[Comparaisons de temps et fréquences par signaux radiofréquences satellitaires]
The comparison of distant clocks has always been an important part of time metrology. It is important in science in general as well as in everyday applications. Signals from the satellites of the Global Positioning System (GPS) started to be used for the purpose in the early 1980s. The methods of signal processing have improved to an extent that time transfer with ns-accuracy and frequency transfer with
La comparaison d'horloges distantes, qui a toujours été une part importante de la métrologie du temps et des fréquences, concerne aussi bien la science en général que les applications quotidiennes. Une des techniques utilisées repose sur les signaux des systèmes de radionavigation par satellites (GNSS pour Global Navigation Satellite System), qui ont commencé à être exploités au début des années 1980 avec les signaux du Global Positioning System (GPS) américain. Les méthodes de traitement de ces signaux se sont améliorées au cours du temps, permettant d'obtenir aujourd'hui de façon routinière des transferts de temps avec une exactitude de l'ordre de la nanoseconde, et des transferts de fréquence avec une instabilité de
Mots-clés : Étalon de fréquence, Métrologie temps–fréquence, GNSS, TWSTFT
Andreas Bauch 1
@article{CRPHYS_2015__16_5_471_0, author = {Andreas Bauch}, title = {Time and frequency comparisons using radiofrequency signals from satellites}, journal = {Comptes Rendus. Physique}, pages = {471--479}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.02.006}, language = {en}, }
Andreas Bauch. Time and frequency comparisons using radiofrequency signals from satellites. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 471-479. doi : 10.1016/j.crhy.2015.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.02.006/
[1] et al. Prague, Proceedings of the 2013 Joint UFFC, EFTF and PFM Symposium, 111 (2013), p. 110801
[2] et al. Metrologia, 49 (2013), p. 317
[3] Metrologia, 45 (2008), p. S162
[4] , International Telecommunication Union, Geneva, 2010 (ITU handbook Satellite Time and Frequency Transfer and Dissemination)
[5] et al. IEEE Trans., IM-34 (1985), p. 118
[6] Proc. IEEE, 79 (1991), p. 983
[7] et al. Metrologia, 45 (2008), p. 185
[8] Understanding GPS, Principles and Applications (E.D. Kaplan; C.J. Hegarty, eds.), Artech, Boston, London, 2006
[9] GPS Theory, Algorithms and Applications, Springer, Berlin, Heidelberg, 2003
[10] Adv. Space Res., 36 (2005), p. 320
[11] Metrologia, 40 (2003), p. S270
[12] Metrologia, 31 (1994), p. 69
[13] Ft. Monmouth, NJ, USA (1980), p. 334
[14] Metrologia, 40 (2003), p. 184
[15] Metrologia, 45 (2008), p. 33
[16] GPS Solut., 4 (2001), p. 31
[17] URL 62.161.69.5, directory pub/tai/publication/circt.
[18] See ftp server at tai.bipm.org/TimeLink/LkC in monthly files, ReadMe file included.
[19] Metrologia, 50 (2013), p. 277
[20] Copenhagen, Denmark (2011) (on CD-Rom)
[21] Bellevue, WA, USA (2013), p. 256
[22] R. Piriz, GMV, Tres Cantos, Spain, 2014, private communication.
[23] Metrologia, 43 (2006), p. 109
[24] Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT), BIPM, 2011 (BIPM report 2011/01)
[25] Rev. Mod. Phys., 39 (1967), p. 475
[26] et al. Long Beach, CA, USA (2007), p. 211
[27] Rev. Fr. Métrol., 24 (2010), p. 9
[28] et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (2008), p. 1906
[29] et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 (2012), p. 531
[30] et al. Metrologia, 51 (2014), p. 253
[31] Dana Point, CA, USA (1999), p. 505
[32] et al. Opt. Lett., 39 (2014), p. 4072
[33] J. Phys. Conf. Ser., 2 (2001), p. 1313
[34] et al. The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015), pp. 540-552 ( this issue See also Rev. Fr. Métrol., 34, 2014)
[35] et al. Bellevue, WA, USA (2013), p. 239
[36] http://www.bipm.org/en/bipm-services/calibrations/#time http://www.bipm.org/metrology/time-frequency/publications.html (see also)
[37] BIPM guidelines for GNSS equipment calibration V2.0 25/04/2014.
[38] IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 (2013), p. 121
[39] et al. Rotterdam, The Netherlands (2004) (on CD-ROM)
- Parallel transfer of optical reference frequency, radio frequency, and 1 PPS signal with timestamp over a 120-km single fiber channel in an urban area, Optics Express, Volume 33 (2025) no. 6, p. 14366 | DOI:10.1364/oe.551721
- Optical two-tone time transfer, Physical Review Applied, Volume 24 (2025) no. 1 | DOI:10.1103/9w7h-zzyd
- Classical and quantum frequency combs for satellite-based clock synchronization, APL Photonics, Volume 9 (2024) no. 10 | DOI:10.1063/5.0220546
- Testing theories of gravitation with the Interstellar Probe Radio Experiment, Advances in Space Research, Volume 73 (2024) no. 5, p. 2763 | DOI:10.1016/j.asr.2023.11.053
- Determination of the time-variable geopotential by means of orbiting clocks, Journal of Geodesy, Volume 98 (2024) no. 6 | DOI:10.1007/s00190-024-01868-9
- Measurement of atmospheric non-reciprocity effects for satellite-based two-way time-frequency transfer, Photonics Research, Volume 12 (2024) no. 6, p. 1274 | DOI:10.1364/prj.511141
- Investigation of proper time and inter-satellite clock difference using general relativity theory, Aerospace Science and Technology, Volume 132 (2023), p. 108071 | DOI:10.1016/j.ast.2022.108071
- Time and Frequency Metrology, Handbook of Metrology and Applications (2023), p. 1 | DOI:10.1007/978-981-19-1550-5_19-1
- Time and Frequency Metrology, Handbook of Metrology and Applications (2023), p. 403 | DOI:10.1007/978-981-99-2074-7_19
- Measuring Height Difference Using Two-Way Satellite Time and Frequency Transfer, Remote Sensing, Volume 14 (2022) no. 3, p. 451 | DOI:10.3390/rs14030451
- , 2021 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (2021), p. 82 | DOI:10.23919/usnc-ursi51813.2021.9703577
- White Rabbit Time and Frequency Transfer Over Wireless Millimeter-Wave Carriers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 67 (2020) no. 9, p. 1946 | DOI:10.1109/tuffc.2020.2989667
- Unidirectional two-way optical frequency comparison and its fundamental limitations, Optics Letters, Volume 45 (2020) no. 21, p. 6074 | DOI:10.1364/ol.404866
- Atomic Clocks for GNSS, Position, Navigation, and Timing Technologies in the 21st Century (2020), p. 1497 | DOI:10.1002/9781119458555.ch47
- Sensitive linear optical sampling system with femtosecond precision, Review of Scientific Instruments, Volume 91 (2020) no. 3 | DOI:10.1063/1.5144488
- Chronometric Geodesy: Methods and Applications, Relativistic Geodesy, Volume 196 (2019), p. 25 | DOI:10.1007/978-3-030-11500-5_2
- Effects of Random Visual and Auditory Stimulation on Walking of Healthy Adults, The Journal of Korean Academy of Physical Therapy Science, Volume 26 (2019) no. 1, p. 35 | DOI:10.26862/jkpts.2019.06.26.1.35
- Comparing Optical Oscillators across the Air to Milliradians in Phase and 10−17 in Frequency, Physical Review Letters, Volume 120 (2018) no. 5 | DOI:10.1103/physrevlett.120.050801
- Atomic clocks for geodesy, Reports on Progress in Physics, Volume 81 (2018) no. 6, p. 064401 | DOI:10.1088/1361-6633/aab409
- Optical clock networks, Nature Photonics, Volume 11 (2017) no. 1, p. 25 | DOI:10.1038/nphoton.2016.235
- Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links, Optics Express, Volume 25 (2017) no. 14, p. 15676 | DOI:10.1364/oe.25.015676
- Synchronization of Distant Optical Clocks at the Femtosecond Level, Physical Review X, Volume 6 (2016) no. 2 | DOI:10.1103/physrevx.6.021016
- Towards a redefinition of the second based on optical atomic clocks, Comptes Rendus. Physique, Volume 16 (2015) no. 5, p. 506 | DOI:10.1016/j.crhy.2015.03.012
Cité par 23 documents. Sources : Crossref
Commentaires - Politique