[Coarsening contre formation de motifs]
Il est connu que des systèmes physiques similaires peuvent révéler deux comportements assez similaires, le coarsening, qui crée un état uniforme ou une structure à grande échelle, ou la formation de motifs ordonnés ou désordonnés, qui ne sont jamais homogénéisés. Nous présentons une description du coarsening utilisant deux modèles basiques simples, l'équation d'Allen–Cahn et celle de Cahn–Hilliard, et discutons les facteurs qui peuvent ralentir et arrêter le processus de coarsening. On trouve parmi ceux-ci l'ancrage de parois de domaines sur des inhomogénéités, les queues oscillatoires de parois de domaines, ainsi que d'autres. Le coarsening de domaines de motifs est aussi discuté.
It is known that similar physical systems can reveal two quite different ways of behavior, either coarsening, which creates a uniform state or a large-scale structure, or formation of ordered or disordered patterns, which are never homogenized. We present a description of coarsening using simple basic models, the Allen–Cahn equation and the Cahn–Hilliard equation, and discuss the factors that may slow down and arrest the process of coarsening. Among them are pinning of domain walls on inhomogeneities, oscillatory tails of domain walls, nonlocal interactions, and others. Coarsening of pattern domains is also discussed.
Mots-clés : Coarsening, Formation de motifs, Parois de domaines
Alexander A. Nepomnyashchy 1
@article{CRPHYS_2015__16_3_267_0, author = {Alexander A. Nepomnyashchy}, title = {Coarsening versus pattern formation}, journal = {Comptes Rendus. Physique}, pages = {267--279}, publisher = {Elsevier}, volume = {16}, number = {3}, year = {2015}, doi = {10.1016/j.crhy.2015.03.004}, language = {en}, }
Alexander A. Nepomnyashchy. Coarsening versus pattern formation. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 267-279. doi : 10.1016/j.crhy.2015.03.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.004/
[1] Rev. Mod. Phys., 65 (1993), p. 851
[2] Pattern Formation: An Introduction to Methods, Cambridge University Press, Cambridge, UK, 2006
[3] Patterns and Interfaces in Dissipative Dynamics, Springer, Berlin, 2006
[4] Foundations of Synergetics II: Chaos and Noise, Springer, Berlin, 2012
[5] Growth and Coarsening: Ostwald Ripening in Materials Processing, Springer, Berlin, 2002
[6] Adv. Phys., 43 (1994), p. 357
[7] J. Chem. Phys., 28 (1958), p. 258
[8] Macromolecules, 13 (1980), p. 1602
[9] Macromolecules, 19 (1986), p. 2621
[10] Mod. Phys. Lett. B, 1 (1987), p. 49
[11] Phys. Rev. E, 58 (1998), p. 5364
[12] arXiv
, 2014 |[13] Prog. Theor. Phys., 55 (1976), p. 356
[14] Prog. Theor. Phys., 56 (1976), p. 681
[15] Acta Astronaut., 4 (1977), p. 1177
[16] Fluid Dyn., 9 (1974), p. 354
[17] Europhys. Lett., 31 (1995), p. 437
[18] Physica D, 86 (1995), p. 90
[19] New J. Phys., 9 (2007), p. 102
[20] Phys. Rev. E, 65 (2002), p. 046119
[21] Dynamics of Self-Organized and Self-Assembled Structures, Cambridge University Press, 2009
[22] Acta Metall., 20 (1972), p. 423
[23] Nonlinear Waves 1, Dynamics and Evolution (A.V. Gaponov-Grekhov; M.I. Rabinovich; J. Engelbrecht, eds.), Springer-Verlag, Berlin, 1989, p. 103
[24] Proc. IEEE, 62 (1974), p. 1511
[25] Physica A, 116 (1982), p. 573
[26] Pattern Formation at Interfaces (P. Colinet; A. Nepomnyashchy, eds.), CISM Courses and Lectures, vol. 513, Springer-Verlag, Wien, New York, 2010, p. 59
[27] Colloids Surf. A, Physicochem. Eng. Asp., 206 (2002), p. 11
[28] Z. Phys. Chem., 13 (1894), p. 657 (English translation: J.S. Rowlinson J. Stat. Phys., 20, 1979, pp. 197)
[29] J. Stat. Mech. Theory Exp., P07006 (2007)
[30] Phys. Rev. B, 48 (1993), p. 9321
[31] Phys. Rev. E, 57 (1998), p. 1290
[32] J. Stat. Mech. Theory Exp., P02040 (2009) P12024 (2010)
[33] Phys. Rep., 339 (2000), p. 1
[34] J. Fluid Mech., 467 (2002), p. 163
[35] Physica D, 239 (2010), p. 1593
[36] Nature, 381 (1996), p. 413
[37] Physica D, 237 (2008), p. 3237
[38] J. Fluid Mech., 237 (1992), p. 57
[39] J. Appl. Math. Mech., 40 (1976), p. 836
[40] Convective Instabilities in Systems with Interface, Gordon and Breach, Singapore, 1993
[41] Phys. Rev. A, 42 (1990), p. 7244
[42] Phys. Rev. B, 80 (2009), p. 046221
[43] Phys. Rev. Lett., 73 (1994), p. 2978
[44] Physica D, 83 (1995), p. 478
[45] Phys. Rev. A, 54 (1996), p. 4581
[46] Phys. Rev. A, 56 (1997), p. 3237
[47] Phys. Rev. Lett., 79 (1997), p. 2658
[48] Rev. Mod. Phys., 69 (1997), p. 931
[49] Phys. Rev. E, 67 (2003), p. 016302
[50] Wetting and Spreading Dynamics, CRC Press, Boca Raton, 2007
[51] Interfacial Convection in Multilayer Systems, Springer, New York, 2012
[52] Eur. J. Appl. Math., 25 (2014), p. 83
[53] J. Stat. Phys., 61 (1990), p. 345
[54] J. Stat. Phys., 66 (1992), p. 1071
[55] Phys. Rev. E, 54 (1996), p. 4568
[56] J. Phys. Soc. Jpn., 65 (1996), p. 3576
[57] Phys. Rev. B, 48 (1993), p. 5808
[58] Physica D, 122 (1998), p. 202
[59] Phys. Rev. E, 59 (1999), p. 803
[60] Phys. Rev. Lett., 86 (2001), p. 1550
[61] Physica D, 178 (2003), p. 127
[62] Phys. Rev. Lett., 112 (2014), p. 094103
[63] Phys. Rev. E, 64 (2001), p. 061601
[64] SIAM J. Appl. Math., 66 (2006), p. 700
[65] Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001
[66] Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002
[67] Phys. Rev. E, 90 (2014), p. 032114
[68] Physica D, 201 (2005), p. 291
[69] Coarsening in inhomogeneous systems, C. R. Physique, Volume 16 (2015) ( in this issue )
[70] J. Phys. C, 16 (1983), p. 1593
[71] Phys. Rev. Lett., 56 (1986), p. 724
[72] Phys. Rev. Lett., 58 (1987), p. 431
[73] Phys. Rev. Lett., 92 (2004), p. 090601
[74] J. Fluid Mech., 168 (1986), p. 221
[75] Phys. Rev. E, 80 (2009), p. 030106(R)
[76] Phys. Rev. E, 87 (2013), p. 063302
[77] J. Fluid Mech., 38 (1969), p. 279
[78] J. Fluid Mech., 38 (1969), p. 203
[79] Phys. Rev. E, 62 (2000), p. R5
[80] Arch. Ration. Mech. Anal., 181 (2006), p. 505
[81] Physica D, 23 (1986), p. 3
[82] Phys. Rev. A, 15 (1977), p. 319
[83] Phys. Rev. A, 31 (1985), p. 2492
[84] Phys. Rev. E, 54 (1996), p. 3895
[85] Nonlinearity, 21 (2008), p. T45
[86] Dynamics of Curved Fronts, Academic Press, Boston, 1988
[87] Physica D, 136 (2000), p. 245
[88] Physica D, 146 (2000), p. 137
[89] J. Phys. Chem. Solids, 19 (1961), p. 35
[90] Z. Elektrochem., 65 (1961), p. 581
[91] Phys. Rev. B, 34 (1986), p. 7845
[92] Phys. Rev. B, 37 (1988), p. 196
[93] Phys. Rev. B, 37 (1988), p. 9638
[94] Physica A, 213 (1995), p. 41
[95] Phys. Rev. B, 49 (1991), p. 5747
[96] Phys. Rev. E, 51 (1995), p. 5469
[97] Phys. Rev. E, 57 (1998), p. 6172
[98] Phys. Rev. E, 56 (1997), p. 758
[99] Sov. Phys. JETP, 15 (1962), p. 939
[100] Phys. Rev. Lett., 46 (1981), p. 1581
[101] Chaos, 14 (2004), p. 845
[102] Annu. Rev. Fluid Mech., 25 (1993), p. 184
[103] Phys. Rev. E, 90 (2014), p. 022915
[104] J. Fluid Mech., 127 (1983), p. 155
[105] Phys. Rev. Lett., 49 (1981), p. 1891
[106] Phys. Lett. A, 113 (1985), p. 289
[107] Phys. Lett. A, 153 (1991), p. 427
[108] Europhys. Lett., 24 (1993), p. 461
[109] Europhys. Lett., 57 (2002), p. 480
[110] Physica D, 74 (1994), p. 301
[111] Rev. Mod. Phys., 70 (1998), p. 289
[112] Phys. Rev. E, 67 (2003), p. 056202
[113] J. Phys. Lett. (France), 40 (1979), p. L-609
[114] Phys. Rev. E, 67 (2003), p. 036102
[115] Phys. Rev. E, 69 (2004), p. 011104
[116] Phys. Rev. E, 90 (2014), p. 052101
[117] Phys. Rev. E, 70 (2004), p. 046204
[118] Phys. Rev. E, 84 (2011), p. 011611
[119] et al. Europhys. Lett., 67 (2004), p. 800
[120] Phys. Rev. Lett., 97 (2006), p. 188302
[121] Phys. Rev. E, 70 (2004), p. 056223
[122] J. Nonlinear Sci., 24 (2014), p. 493
[123] Phys. Rev. E, 80 (2009), p. 036117
- A framework based on symbolic regression coupled with eXtended Physics-Informed Neural Networks for gray-box learning of equations of motion from data, Computer Methods in Applied Mechanics and Engineering, Volume 415 (2023), p. 116258 | DOI:10.1016/j.cma.2023.116258
- Special solutions for an equation arising in sand ripple dynamics, Nonlinear Analysis: Real World Applications, Volume 67 (2022), p. 103629 | DOI:10.1016/j.nonrwa.2022.103629
- Steady states and coarsening in one-dimensional driven Allen-Cahn system, Physical Review E, Volume 106 (2022) no. 1 | DOI:10.1103/physreve.106.014150
- Suppression of coarsening and emergence of oscillatory behavior in a Cahn-Hilliard model with nonvariational coupling, Physical Review E, Volume 103 (2021) no. 4 | DOI:10.1103/physreve.103.042602
- Pattern formation aspects of electrically charged tri-stable media with implications to bulk heterojunction in organic photovoltaics, EPL (Europhysics Letters), Volume 125 (2019) no. 3, p. 38001 | DOI:10.1209/0295-5075/125/38001
- Effective mobility and diffusivity in coarsening processes, EPL (Europhysics Letters), Volume 119 (2017) no. 2, p. 26005 | DOI:10.1209/0295-5075/119/26005
- Sliding Drops: Ensemble Statistics from Single Drop Bifurcations, Physical Review Letters, Volume 119 (2017) no. 20 | DOI:10.1103/physrevlett.119.204501
- Arrested and temporarily arrested states in a protein–polymer mixture studied by USAXS and VSANS, Soft Matter, Volume 13 (2017) no. 46, p. 8756 | DOI:10.1039/c7sm01434a
- Computational studies of coarsening rates for the Cahn–Hilliard equation with phase-dependent diffusion mobility, Journal of Computational Physics, Volume 310 (2016), p. 85 | DOI:10.1016/j.jcp.2016.01.018
- Domain coarsening in a subdiffusive Allen–Cahn equation, Physica D: Nonlinear Phenomena, Volume 308 (2015), p. 52 | DOI:10.1016/j.physd.2015.06.007
Cité par 10 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier