It is known that similar physical systems can reveal two quite different ways of behavior, either coarsening, which creates a uniform state or a large-scale structure, or formation of ordered or disordered patterns, which are never homogenized. We present a description of coarsening using simple basic models, the Allen–Cahn equation and the Cahn–Hilliard equation, and discuss the factors that may slow down and arrest the process of coarsening. Among them are pinning of domain walls on inhomogeneities, oscillatory tails of domain walls, nonlocal interactions, and others. Coarsening of pattern domains is also discussed.
Il est connu que des systèmes physiques similaires peuvent révéler deux comportements assez similaires, le coarsening, qui crée un état uniforme ou une structure à grande échelle, ou la formation de motifs ordonnés ou désordonnés, qui ne sont jamais homogénéisés. Nous présentons une description du coarsening utilisant deux modèles basiques simples, l'équation d'Allen–Cahn et celle de Cahn–Hilliard, et discutons les facteurs qui peuvent ralentir et arrêter le processus de coarsening. On trouve parmi ceux-ci l'ancrage de parois de domaines sur des inhomogénéités, les queues oscillatoires de parois de domaines, ainsi que d'autres. Le coarsening de domaines de motifs est aussi discuté.
Mots-clés : Coarsening, Formation de motifs, Parois de domaines
Alexander A. Nepomnyashchy 1
@article{CRPHYS_2015__16_3_267_0, author = {Alexander A. Nepomnyashchy}, title = {Coarsening versus pattern formation}, journal = {Comptes Rendus. Physique}, pages = {267--279}, publisher = {Elsevier}, volume = {16}, number = {3}, year = {2015}, doi = {10.1016/j.crhy.2015.03.004}, language = {en}, }
Alexander A. Nepomnyashchy. Coarsening versus pattern formation. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 267-279. doi : 10.1016/j.crhy.2015.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.004/
[1] Rev. Mod. Phys., 65 (1993), p. 851
[2] Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006
[3] Patterns and Interfaces in Dissipative Dynamics, Springer, Berlin, 2006
[4] Foundations of Synergetics II: Chaos and Noise, Springer, Berlin, 2012
[5] Growth and Coarsening: Ostwald Ripening in Materials Processing, Springer, Berlin, 2002
[6] Adv. Phys., 43 (1994), p. 357
[7] J. Chem. Phys., 28 (1958), p. 258
[8] Macromolecules, 13 (1980), p. 1602
[9] Macromolecules, 19 (1986), p. 2621
[10] Mod. Phys. Lett. B, 1 (1987), p. 49
[11] Phys. Rev. E, 58 (1998), p. 5364
[12] arXiv
, 2014 |[13] Prog. Theor. Phys., 55 (1976), p. 356
[14] Prog. Theor. Phys., 56 (1976), p. 681
[15] Acta Astronaut., 4 (1977), p. 1177
[16] Fluid Dyn., 9 (1974), p. 354
[17] Europhys. Lett., 31 (1995), p. 437
[18] Physica D, 86 (1995), p. 90
[19] New J. Phys., 9 (2007), p. 102
[20] Phys. Rev. E, 65 (2002), p. 046119
[21] Dynamics of Self-Organized and Self-Assembled Structures, Cambridge University Press, 2009
[22] Acta Metall., 20 (1972), p. 423
[23] Nonlinear Waves 1, Dynamics and Evolution (A.V. Gaponov-Grekhov; M.I. Rabinovich; J. Engelbrecht, eds.), Springer-Verlag, Berlin, 1989, p. 103
[24] Proc. IEEE, 62 (1974), p. 1511
[25] Physica A, 116 (1982), p. 573
[26] Pattern Formation at Interfaces (P. Colinet; A. Nepomnyashchy, eds.), CISM Courses and Lectures, vol. 513, Springer-Verlag, Wien, New York, 2010, p. 59
[27] Colloids Surf. A, Physicochem. Eng. Asp., 206 (2002), p. 11
[28] Z. Phys. Chem., 13 (1894), p. 657 (English translation: J.S. Rowlinson J. Stat. Phys., 20, 1979, pp. 197)
[29] J. Stat. Mech. Theory Exp., P07006 (2007)
[30] Phys. Rev. B, 48 (1993), p. 9321
[31] Phys. Rev. E, 57 (1998), p. 1290
[32] J. Stat. Mech. Theory Exp., P02040 (2009) P12024 (2010)
[33] Phys. Rep., 339 (2000), p. 1
[34] J. Fluid Mech., 467 (2002), p. 163
[35] Physica D, 239 (2010), p. 1593
[36] Nature, 381 (1996), p. 413
[37] Physica D, 237 (2008), p. 3237
[38] J. Fluid Mech., 237 (1992), p. 57
[39] J. Appl. Math. Mech., 40 (1976), p. 836
[40] Convective Instabilities in Systems with Interface, Gordon and Breach, Singapore, 1993
[41] Phys. Rev. A, 42 (1990), p. 7244
[42] Phys. Rev. B, 80 (2009), p. 046221
[43] Phys. Rev. Lett., 73 (1994), p. 2978
[44] Physica D, 83 (1995), p. 478
[45] Phys. Rev. A, 54 (1996), p. 4581
[46] Phys. Rev. A, 56 (1997), p. 3237
[47] Phys. Rev. Lett., 79 (1997), p. 2658
[48] Rev. Mod. Phys., 69 (1997), p. 931
[49] Phys. Rev. E, 67 (2003), p. 016302
[50] Wetting and Spreading Dynamics, CRC Press, Boca Raton, 2007
[51] Interfacial Convection in Multilayer Systems, Springer, New York, 2012
[52] Eur. J. Appl. Math., 25 (2014), p. 83
[53] J. Stat. Phys., 61 (1990), p. 345
[54] J. Stat. Phys., 66 (1992), p. 1071
[55] Phys. Rev. E, 54 (1996), p. 4568
[56] J. Phys. Soc. Jpn., 65 (1996), p. 3576
[57] Phys. Rev. B, 48 (1993), p. 5808
[58] Physica D, 122 (1998), p. 202
[59] Phys. Rev. E, 59 (1999), p. 803
[60] Phys. Rev. Lett., 86 (2001), p. 1550
[61] Physica D, 178 (2003), p. 127
[62] Phys. Rev. Lett., 112 (2014), p. 094103
[63] Phys. Rev. E, 64 (2001), p. 061601
[64] SIAM J. Appl. Math., 66 (2006), p. 700
[65] Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001
[66] Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002
[67] Phys. Rev. E, 90 (2014), p. 032114
[68] Physica D, 201 (2005), p. 291
[69] Coarsening in inhomogeneous systems, C. R. Physique, Volume 16 (2015) ( in this issue )
[70] J. Phys. C, 16 (1983), p. 1593
[71] Phys. Rev. Lett., 56 (1986), p. 724
[72] Phys. Rev. Lett., 58 (1987), p. 431
[73] Phys. Rev. Lett., 92 (2004), p. 090601
[74] J. Fluid Mech., 168 (1986), p. 221
[75] Phys. Rev. E, 80 (2009), p. 030106(R)
[76] Phys. Rev. E, 87 (2013), p. 063302
[77] J. Fluid Mech., 38 (1969), p. 279
[78] J. Fluid Mech., 38 (1969), p. 203
[79] Phys. Rev. E, 62 (2000), p. R5
[80] Arch. Ration. Mech. Anal., 181 (2006), p. 505
[81] Physica D, 23 (1986), p. 3
[82] Phys. Rev. A, 15 (1977), p. 319
[83] Phys. Rev. A, 31 (1985), p. 2492
[84] Phys. Rev. E, 54 (1996), p. 3895
[85] Nonlinearity, 21 (2008), p. T45
[86] Dynamics of Curved Fronts, Academic Press, Boston, 1988
[87] Physica D, 136 (2000), p. 245
[88] Physica D, 146 (2000), p. 137
[89] J. Phys. Chem. Solids, 19 (1961), p. 35
[90] Z. Elektrochem., 65 (1961), p. 581
[91] Phys. Rev. B, 34 (1986), p. 7845
[92] Phys. Rev. B, 37 (1988), p. 196
[93] Phys. Rev. B, 37 (1988), p. 9638
[94] Physica A, 213 (1995), p. 41
[95] Phys. Rev. B, 49 (1991), p. 5747
[96] Phys. Rev. E, 51 (1995), p. 5469
[97] Phys. Rev. E, 57 (1998), p. 6172
[98] Phys. Rev. E, 56 (1997), p. 758
[99] Sov. Phys. JETP, 15 (1962), p. 939
[100] Phys. Rev. Lett., 46 (1981), p. 1581
[101] Chaos, 14 (2004), p. 845
[102] Annu. Rev. Fluid Mech., 25 (1993), p. 184
[103] Phys. Rev. E, 90 (2014), p. 022915
[104] J. Fluid Mech., 127 (1983), p. 155
[105] Phys. Rev. Lett., 49 (1981), p. 1891
[106] Phys. Lett. A, 113 (1985), p. 289
[107] Phys. Lett. A, 153 (1991), p. 427
[108] Europhys. Lett., 24 (1993), p. 461
[109] Europhys. Lett., 57 (2002), p. 480
[110] Physica D, 74 (1994), p. 301
[111] Rev. Mod. Phys., 70 (1998), p. 289
[112] Phys. Rev. E, 67 (2003), p. 056202
[113] J. Phys. Lett. (France), 40 (1979), p. L-609
[114] Phys. Rev. E, 67 (2003), p. 036102
[115] Phys. Rev. E, 69 (2004), p. 011104
[116] Phys. Rev. E, 90 (2014), p. 052101
[117] Phys. Rev. E, 70 (2004), p. 046204
[118] Phys. Rev. E, 84 (2011), p. 011611
[119] et al. Europhys. Lett., 67 (2004), p. 800
[120] Phys. Rev. Lett., 97 (2006), p. 188302
[121] Phys. Rev. E, 70 (2004), p. 056223
[122] J. Nonlinear Sci., 24 (2014), p. 493
[123] Phys. Rev. E, 80 (2009), p. 036117
Cited by Sources:
Comments - Policy