We present the time scales elaborated at the International Bureau of Weights and Measures (BIPM), review their present status, and discuss the transition in frequency performance from the present to the future , and its impact on time and frequency metrology. We focus our attention on future developments in the calculation of Coordinated Universal Time (UTC), on the evolution of time links and algorithms, on improving the access to the time reference and on possible changes in the definition of the timescales.
Nous présentons les échelles de temps élaborées par le Bureau international des poids et mesures (BIPM) et évaluons leurs performances présentes. Nous discutons la transition en cours pour passer du niveau actuel de sur l'incertitude de fréquence au niveau futur de , et de l'impact de ce changement sur la métrologie temps–fréquence. Nous concentrons notre attention sur les développements futurs pour le calcul du temps universel coordonné (UTC), sur l'évolution des techniques de comparaisons d'horloges et des algorithmes, sur l'amélioration de l'accès à la référence de temps et sur les changements possibles dans la définition des échelles de temps.
Mots-clés : Échelles de temps internationales, Etalons de fréquence, Horloges, Algorithmes
Gérard Petit 1; Felicitas Arias 1; Gianna Panfilo 1
@article{CRPHYS_2015__16_5_480_0, author = {G\'erard Petit and Felicitas Arias and Gianna Panfilo}, title = {International atomic time: {Status} and future challenges}, journal = {Comptes Rendus. Physique}, pages = {480--488}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.03.002}, language = {en}, }
Gérard Petit; Felicitas Arias; Gianna Panfilo. International atomic time: Status and future challenges. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 480-488. doi : 10.1016/j.crhy.2015.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.002/
[1] 13th General Conference on Weights, Measures, Comptes rendus de la CGPM (1967/68), 1969, p. 103.
[2] 14th General Conference on Weights, Measures, Comptes rendus de la CGPM (1971), 1972, p. 77.
[3] BIPM Circular T, monthly publication, ftp://ftp2.bipm.org/pub/tai//publication/cirt/.
[4] et al. UTCr: a rapid realization of UTC, Metrologia, Volume 51 (2014) no. 1, pp. 49-56
[5] Algorithms for TAI, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 1, pp. 140-150
[6] CIPM recommendation 1 (CI-2013): updates to the list of standard frequencies, Comité international des poids et mesures, 102nd meeting, 2013, p. 144
[7] A new prediction algorithm for the generation of international atomic time, Metrologia, Volume 49 (2012) no. 1, pp. 49-56
[8] A new weighting procedure for UTC, Metrologia, Volume 51 (2014) no. 3, pp. 285-292
[9] Estimation of the scale unit duration of time scales, Metrologia, Volume 13 (1977), pp. 87-93
[10] A new realization of terrestrial time, Proc. 35th Precise Time and Time Interval (PTTI) Meeting, 2003, pp. 307-316
[11] The long-term stability of EAL and TAI (revisited), Geneva, Switzerland (2007), pp. 391-394
[12] et al. Ramsey resonance in a Zacharias fountain, Europhys. Lett., Volume 16 (1991), pp. 165-170
[13] Comparison of frequency standards used for TAI, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 6, pp. 1550-1555
[14] et al. Progress in atomic fountains at LNE-SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012), pp. 391-410
[15] et al. Evaluation of long term performance of continuously running atomic fountains, Metrologia, Volume 51 (2014), pp. 263-269
[16] A timescale based on the world's fountain clocks, 45th Precise Time and Time Interval (PTTI) Meeting, 2013
[17] A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 55 (2008) no. 12, pp. 2586-2595
[18] A new trapped ion atomic clock based on , IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, pp. 629-635
[19] et al. New Astron. Rev., 48 (2004), p. 1413
[20] Timescales at the BIPM, Metrologia, Volume 48 (2011) no. 4, p. S145-S153
[21] Use of the global navigation satellite systems for the construction of the international time reference UTC, Proc. China Satellite Navigation Conference, 2013, pp. 457-468
[22] Review and preview of two-way time transfer for UTC generation – from TWSTFT to TWOTFT, Proc. IFCS–EFTF 2013, 2013, pp. 501-504
[23] Using a redundant time links system in TAI computation, Proceedings of the 20th EFTF, 2006, pp. 436-439
[24] et al. Comparison between frequency standards in Europe and the US at the uncertainty level, Metrologia, Volume 43 (2006), pp. 109-120
[25] Precise point positioning for TAI computation, Int. J. Navig. Obs., Volume 2008 (2008) (Article ID 562878) | DOI
[26] et al. Advances in multi-GNSS time transfer, EFTF (2013)
[27] On the potential of Galileo E5 for time transfer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 60 (2013), pp. 121-131
[28] et al. GPS carrier phase time transfer using single difference integer ambiguity resolution, Int. J. Navig. Obs., Volume 2008 (2008) (Article ID 273785)
[29] et al. GPS frequency transfer with IPPP, Proceedings of the 28th EFTF, 2014
[30] Development of two-way time and frequency transfer system with dual pseudo random noises, J. Natl. Inst. Inf. Commun. Technol., Volume 57 (2010), pp. 197-207
[31] et al. Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, Volume 51 (2014), pp. 253-262
[32] Atomic clock ensemble in space: an update, Int. J. Mod. Phys. D, Volume 16 (2007), p. 2511
[33] et al. Status of the T2L2/Jason2 experiment, Adv. Space Res., Volume 46 (2010), pp. 1559-1565
[34] et al. IEEE Trans. Instrum. Meas., 61 (2012) no. 9, pp. 2573-2580
[35] et al. Metrologia, 50 (2013), pp. 133-145
[36] et al. Metrologia, 49 (2012) no. 6, pp. 772-778
[37] et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network, Appl. Phys. B, Lasers Opt., Volume 110 (2013) no. 1, pp. 3-6
[38] http://www.ptb.de/emrp/neatft_home.html
[39] http://www.iau.org/administration/resolutions/general_assemblies/ (All IAU resolutions may be found at)
[40] Towards a vertical datum standardisation under the umbrella of global geodetic observing system, J. Geod. Sci., Volume 2 (2012) no. 4, pp. 325-342
[41] et al. The geopotential value for specifying the relativistic atomic time scale and a global vertical reference system, J. Geod., Volume 81 (2007), pp. 103-110
[42] The Gauss–Listing geopotential value and its rate from altimetric mean sea level and GRACE, J. Geod., Volume 86 (2012) no. 9, pp. 681-694
[43] Relativistic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., Volume 304 (1995), pp. 654-661
[44] Computation of the relativistic rate shift of a frequency standard, IEEE Trans. Instrum. Meas., Volume 46 (1997) no. 2, pp. 201-204
[45] The relativistic redshift with , uncertainty at NIST, Boulder, Colorado, USA, Metrologia, Volume 40 (2003), pp. 66-73
[46] et al. Relativistic theory of gravimetric measurements and definition of the geoid, Manuscr. Geod., Volume 13 (1988), pp. 143-146
[47] On a relativistic geodesy, Bull. Géod., Volume 59 (1985) no. 3, pp. 207-220
[48] Sea Surface Topography and Geoid (H. Sünkel; T. Baker, eds.), IAG Symposia, vol. 104, Springer, 1990, pp. 116-128
Cited by Sources:
Comments - Policy