Comptes Rendus
Time and frequency comparisons using radiofrequency signals from satellites
[Comparaisons de temps et fréquences par signaux radiofréquences satellitaires]
Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 471-479.

The comparison of distant clocks has always been an important part of time metrology. It is important in science in general as well as in everyday applications. Signals from the satellites of the Global Positioning System (GPS) started to be used for the purpose in the early 1980s. The methods of signal processing have improved to an extent that time transfer with ns-accuracy and frequency transfer with 1015 relative instability have become routine. The usage of signals from other Global Navigation Satellite Systems gets more and more common and examples of the improvements related to that will be given. Two-Way Satellite Time and Frequency Transfer (TWSTFT) is another method relying on the exchange of signals in the microwave range. Time transfer accuracy at the 1-ns level was demonstrated, and recently new signal structures and processing schemes showed the way for further improvements.

La comparaison d'horloges distantes, qui a toujours été une part importante de la métrologie du temps et des fréquences, concerne aussi bien la science en général que les applications quotidiennes. Une des techniques utilisées repose sur les signaux des systèmes de radionavigation par satellites (GNSS pour Global Navigation Satellite System), qui ont commencé à être exploités au début des années 1980 avec les signaux du Global Positioning System (GPS) américain. Les méthodes de traitement de ces signaux se sont améliorées au cours du temps, permettant d'obtenir aujourd'hui de façon routinière des transferts de temps avec une exactitude de l'ordre de la nanoseconde, et des transferts de fréquence avec une instabilité de 1015 en fréquence relative. L'utilisation de signaux d'autres constellations GNSS se développe de plus en plus, et des exemples d'améliorations attendues sont présentés. Une autre technique de transfert de temps à « deux voies » (TWSTFT pour Two-Way Satellite Time and Frequency Transfer) est basée sur l'échange de signaux dans la gamme des fréquences micro-ondes, via des répéteurs de satellites géostationnaires de télécommunications. Une exactitude des transferts de temps au niveau de 1 ns a été démontrée, et de nouvelles structures de signal associées à de nouveaux traitements ont récemment montré la voie vers d'autres améliorations.

Publié le :
DOI : 10.1016/j.crhy.2015.02.006
Keywords: Frequency standards, Time and frequency metrology, GNSS, TWSTFT
Mots-clés : Étalon de fréquence, Métrologie temps–fréquence, GNSS, TWSTFT

Andreas Bauch 1

1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
@article{CRPHYS_2015__16_5_471_0,
     author = {Andreas Bauch},
     title = {Time and frequency comparisons using radiofrequency signals from satellites},
     journal = {Comptes Rendus. Physique},
     pages = {471--479},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.02.006},
     language = {en},
}
TY  - JOUR
AU  - Andreas Bauch
TI  - Time and frequency comparisons using radiofrequency signals from satellites
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 471
EP  - 479
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.02.006
LA  - en
ID  - CRPHYS_2015__16_5_471_0
ER  - 
%0 Journal Article
%A Andreas Bauch
%T Time and frequency comparisons using radiofrequency signals from satellites
%J Comptes Rendus. Physique
%D 2015
%P 471-479
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.02.006
%G en
%F CRPHYS_2015__16_5_471_0
Andreas Bauch. Time and frequency comparisons using radiofrequency signals from satellites. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 471-479. doi : 10.1016/j.crhy.2015.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.02.006/

[1] S. Droste; et al.; O. Lopez et al. Prague, Proceedings of the 2013 Joint UFFC, EFTF and PFM Symposium, 111 (2013), p. 110801

[2] Ł. Buczek; et al.; M. Rost et al. Metrologia, 49 (2013), p. 317

[3] J. Levine Metrologia, 45 (2008), p. S162

[4] , International Telecommunication Union, Geneva, 2010 (ITU handbook Satellite Time and Frequency Transfer and Dissemination)

[5] D.W. Allan et al. IEEE Trans., IM-34 (1985), p. 118

[6] D. Kirchner Proc. IEEE, 79 (1991), p. 983

[7] D. Piester et al. Metrologia, 45 (2008), p. 185

[8] Understanding GPS, Principles and Applications (E.D. Kaplan; C.J. Hegarty, eds.), Artech, Boston, London, 2006

[9] G. Xu GPS Theory, Algorithms and Applications, Springer, Berlin, Heidelberg, 2003

[10] J.M. Dow; R.E. Neilan; G. Gendt Adv. Space Res., 36 (2005), p. 320

[11] J. Ray; K. Senior Metrologia, 40 (2003), p. S270

[12] D.W. Allan; C. Thomas Metrologia, 31 (1994), p. 69

[13] D.W. Allan; M.A. Weiss Ft. Monmouth, NJ, USA (1980), p. 334

[14] P. Defraigne; G. Petit Metrologia, 40 (2003), p. 184

[15] G. Petit; Z. Jiang Metrologia, 45 (2008), p. 33

[16] J. Kouba; P. Héroux GPS Solut., 4 (2001), p. 31

[17] URL 62.161.69.5, directory pub/tai/publication/circt.

[18] See ftp server at tai.bipm.org/TimeLink/LkC in monthly files, ReadMe file included.

[19] A. Harmegnies; P. Defraigne; G. Petit Metrologia, 50 (2013), p. 277

[20] P. Defraigne; M.C. Martinez-Belda; Q. Baire Copenhagen, Denmark (2011) (on CD-Rom)

[21] P. Defraigne; W. Aerts; G. Cerretto; G. Signorile; F. Cantoni; I. Sesia; P. Tavella; A. Cernigliaro; A. Samperi; J.M. Sleewaegen Bellevue, WA, USA (2013), p. 256

[22] R. Piriz, GMV, Tres Cantos, Spain, 2014, private communication.

[23] A. Bauch; J. Achkar; S. Bize; D. Calonico; R. Dach; R. Hlaváč; L. Lorini; T. Parker; G. Petit; D. Piester; K. Szymaniec; P. Uhrich Metrologia, 43 (2006), p. 109

[24] A. Bauch; D. Piester; M. Fujieda; W. Lewandowski Directive for operational use and data handling in two-way satellite time and frequency transfer (TWSTFT), BIPM, 2011 (BIPM report 2011/01)

[25] E.J. Post Rev. Mod. Phys., 39 (1967), p. 475

[26] D. Piester et al. Long Beach, CA, USA (2007), p. 211

[27] J. Achkar Rev. Fr. Métrol., 24 (2010), p. 9

[28] D. Piester et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 (2008), p. 1906

[29] W. Tseng et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 (2012), p. 531

[30] M. Fujieda et al. Metrologia, 51 (2014), p. 253

[31] W. Schäfer; A. Pawlitzki; T. Kuhn Dana Point, CA, USA (1999), p. 505

[32] H. Hachisu et al. Opt. Lett., 39 (2014), p. 4072

[33] Ch. Salomon; et al.; L. Cacciapuoti; Ch. Salomon J. Phys. Conf. Ser., 2 (2001), p. 1313

[34] P. Laurent; D. Massonnet; L. Cacciapuoti; C. Salomon; P. Laurent et al. The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015), pp. 540-552 ( this issue See also Rev. Fr. Métrol., 34, 2014)

[35] I. Sesia et al. Bellevue, WA, USA (2013), p. 239

[36] http://www.bipm.org/en/bipm-services/calibrations/#time http://www.bipm.org/metrology/time-frequency/publications.html (see also)

[37] BIPM guidelines for GNSS equipment calibration V2.0 25/04/2014.

[38] M.C. Martinez-Belda; P. Defraigne; C. Bruyninx IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 (2013), p. 121

[39] G.W. Hein et al. Rotterdam, The Netherlands (2004) (on CD-ROM)

  • Hanxu Wu; Xiaoming Zhang; Haifeng Wang; Peihao Cheng; Xinyi Chen; Yang Fu; Weinan Zhao; Haonan Li; Honglei Yang; Shengkang Zhang; Jun Ge Parallel transfer of optical reference frequency, radio frequency, and 1 PPS signal with timestamp over a 120-km single fiber channel in an urban area, Optics Express, Volume 33 (2025) no. 6, p. 14366 | DOI:10.1364/oe.551721
  • Jonathan D. Roslund; Abijith S. Kowligy; Junichiro Fujita; Micah P. Ledbetter; Akash V. Rakholia; Martin M. Boyd; Jamil R. Abo-Shaeer; Arman Cingöz Optical two-tone time transfer, Physical Review Applied, Volume 24 (2025) no. 1 | DOI:10.1103/9w7h-zzyd
  • Ronakraj K. Gosalia; Ryan Aguinaldo; Jonathan Green; Holly Leopardi; Peter Brereton; Robert Malaney Classical and quantum frequency combs for satellite-based clock synchronization, APL Photonics, Volume 9 (2024) no. 10 | DOI:10.1063/5.0220546
  • Michael Plumaris; Fabrizio De Marchi; Gael Cascioli; Luciano Iess Testing theories of gravitation with the Interstellar Probe Radio Experiment, Advances in Space Research, Volume 73 (2024) no. 5, p. 2763 | DOI:10.1016/j.asr.2023.11.053
  • Simone Giuliani; Byron D. Tapley; John C. Ries Determination of the time-variable geopotential by means of orbiting clocks, Journal of Geodesy, Volume 98 (2024) no. 6 | DOI:10.1007/s00190-024-01868-9
  • Ting Zeng; Qi Shen; Yuan Cao; Jian-Yu Guan; Meng-Zhe Lian; Jin-Jian Han; Lei Hou; Jian Lu; Xin-Xin Peng; Min Li; Wei-Yue Liu; Jin-Cai Wu; Yong Wang; Juan Yin; Ji-Gang Ren; Hai-Feng Jiang; Qiang Zhang; Cheng-Zhi Peng; Jian-Wei Pan Measurement of atmospheric non-reciprocity effects for satellite-based two-way time-frequency transfer, Photonics Research, Volume 12 (2024) no. 6, p. 1274 | DOI:10.1364/prj.511141
  • Qian Jia; Qing Li; Jian Liang; Lei Liu Investigation of proper time and inter-satellite clock difference using general relativity theory, Aerospace Science and Technology, Volume 132 (2023), p. 108071 | DOI:10.1016/j.ast.2022.108071
  • Poonam Arora; Amitava Sen Gupta Time and Frequency Metrology, Handbook of Metrology and Applications (2023), p. 1 | DOI:10.1007/978-981-19-1550-5_19-1
  • Poonam Arora; Amitava Sen Gupta Time and Frequency Metrology, Handbook of Metrology and Applications (2023), p. 403 | DOI:10.1007/978-981-99-2074-7_19
  • Peng Cheng; Wenbin Shen; Xiao Sun; Chenghui Cai; Kuangchao Wu; Ziyu Shen Measuring Height Difference Using Two-Way Satellite Time and Frequency Transfer, Remote Sensing, Volume 14 (2022) no. 3, p. 451 | DOI:10.3390/rs14030451
  • Shilpa Manandhar; Yu Song Meng, 2021 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium) (2021), p. 82 | DOI:10.23919/usnc-ursi51813.2021.9703577
  • Jane E. Gilligan; Eric M. Konitzer; Elad Siman-Tov; Justin W. Zobel; Eric J. Adles White Rabbit Time and Frequency Transfer Over Wireless Millimeter-Wave Carriers, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Volume 67 (2020) no. 9, p. 1946 | DOI:10.1109/tuffc.2020.2989667
  • Dan Xu; Olivier Lopez; Anne Amy-Klein; Paul-Eric Pottie Unidirectional two-way optical frequency comparison and its fundamental limitations, Optics Letters, Volume 45 (2020) no. 21, p. 6074 | DOI:10.1364/ol.404866
  • Leo Hollberg Atomic Clocks for GNSS, Position, Navigation, and Timing Technologies in the 21st Century (2020), p. 1497 | DOI:10.1002/9781119458555.ch47
  • Qiming Lu; Qi Shen; Jianyu Guan; Min Li; Jiupeng Chen; Shengkai Liao; Qiang Zhang; Chengzhi Peng Sensitive linear optical sampling system with femtosecond precision, Review of Scientific Instruments, Volume 91 (2020) no. 3 | DOI:10.1063/1.5144488
  • Pacome Delva; Heiner Denker; Guillaume Lion Chronometric Geodesy: Methods and Applications, Relativistic Geodesy, Volume 196 (2019), p. 25 | DOI:10.1007/978-3-030-11500-5_2
  • Jieun park; Euna Kim; Sungmin Yang; Nahyun Lee; Minhye Ha; Yuri Cha Effects of Random Visual and Auditory Stimulation on Walking of Healthy Adults, The Journal of Korean Academy of Physical Therapy Science, Volume 26 (2019) no. 1, p. 35 | DOI:10.26862/jkpts.2019.06.26.1.35
  • Laura C. Sinclair; Hugo Bergeron; William C. Swann; Esther Baumann; Jean-Daniel Deschênes; Nathan R. Newbury Comparing Optical Oscillators across the Air to Milliradians in Phase and 10−17 in Frequency, Physical Review Letters, Volume 120 (2018) no. 5 | DOI:10.1103/physrevlett.120.050801
  • Tanja E Mehlstäubler; Gesine Grosche; Christian Lisdat; Piet O Schmidt; Heiner Denker Atomic clocks for geodesy, Reports on Progress in Physics, Volume 81 (2018) no. 6, p. 064401 | DOI:10.1088/1361-6633/aab409
  • Fritz Riehle Optical clock networks, Nature Photonics, Volume 11 (2017) no. 1, p. 25 | DOI:10.1038/nphoton.2016.235
  • Aniceto Belmonte; Michael T. Taylor; Leo Hollberg; Joseph M. Kahn Effect of atmospheric anisoplanatism on earth-to-satellite time transfer over laser communication links, Optics Express, Volume 25 (2017) no. 14, p. 15676 | DOI:10.1364/oe.25.015676
  • Jean-Daniel Deschênes; Laura C. Sinclair; Fabrizio R. Giorgetta; William C. Swann; Esther Baumann; Hugo Bergeron; Michael Cermak; Ian Coddington; Nathan R. Newbury Synchronization of Distant Optical Clocks at the Femtosecond Level, Physical Review X, Volume 6 (2016) no. 2 | DOI:10.1103/physrevx.6.021016
  • Fritz Riehle Towards a redefinition of the second based on optical atomic clocks, Comptes Rendus. Physique, Volume 16 (2015) no. 5, p. 506 | DOI:10.1016/j.crhy.2015.03.012

Cité par 23 documents. Sources : Crossref

Commentaires - Politique