Domain walls
Mots-clés : Coarsening, Formation de motifs, Parois de domaines

Alexander A. Nepomnyashchy 1

1 Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel
@article{CRPHYS_2015__16_3_267_0,
     author = {Alexander A. Nepomnyashchy},
     title = {Coarsening versus pattern formation},
     journal = {Comptes Rendus. Physique},
     pages = {267--279},
     publisher = {Elsevier},
     volume = {16},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.004},
     language = {en},
}
TY  - JOUR
AU  - Alexander A. Nepomnyashchy
TI  - Coarsening versus pattern formation
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 267
EP  - 279
VL  - 16
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.004
LA  - en
ID  - CRPHYS_2015__16_3_267_0
ER  - 
%0 Journal Article
%A Alexander A. Nepomnyashchy
%T Coarsening versus pattern formation
%J Comptes Rendus. Physique
%D 2015
%P 267-279
%V 16
%N 3
%I Elsevier
%R 10.1016/j.crhy.2015.03.004
%G en
%F CRPHYS_2015__16_3_267_0
Alexander A. Nepomnyashchy. Coarsening versus pattern formation. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 267-279. doi : 10.1016/j.crhy.2015.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.004/

[1] M.C. Cross; P.C. Hohenberg Rev. Mod. Phys., 65 (1993), p. 851

[2] R. Hoyle Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006

[3] L.M. Pismen Patterns and Interfaces in Dissipative Dynamics, Springer, Berlin, 2006

[4] A.S. Mikhailov; A.Yu. Loskutov Foundations of Synergetics II: Chaos and Noise, Springer, Berlin, 2012

[5] L. Ratke; P.W. Voorhees Growth and Coarsening: Ostwald Ripening in Materials Processing, Springer, Berlin, 2002

[6] A.J. Bray Adv. Phys., 43 (1994), p. 357

[7] J.W. Cahn; J.E. Hilliard J. Chem. Phys., 28 (1958), p. 258

[8] L. Leibler Macromolecules, 13 (1980), p. 1602

[9] T. Ohta; K. Kawasaki Macromolecules, 19 (1986), p. 2621

[10] Y. Oono; Y. Shiwa Mod. Phys. Lett. B, 1 (1987), p. 49

[11] J.J. Christensen; A.J. Bray Phys. Rev. E, 58 (1998), p. 5364

[12] P. Politi; A. Torcini, 2014 | arXiv

[13] Y. Kuramoto; T. Tsuzuki Prog. Theor. Phys., 55 (1976), p. 356

[14] T. Yamada; Y. Kuramoto Prog. Theor. Phys., 56 (1976), p. 681

[15] G.I. Sivashinsky Acta Astronaut., 4 (1977), p. 1177

[16] A.A. Nepomnyashchy Fluid Dyn., 9 (1974), p. 354

[17] A.A. Nepomnyashchy Europhys. Lett., 31 (1995), p. 437

[18] A.A. Nepomnyashchy Physica D, 86 (1995), p. 90

[19] M. Castro; J. Muños-García; R. Cuerno; M.M. García-Hernández; L. Vázques New J. Phys., 9 (2007), p. 102

[20] D. Bayer; J. Viñals Phys. Rev. E, 65 (2002), p. 046119

[21] R.C. Desai; R. Kapral Dynamics of Self-Organized and Self-Assembled Structures, Cambridge University Press, 2009

[22] S.M. Allen; J.W. Cahn Acta Metall., 20 (1972), p. 423

[23] A.A. Nepomnyashchy Nonlinear Waves 1, Dynamics and Evolution (A.V. Gaponov-Grekhov; M.I. Rabinovich; J. Engelbrecht, eds.), Springer-Verlag, Berlin, 1989, p. 103

[24] K.A. Gorshkov; L.A. Ostrovsky; E.N. Pelinovsky Proc. IEEE, 62 (1974), p. 1511

[25] K. Kawasaki; T. Ohta Physica A, 116 (1982), p. 573

[26] A.A. Nepomnyashchy Pattern Formation at Interfaces (P. Colinet; A. Nepomnyashchy, eds.), CISM Courses and Lectures, vol. 513, Springer-Verlag, Wien, New York, 2010, p. 59

[27] L.M. Pismen Colloids Surf. A, Physicochem. Eng. Asp., 206 (2002), p. 11

[28] J.D. van der Waals Z. Phys. Chem., 13 (1894), p. 657 (English translation: J.S. Rowlinson J. Stat. Phys., 20, 1979, pp. 197)

[29] H. Heinrich J. Stat. Mech. Theory Exp., P07006 (2007)

[30] C. Frontera; E. Vives; A. Planes Phys. Rev. B, 48 (1993), p. 9321

[31] U. Marini Bettolo Marconi Phys. Rev. E, 57 (1998), p. 1290

[32] R. Burioni; F. Corberi; A. Vezzani J. Stat. Mech. Theory Exp., P02040 (2009) P12024 (2010)

[33] R. Metzler; J. Klafter Phys. Rep., 339 (2000), p. 1

[34] A.M. Balk J. Fluid Mech., 467 (2002), p. 163

[35] D.N. Gerasimov; V.A. Kondratieva; O.A. Sinkevich Physica D, 239 (2010), p. 1593

[36] G.M. Viswanathan; V. Afanasyev; S.V. Buldyrev; E.J. Murphy; P.A. Prince; H.E. Stanley Nature, 381 (1996), p. 413

[37] Y. Nec; A.A. Nepomnyashchy; A.A. Golovin Physica D, 237 (2008), p. 3237

[38] P. Cessi; W.R. Young J. Fluid Mech., 237 (1992), p. 57

[39] A.A. Nepomnyashchy J. Appl. Math. Mech., 40 (1976), p. 836

[40] I.B. Simanovskii; A.A. Nepomnyashchy Convective Instabilities in Systems with Interface, Gordon and Breach, Singapore, 1993

[41] B.A. Malomed; A.A. Nepomnyashchy; M.I. Tribelsky Phys. Rev. A, 42 (1990), p. 7244

[42] L. Gelens; E. Knobloch Phys. Rev. B, 80 (2009), p. 046221

[43] J. Lega; J.V. Moloney; A.C. Newell Phys. Rev. Lett., 73 (1994), p. 2978

[44] J. Lega; J.V. Moloney; A.C. Newell Physica D, 83 (1995), p. 478

[45] S. Longhi; A. Geraci Phys. Rev. A, 54 (1996), p. 4581

[46] V.J. Sánchez-Morcillo; E. Roldán; G.J. de Valcárel; K. Staliunas Phys. Rev. A, 56 (1997), p. 3237

[47] K. Staliunas; G. Slekys; C.O. Weiss Phys. Rev. Lett., 79 (1997), p. 2658

[48] A. Oron; S.H. Davis; S.G. Bankoff Rev. Mod. Phys., 69 (1997), p. 931

[49] K.B. Glassner; T.P. Witelski Phys. Rev. E, 67 (2003), p. 016302

[50] V.M. Starov; M.G. Velarde; C.J. Radke Wetting and Spreading Dynamics, CRC Press, Boca Raton, 2007

[51] A. Nepomnyashchy; I. Simanovskii; J.-C. Legros Interfacial Convection in Multilayer Systems, Springer, New York, 2012

[52] G. Kitavtsev Eur. J. Appl. Math., 25 (2014), p. 83

[53] K. Leung J. Stat. Phys., 61 (1990), p. 345

[54] C. Yeung; T. Rogers; A. Hernandes-Machado; D. Jasnow J. Stat. Phys., 66 (1992), p. 1071

[55] C.L. Emmott; A.J. Bray Phys. Rev. E, 54 (1996), p. 4568

[56] Y. Saito; M. Uwaha J. Phys. Soc. Jpn., 65 (1996), p. 3576

[57] F. Liu; H. Metiu Phys. Rev. B, 48 (1993), p. 5808

[58] A.A. Golovin; S.H. Davis; A.A. Nepomnyashchy Physica D, 122 (1998), p. 202

[59] A.A. Golovin; S.H. Davis; A.A. Nepomnyashchy Phys. Rev. E, 59 (1999), p. 803

[60] A.A. Golovin; A.A. Nepomnyashchy; S.H. Davis; M.A. Zaks Phys. Rev. Lett., 86 (2001), p. 1550

[61] S.J. Watson; F. Otto; B.Y. Rubinstein; S.H. Davis Physica D, 178 (2003), p. 127

[62] M. Castro; R. Cuerno; M.M. García-Hernández; L. Vázques Phys. Rev. Lett., 112 (2014), p. 094103

[63] U. Thiele; M.G. Velarde; K. Neuffer; M. Bestehorn; Y. Pomeau Phys. Rev. E, 64 (2001), p. 061601

[64] M.A. Zaks; A. Podolny; A.A. Nepomnyashchy; A.A. Golovin SIAM J. Appl. Math., 66 (2006), p. 700

[65] L.A. Peletier; W.C. Troy Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001

[66] V.I. Nekorkin; M.G. Velarde Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002

[67] T. Le Goff; P. Politi; O. Pierre-Louis Phys. Rev. E, 90 (2014), p. 032114

[68] A. Podolny; M.A. Zaks; B.Y. Rubinstein; A.A. Golovin; A.A. Nepomnyashchy Physica D, 201 (2005), p. 291

[69] F. Corberi Coarsening in inhomogeneous systems, C. R. Physique, Volume 16 (2015) ( in this issue )

[70] M. Peyrard; S. Aubry J. Phys. C, 16 (1983), p. 1593

[71] P. Coullet Phys. Rev. Lett., 56 (1986), p. 724

[72] P. Coullet; C. Elphick; D. Repaux Phys. Rev. Lett., 58 (1987), p. 431

[73] P. Politi; Ch. Misbah Phys. Rev. Lett., 92 (2004), p. 090601

[74] U. Frisch; Z.S. She; O. Thual J. Fluid Mech., 168 (1986), p. 221

[75] Ch. Misbah; P. Politi Phys. Rev. E, 80 (2009), p. 030106(R)

[76] M. Nicoli; Ch. Misbah; P. Politi Phys. Rev. E, 87 (2013), p. 063302

[77] A.C. Newell; J.A. Whitehead J. Fluid Mech., 38 (1969), p. 279

[78] L.A. Segel J. Fluid Mech., 38 (1969), p. 203

[79] I.S. Aranson; B.A. Malomed; L.M. Pismen; L.S. Tsimring Phys. Rev. E, 62 (2000), p. R5

[80] A. Scheel Arch. Ration. Mech. Anal., 181 (2006), p. 505

[81] Y. Pomeau Physica D, 23 (1986), p. 3

[82] J. Swift; P.C. Hohenberg Phys. Rev. A, 15 (1977), p. 319

[83] H.S. Greenside; M.C. Cross Phys. Rev. A, 31 (1985), p. 2492

[84] K. Ouchi; H. Fujisaka Phys. Rev. E, 54 (1996), p. 3895

[85] E. Knobloch Nonlinearity, 21 (2008), p. T45

[86] P. Pelce; A. Libchaber Dynamics of Curved Fronts, Academic Press, Boston, 1988

[87] H.G. Rotstein; A.A. Nepomnyashchy Physica D, 136 (2000), p. 245

[88] H.G. Rotstein; A.I. Domoshnitsky; A.A. Nepomnyashchy Physica D, 146 (2000), p. 137

[89] I.M. Lifshitz; V.V. Slyozov J. Phys. Chem. Solids, 19 (1961), p. 35

[90] C. Wagner Z. Elektrochem., 65 (1961), p. 581

[91] D.A. Huse Phys. Rev. B, 34 (1986), p. 7845

[92] J.G. Amar; F.E. Sullivan; R.D. Mountain Phys. Rev. B, 37 (1988), p. 196

[93] T.M. Rogers; K.R. Elder; R.C. Desai Phys. Rev. B, 37 (1988), p. 9638

[94] R. Toral; A. Chakrabarti; J.D. Gunton Physica A, 213 (1995), p. 41

[95] G.F. Mazenko Phys. Rev. B, 49 (1991), p. 5747

[96] F. Corberi; A. Coniglio; M. Zannetti Phys. Rev. E, 51 (1995), p. 5469

[97] G. Szabó Phys. Rev. E, 57 (1998), p. 6172

[98] S. Puri; A.J. Bray; J.L. Lebovitz Phys. Rev. E, 56 (1997), p. 758

[99] I.M. Lifshitz Sov. Phys. JETP, 15 (1962), p. 939

[100] S.A. Safran Phys. Rev. Lett., 46 (1981), p. 1581

[101] A.A. Golovin; L.M. Pismen Chaos, 14 (2004), p. 845

[102] A.C. Newell; T. Passot; J. Lega Annu. Rev. Fluid Mech., 25 (1993), p. 184

[103] A.K. Tripathi; D. Kumar Phys. Rev. E, 90 (2014), p. 022915

[104] M.C. Cross; P.G. Daniels; P.C. Hohenberg; E.D. Siggia J. Fluid Mech., 127 (1983), p. 155

[105] L. Kramer; E. Ben-Jacob; H. Brand; M.C. Cross Phys. Rev. Lett., 49 (1981), p. 1891

[106] D. Meiron; A.C. Newell Phys. Lett. A, 113 (1985), p. 289

[107] A.A. Nepomnyashchy; L.M. Pismen Phys. Lett. A, 153 (1991), p. 427

[108] L.M. Pismen; A.A. Nepomnyashchy Europhys. Lett., 24 (1993), p. 461

[109] P. Colinet; A.A. Nepomnyashchy; J.-C. Legros Europhys. Lett., 57 (2002), p. 480

[110] T. Passot; A.C. Newell Physica D, 74 (1994), p. 301

[111] C. Bowman; A.C. Newell Rev. Mod. Phys., 70 (1998), p. 289

[112] A.A. Golovin; A.A. Nepomnyashchy Phys. Rev. E, 67 (2003), p. 056202

[113] Y. Pomeau; P. Manneville J. Phys. Lett. (France), 40 (1979), p. L-609

[114] H. Qian; G.F. Mazenko Phys. Rev. E, 67 (2003), p. 036102

[115] H. Qian; G.F. Mazenko Phys. Rev. E, 69 (2004), p. 011104

[116] Ch. Riesch; G. Radons; R. Magerle Phys. Rev. E, 90 (2014), p. 052101

[117] E.A. Jagla Phys. Rev. E, 70 (2004), p. 046204

[118] H. Ohnogi; Y. Shiwa Phys. Rev. E, 84 (2011), p. 011611

[119] C. Harrison; D.E. Angelescu; M. Trawick; Zh. Chang et al. Europhys. Lett., 67 (2004), p. 800

[120] L.R. Gómez; E.M. Vallés; D.A. Vega Phys. Rev. Lett., 97 (2006), p. 188302

[121] B. Marts; K. Martinez; A.L. Lin Phys. Rev. E, 70 (2004), p. 056223

[122] E. Knobloch; R. Krechetnikov J. Nonlinear Sci., 24 (2014), p. 493

[123] R. Imayama; Y. Shiwa Phys. Rev. E, 80 (2009), p. 036117

  • Elham Kiyani; Khemraj Shukla; George Em Karniadakis; Mikko Karttunen A framework based on symbolic regression coupled with eXtended Physics-Informed Neural Networks for gray-box learning of equations of motion from data, Computer Methods in Applied Mechanics and Engineering, Volume 415 (2023), p. 116258 | DOI:10.1016/j.cma.2023.116258
  • Renato Colucci Special solutions for an equation arising in sand ripple dynamics, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103629 | DOI:10.1016/j.nonrwa.2022.103629
  • Rajiv G. Pereira Steady states and coarsening in one-dimensional driven Allen-Cahn system, Physical Review E, Volume 106 (2022) no. 1 | DOI:10.1103/physreve.106.014150
  • Tobias Frohoff-Hülsmann; Jana Wrembel; Uwe Thiele Suppression of coarsening and emergence of oscillatory behavior in a Cahn-Hilliard model with nonvariational coupling, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.042602
  • Alon Z. Shapira; Nir Gavish; Arik Yochelis Pattern formation aspects of electrically charged tri-stable media with implications to bulk heterojunction in organic photovoltaics, EPL (Europhysics Letters), Volume 125 (2019) no. 3, p. 38001 | DOI:10.1209/0295-5075/125/38001
  • Federico Corberi; Eugenio Lippiello; Paolo Politi Effective mobility and diffusivity in coarsening processes, EPL (Europhysics Letters), Volume 119 (2017) no. 2, p. 26005 | DOI:10.1209/0295-5075/119/26005
  • Markus Wilczek; Walter Tewes; Sebastian Engelnkemper; Svetlana V. Gurevich; Uwe Thiele Sliding Drops: Ensemble Statistics from Single Drop Bifurcations, Physical Review Letters, Volume 119 (2017) no. 20 | DOI:10.1103/physrevlett.119.204501
  • Stefano Da Vela; Christian Exner; Richard Santiago Schäufele; Johannes Möller; Zhendong Fu; Fajun Zhang; Frank Schreiber Arrested and temporarily arrested states in a protein–polymer mixture studied by USAXS and VSANS, Soft Matter, Volume 13 (2017) no. 46, p. 8756 | DOI:10.1039/c7sm01434a
  • Shibin Dai; Qiang Du Computational studies of coarsening rates for the Cahn–Hilliard equation with phase-dependent diffusion mobility, Journal of Computational Physics, Volume 310 (2016), p. 85 | DOI:10.1016/j.jcp.2016.01.018
  • M. Abu Hamed; A.A. Nepomnyashchy Domain coarsening in a subdiffusive Allen–Cahn equation, Physica D: Nonlinear Phenomena, Volume 308 (2015), p. 52 | DOI:10.1016/j.physd.2015.06.007

Cité par 10 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: