Comptes Rendus
International atomic time: Status and future challenges
[Le temps atomique international : état de l'art et perspectives]
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 480-488.

Nous présentons les échelles de temps élaborées par le Bureau international des poids et mesures (BIPM) et évaluons leurs performances présentes. Nous discutons la transition en cours pour passer du niveau actuel de 1016 sur l'incertitude de fréquence au niveau futur de 10171018, et de l'impact de ce changement sur la métrologie temps–fréquence. Nous concentrons notre attention sur les développements futurs pour le calcul du temps universel coordonné (UTC), sur l'évolution des techniques de comparaisons d'horloges et des algorithmes, sur l'amélioration de l'accès à la référence de temps et sur les changements possibles dans la définition des échelles de temps.

We present the time scales elaborated at the International Bureau of Weights and Measures (BIPM), review their present status, and discuss the transition in frequency performance from the present 1016 to the future 10171018, and its impact on time and frequency metrology. We focus our attention on future developments in the calculation of Coordinated Universal Time (UTC), on the evolution of time links and algorithms, on improving the access to the time reference and on possible changes in the definition of the timescales.

Publié le :
DOI : 10.1016/j.crhy.2015.03.002
Keywords: International timescales, Frequency standards, Time links, Algorithms
Mot clés : Échelles de temps internationales, Etalons de fréquence, Horloges, Algorithmes
Gérard Petit 1 ; Felicitas Arias 1 ; Gianna Panfilo 1

1 Time Department, Bureau international des poids et mesures, Pavillon de Breteuil, 92312 Sèvres, France
@article{CRPHYS_2015__16_5_480_0,
     author = {G\'erard Petit and Felicitas Arias and Gianna Panfilo},
     title = {International atomic time: {Status} and future challenges},
     journal = {Comptes Rendus. Physique},
     pages = {480--488},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.002},
     language = {en},
}
TY  - JOUR
AU  - Gérard Petit
AU  - Felicitas Arias
AU  - Gianna Panfilo
TI  - International atomic time: Status and future challenges
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 480
EP  - 488
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.002
LA  - en
ID  - CRPHYS_2015__16_5_480_0
ER  - 
%0 Journal Article
%A Gérard Petit
%A Felicitas Arias
%A Gianna Panfilo
%T International atomic time: Status and future challenges
%J Comptes Rendus. Physique
%D 2015
%P 480-488
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.03.002
%G en
%F CRPHYS_2015__16_5_480_0
Gérard Petit; Felicitas Arias; Gianna Panfilo. International atomic time: Status and future challenges. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 480-488. doi : 10.1016/j.crhy.2015.03.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.002/

[1] 13th General Conference on Weights, Measures, Comptes rendus de la 13e CGPM (1967/68), 1969, p. 103.

[2] 14th General Conference on Weights, Measures, Comptes rendus de la 14e CGPM (1971), 1972, p. 77.

[3] BIPM Circular T, monthly publication, ftp://ftp2.bipm.org/pub/tai//publication/cirt/.

[4] G. Petit et al. UTCr: a rapid realization of UTC, Metrologia, Volume 51 (2014) no. 1, pp. 49-56

[5] G. Panfilo; E.F. Arias Algorithms for TAI, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 1, pp. 140-150

[6] CIPM recommendation 1 (CI-2013): updates to the list of standard frequencies, Comité international des poids et mesures, 102nd meeting, 2013, p. 144

[7] G. Panfilo; A. Harmegnies; L. Tisserand A new prediction algorithm for the generation of international atomic time, Metrologia, Volume 49 (2012) no. 1, pp. 49-56

[8] G. Panfilo; A. Harmegnies; L. Tisserand A new weighting procedure for UTC, Metrologia, Volume 51 (2014) no. 3, pp. 285-292

[9] J. Azoubib; M. Granveaud; B. Guinot Estimation of the scale unit duration of time scales, Metrologia, Volume 13 (1977), pp. 87-93

[10] G. Petit A new realization of terrestrial time, Proc. 35th Precise Time and Time Interval (PTTI) Meeting, 2003, pp. 307-316

[11] G. Petit The long-term stability of EAL and TAI (revisited), Geneva, Switzerland (2007), pp. 391-394

[12] A. Clairon et al. Ramsey resonance in a Zacharias fountain, Europhys. Lett., Volume 16 (1991), pp. 165-170

[13] G. Petit; G. Panfilo Comparison of frequency standards used for TAI, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 6, pp. 1550-1555

[14] J. Guéna et al. Progress in atomic fountains at LNE-SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012), pp. 391-410

[15] S. Peil et al. Evaluation of long term performance of continuously running atomic fountains, Metrologia, Volume 51 (2014), pp. 263-269

[16] G. Petit A timescale based on the world's fountain clocks, 45th Precise Time and Time Interval (PTTI) Meeting, 2013

[17] E.A. Burt; W.A. Diener; R.L. Tjoelker A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 55 (2008) no. 12, pp. 2586-2595

[18] E.A. Burt; S. Taghavi-Larigani; R. Tjoelker A new trapped ion atomic clock based on 201Hg+, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, pp. 629-635

[19] J.M. Cordes et al. New Astron. Rev., 48 (2004), p. 1413

[20] E.F. Arias; G. Panfilo; G. Petit Timescales at the BIPM, Metrologia, Volume 48 (2011) no. 4, p. S145-S153

[21] Z. Jiang; E.F. Arias Use of the global navigation satellite systems for the construction of the international time reference UTC, Proc. China Satellite Navigation Conference, 2013, pp. 457-468

[22] Z. Jiang; H. Konaté; W. Lewandowski Review and preview of two-way time transfer for UTC generation – from TWSTFT to TWOTFT, Proc. IFCS–EFTF 2013, 2013, pp. 501-504

[23] G. Petit; Z. Jiang Using a redundant time links system in TAI computation, Proceedings of the 20th EFTF, 2006, pp. 436-439

[24] A. Bauch et al. Comparison between frequency standards in Europe and the US at the 1015 uncertainty level, Metrologia, Volume 43 (2006), pp. 109-120

[25] G. Petit; Z. Jiang Precise point positioning for TAI computation, Int. J. Navig. Obs., Volume 2008 (2008) (Article ID 562878) | DOI

[26] P. Defraigne et al. Advances in multi-GNSS time transfer, EFTF (2013)

[27] M.C. Martínez-Belda; P. Defraigne; C. Bruyninx On the potential of Galileo E5 for time transfer, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 60 (2013), pp. 121-131

[28] J. Delporte et al. GPS carrier phase time transfer using single difference integer ambiguity resolution, Int. J. Navig. Obs., Volume 2008 (2008) (Article ID 273785)

[29] G. Petit et al. GPS frequency transfer with IPPP, Proceedings of the 28th EFTF, 2014

[30] J. Amagai; T. Gotoh Development of two-way time and frequency transfer system with dual pseudo random noises, J. Natl. Inst. Inf. Commun. Technol., Volume 57 (2010), pp. 197-207

[31] M. Fujieda et al. Carrier-phase two-way satellite frequency transfer over a very long baseline, Metrologia, Volume 51 (2014), pp. 253-262

[32] C. Salomon; L. Cacciapuoti; N. Dimarcq Atomic clock ensemble in space: an update, Int. J. Mod. Phys. D, Volume 16 (2007), p. 2511

[33] P. Exertier et al. Status of the T2L2/Jason2 experiment, Adv. Space Res., Volume 46 (2010), pp. 1559-1565

[34] P. Krehlik et al. IEEE Trans. Instrum. Meas., 61 (2012) no. 9, pp. 2573-2580

[35] Ł. Śliwczyński et al. Metrologia, 50 (2013), pp. 133-145

[36] M. Rost et al. Metrologia, 49 (2012) no. 6, pp. 772-778

[37] O. Lopez et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network, Appl. Phys. B, Lasers Opt., Volume 110 (2013) no. 1, pp. 3-6

[38] http://www.ptb.de/emrp/neatft_home.html

[39] http://www.iau.org/administration/resolutions/general_assemblies/ (All IAU resolutions may be found at)

[40] L. Sánchez Towards a vertical datum standardisation under the umbrella of global geodetic observing system, J. Geod. Sci., Volume 2 (2012) no. 4, pp. 325-342

[41] M. Burša et al. The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system, J. Geod., Volume 81 (2007), pp. 103-110

[42] N. Dayoub; S.J. Edwards; P. Moore The Gauss–Listing geopotential value W0 and its rate from altimetric mean sea level and GRACE, J. Geod., Volume 86 (2012) no. 9, pp. 681-694

[43] P. Wolf; G. Petit Relativistic theory for clock syntonization and the realization of geocentric coordinate times, Astron. Astrophys., Volume 304 (1995), pp. 654-661

[44] G. Petit; P. Wolf Computation of the relativistic rate shift of a frequency standard, IEEE Trans. Instrum. Meas., Volume 46 (1997) no. 2, pp. 201-204

[45] N.K. Pavlis; M.A. Weiss The relativistic redshift with 3×1017, uncertainty at NIST, Boulder, Colorado, USA, Metrologia, Volume 40 (2003), pp. 66-73

[46] M. Soffel et al. Relativistic theory of gravimetric measurements and definition of the geoid, Manuscr. Geod., Volume 13 (1988), pp. 143-146

[47] A. Bjerhammar On a relativistic geodesy, Bull. Géod., Volume 59 (1985) no. 3, pp. 207-220

[48] Sea Surface Topography and Geoid (H. Sünkel; T. Baker, eds.), IAG Symposia, vol. 104, Springer, 1990, pp. 116-128

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)


The unit of time: Present and future directions

Sébastien Bize

C. R. Phys (2019)


Time and frequency comparisons using radiofrequency signals from satellites

Andreas Bauch

C. R. Phys (2015)