Comptes Rendus
Atomic fountains and optical clocks at SYRTE: Status and perspectives
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 461-470.

In this article, we report on the work done with the LNE–SYRTE atomic clock ensemble during the last 10 years. We cover the progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks based on strontium and on mercury. We report on tests of fundamental physical laws made with these highly accurate atomic clocks. We also report on work relevant to a future possible redefinition of the SI second.

Dans cet article, nous rapportons le travail réalisé avec les horloges atomiques du LNE–SYRTE au cours des dix dernières années. Nous décrivons les progrès accomplis en matière de fontaines atomiques et leur application à la mesure du temps, ainsi que le développement des horloges à réseau optique basées sur le strontium et le mercure. Nous décrivons les tests des lois physiques fondamentales réalisés avec ces horloges atomiques très précises. Nous faisons également le point sur des travaux se rattachant à une possible future redéfinition de la seconde SI.

Published online:
DOI: 10.1016/j.crhy.2015.03.010
Keywords: Atomic fountain clocks, Optical lattice clocks, Optical frequency combs, Stability of natural constants, Timekeeping
Mot clés : Horloges à fontaine atomique, Horloges à réseau optique, Peignes de fréquence optique, Stabilité des constantes fondamentales, Mesure du temps

Michel Abgrall 1; Baptiste Chupin 1; Luigi De Sarlo 1; Jocelyne Guéna 1; Philippe Laurent 1; Yann Le Coq 1; Rodolphe Le Targat 1; Jérôme Lodewyck 1; Michel Lours 1; Peter Rosenbusch 1; Giovanni Daniele Rovera 1; Sébastien Bize 1

1 SYRTE, Observatoire de Paris, LNE, CNRS, UPMC, 61, avenue de l'Observatoire, 75014 Paris, France
@article{CRPHYS_2015__16_5_461_0,
     author = {Michel Abgrall and Baptiste Chupin and Luigi De Sarlo and Jocelyne Gu\'ena and Philippe Laurent and Yann Le Coq and Rodolphe Le Targat and J\'er\^ome Lodewyck and Michel Lours and Peter Rosenbusch and Giovanni Daniele Rovera and S\'ebastien Bize},
     title = {Atomic fountains and optical clocks at {SYRTE:} {Status} and perspectives},
     journal = {Comptes Rendus. Physique},
     pages = {461--470},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.010},
     language = {en},
}
TY  - JOUR
AU  - Michel Abgrall
AU  - Baptiste Chupin
AU  - Luigi De Sarlo
AU  - Jocelyne Guéna
AU  - Philippe Laurent
AU  - Yann Le Coq
AU  - Rodolphe Le Targat
AU  - Jérôme Lodewyck
AU  - Michel Lours
AU  - Peter Rosenbusch
AU  - Giovanni Daniele Rovera
AU  - Sébastien Bize
TI  - Atomic fountains and optical clocks at SYRTE: Status and perspectives
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 461
EP  - 470
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.010
LA  - en
ID  - CRPHYS_2015__16_5_461_0
ER  - 
%0 Journal Article
%A Michel Abgrall
%A Baptiste Chupin
%A Luigi De Sarlo
%A Jocelyne Guéna
%A Philippe Laurent
%A Yann Le Coq
%A Rodolphe Le Targat
%A Jérôme Lodewyck
%A Michel Lours
%A Peter Rosenbusch
%A Giovanni Daniele Rovera
%A Sébastien Bize
%T Atomic fountains and optical clocks at SYRTE: Status and perspectives
%J Comptes Rendus. Physique
%D 2015
%P 461-470
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.03.010
%G en
%F CRPHYS_2015__16_5_461_0
Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; Jocelyne Guéna; Philippe Laurent; Yann Le Coq; Rodolphe Le Targat; Jérôme Lodewyck; Michel Lours; Peter Rosenbusch; Giovanni Daniele Rovera; Sébastien Bize. Atomic fountains and optical clocks at SYRTE: Status and perspectives. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 461-470. doi : 10.1016/j.crhy.2015.03.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.010/

[1] B. Bloom; T. Nicholson; J. Williams; S. Campbell; M. Bishof; X. Zhang; W. Zhang; S. Bromley; J. Ye An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), p. 71

[2] S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grünert; C. Vian; F. Pereira dos Santos; P. Rosenbusch et al. Advances in atomic fountains, C. R. Physique, Volume 5 (2004) no. 8, pp. 829-843

[3] P. Laurent; D. Massonnet; L. Cacciapuoti; C. Salomon The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015), pp. 540-552 ( this issue )

[4] C. Guerlin; P. Delva; P. Wolf Some fundamental physics experiments using atomic clocks and sensors, C. R. Physique, Volume 16 (2015), pp. 565-575 ( this issue )

[5] K. Bongs; Y. Singh; L. Smith; W. He; O. Kock; D. Świerad et al. Development of a strontium optical lattice clock for the SOC mission on the ISS, C. R. Physique, Volume 16 (2015), pp. 553-564 ( this issue )

[6] O. Lopez; F. Kéfélian; H. Jiang; A. Haboucha; A. Bercy; F. Stefani; et al.; S. Droste; T. Udem; R. Holzwarth; T.W. Hänsch Optical frequency dissemination for metrology applications, C. R. Physique, Volume 16 (2015), pp. 531-539 ( this issue this issue )

[7] J. Guéna; M. Abgrall; D. Rovera; P. Laurent; B. Chupin; M. Lours; G. Santarelli; P. Rosenbusch; M.E. Tobar; R. Li et al. Progress in atomic fountains at LNE–SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 391-409

[8] R. Li; K. Gibble Phase variations in microwave cavities for atomic clocks, Metrologia, Volume 41 (2004) no. 6, p. 376

[9] R. Li; K. Gibble Evaluating and minimizing distributed cavity phase errors in atomic clocks, Metrologia, Volume 47 (2010) no. 5, p. 534

[10] J. Guéna; R. Li; K. Gibble; S. Bize; A. Clairon Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks, Phys. Rev. Lett., Volume 106 (2011) no. 13, p. 130801

[11] R. Li; K. Gibble; K. Szymaniec Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts, Metrologia, Volume 48 (2011) no. 5, p. 283

[12] S. Weyers; V. Gerginov; N. Nemitz; R. Li; K. Gibble Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2, Metrologia, Volume 49 (2012) no. 1, p. 82

[13] C.J. Bordé Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002) no. 5, pp. 435-463

[14] P. Wolf; C.J. Bordé Recoil effects in microwave Ramsey spectroscopy | arXiv

[15] K. Gibble Difference between a photon's momentum and an atom's recoil, Phys. Rev. Lett., Volume 97 (2006) no. 7, p. 073002

[16] E. Simon; P. Laurent; A. Clairon Measurement of the Stark shift of the Cs hyperfine splitting in an atomic fountain, Phys. Rev. A, Volume 57 (1998) no. 1, p. 436

[17] P. Rosenbusch; S. Zhang; C. Clairon Blackbody radiation shift in primary frequency standards, Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007, pp. 1060-1063

[18] G. Santarelli; G. Governatori; D. Chambon; M. Lours; P. Rosenbusch; J. Guéna; F. Chapelet; S. Bize; M.E. Tobar; P. Laurent et al. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 56 (2009) no. 7, p. 1319

[19] J. Guéna; P. Rosenbusch; P. Laurent; M. Abgrall; D. Rovera; G. Santarelli; M.E. Tobar; S. Bize; C. Clairon Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, pp. 647-653

[20] H. Katori Spectroscopy of strontium atoms in the Lamb–Dicke confinement, Proceedings of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323

[21] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003) no. 17, p. 173005

[22] R. Le Targat; L. Lorini; Y. Le Coq; M. Zawada; J. Guéna; M. Abgrall; M. Gurov; P. Rosenbusch; D. Rovera; B. Nagórny et al. Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109

[23] N. Hinkley; J.A. Sherman; N.B. Phillips; M. Schioppo; N.D. Lemke; K. Beloy; M. Pizzocaro; C.W. Oates; A.D. Ludlow An atomic clock with 1018 instability, Science, Volume 341 (2013), pp. 1215-1218

[24] S. Falke; N. Lemke; C. Grebing; B. Lipphardt; S. Weyers; V. Gerginov; N. Huntemann; C. Hagemann; A. Al-Masoudi; S. Häfner; S. Vogt; U. Sterr; C. Lisdat A strontium lattice clock with 3×1017 inaccuracy and its frequency, New J. Phys., Volume 16 (2014) no. 7, p. 073023

[25] I. Ushijima; M. Takamoto; M. Das; T. Ohkubo; H. Katori Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), p. 185

[26] A. Brusch; R. Le Targat; X. Baillard; M. Fouché; P. Lemonde Hyperpolarizability effects in a Sr optical lattice clock, Phys. Rev. Lett., Volume 96 (2006), p. 103003

[27] P.G. Westergaard; J. Lodewyck; L. Lorini; A. Lecallier; E. Burt; M. Zawada; J. Millo; P. Lemonde Lattice-induced frequency shifts in Sr optical lattice clocks at the 1017 level, Phys. Rev. Lett., Volume 106 (2011) no. 21, p. 210801

[28] M. Petersen; J. Millo; D. Magalhaes; C. Mandache; S. Dawkins; R. Chicireanu; Y. Lecoq; O. Acef; G. Santarelli; A. Clairon; S. Bize Magneto-optical trap of neutral mercury for an optical lattice clock, Proceedings of the 2008 IEEE International Frequency Control Symposium, 2008, pp. 451-454

[29] H. Hachisu; K. Miyagishi; S.G. Porsev; A. Derevianko; V.D. Ovsiannikov; V.G. Pal'chikov; M. Takamoto; H. Katori Trapping of neutral mercury atoms and prospects for optical lattice clocks, Phys. Rev. Lett., Volume 100 (2008), p. 053001

[30] J.J. McFerran; L. Yi; S. Mejri; S. Bize Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap, Opt. Lett., Volume 35 (2010) no. 18, pp. 3078-3080

[31] J. Millo; D.V. Magalhaes; C. Mandache; Y.L. Coq; E.M.L. English; P.G. Westergaard; J. Lodewyck; S. Bize; P. Lemonde; G. Santarelli Ultrastable lasers based on vibration insensitive cavities, Phys. Rev. A, Volume 79 (2009) no. 5, p. 053829

[32] S. Dawkins; R. Chicireanu; M. Petersen; J. Millo; D. Magalhães; C. Mandache; Y. Le Coq; S. Bize An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock, Appl. Phys. B, Lasers Opt., Volume 99 (2010), p. 41

[33] M. Petersen; R. Chicireanu; S.T. Dawkins; D.V. Magalhaes; C. Mandache; Y.L. Coq; A. Clairon; S. Bize Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury, Phys. Rev. Lett., Volume 101 (2008) no. 18, p. 183004

[34] L. Yi; S. Mejri; J.J. McFerran; Y. Le Coq; S. Bize Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet S01P03 clock transition, Phys. Rev. Lett., Volume 106 (2011) no. 7, p. 073005

[35] J.J. McFerran; L. Yi; S. Mejri; S. Di Manno; W. Zhang; J. Guéna; Y. Le Coq; S. Bize Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty 5.7×1015, Phys. Rev. Lett., Volume 108 (2012), p. 183004

[36] J. Millo; M. Abgrall; M. Lours; E. English; H. Jiang; J. Guéna; A. Clairon; M. Tobar; S. Bize; Y. Le Coq; G. Santarelli Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock, Appl. Phys. Lett., Volume 94 (2009), p. 141105

[37] W. Zhang; T. Li; M. Lours; S. Seidelin; G. Santarelli; Y. Le Coq Amplitude to phase conversion of InGaAs PIN photodiodes for femtosecond lasers microwave signal generation, Appl. Phys. B, Lasers Opt., Volume 106 (2012), p. 301

[38] A. Haboucha; W. Zhang; T. Li; M. Lours; A. Luiten; Y. Le Coq; G. Santarelli Optical-fiber pulse rate multiplier for ultra-low phase-noise signal generation, Opt. Lett., Volume 36 (2011), p. 3654

[39] W. Zhang; S. Seidelin; A. Joshi; S. Datta; G. Santarelli; Y. Le Coq Dual photo-detector system for low phase noise microwave generation with femtosecond lasers, Opt. Lett., Volume 39 (2014), p. 1204

[40] D. Nicolodi; B. Argence; W. Zhang; R. Le Targat; G. Santarelli; Y. Le Coq Spectral purity transfer between optical wavelengths at the 1018 level, Nat. Photonics, Volume 8 (2014), p. 219

[41] Consultative Committee for Time and Frequency 2012, Recommendation CCTF 1 (2012), Report of the 19th meeting (13–14 September 2012) to the International Committee for Weights and Measures (2012), p. 59.

[42] J. Guéna; M. Abgrall; D. Rovera; P. Rosenbusch; M.E. Tobar; P. Laurent; A. Clairon; S. Bize Improved tests of local position invariance using 87Rb and 133Cs fountains, Phys. Rev. Lett., Volume 109 (2012), p. 080801

[43] S. Peil; S. Crane; J.L. Hanssen; T.B. Swanson; C.R. Ekstrom Tests of local position invariance using continuously running atomic clocks, Phys. Rev. A, Volume 87 (2013) no. 1, p. 010102

[44] M. Fischer; N. Kolachevsky; M. Zimmermann; R. Holzwarth; T. Udem; T. Hänsch; M. Abgrall; J. Grünert; I. Maksimovic; S. Bize et al. New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., Volume 92 (2004) no. 23, p. 230802

[45] C. Tamm; N. Huntemann; B. Lipphardt; V. Gerginov; N. Nemitz; M. Kazda; S. Weyers; E. Peik Cs-based optical frequency measurement using cross-linked optical and microwave oscillators, Phys. Rev. A, Volume 89 (2014) no. 2, p. 023820

[46] T. Fortier; N. Ashby; J. Bergquist; M. Delaney; S. Diddams; T. Heavner; L. Hollberg; W. Itano; S. Jefferts; K. Kim et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance, Phys. Rev. Lett., Volume 98 (2007) no. 7, p. 070801

[47] N. Leefer; C. Weber; A. Cingöz; J. Torgerson; D. Budker New limits on variation of the fine-structure constant using atomic dysprosium, Phys. Rev. Lett., Volume 111 (2013) no. 6, p. 060801

[48] T. Rosenband; D. Hume; P. Schmidt; C. Chou; A. Brusch; L. Lorini; W. Oskay; R. Drullinger; T. Fortier; J. Stalnaker et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008) no. 5871, pp. 1808-1812

[49] A.A. Madej; P. Dubé; Z. Zhou; J.E. Bernard; M. Gertsvolf 88Sr+ 445-THz single-ion reference at the 1017 level via control and cancellation of systematic uncertainties and its measurement against the SI second, Phys. Rev. Lett., Volume 109 (2012), p. 203002

[50] G.P. Barwood; G. Huang; H.A. Klein; L.A.M. Johnson; S.A. King; H.S. Margolis; K. Szymaniec; P. Gill Agreement between two 88Sr+ optical clocks to 4 parts in 1017, Phys. Rev. A, Volume 89 (2014), p. 050501

[51] N.D. Lemke; A.D. Ludlow; Z.W. Barber; T.M. Fortier; S.A. Diddams; Y. Jiang; S.R. Jefferts; T.P. Heavner; T.E. Parker; C.W. Oates Spin-1/2 optical lattice clock, Phys. Rev. Lett., Volume 103 (2009), p. 063001

[52] G. Petit; F. Arias; G. Panfilo International atomic time: status and future challenges, C. R. Physique, Volume 16 (2015), pp. 480-488 ( this issue )

[53] P. Laurent; M. Abgrall; C. Jentsch; P. Lemonde; G. Santarelli; A. Clairon; I. Maksimovic; S. Bize; C. Salomon; D. Blonde et al. Design of the cold atom PHARAO space clock and initial test results, Appl. Phys. B, Volume 84 (2006) no. 4, pp. 683-690

[54] L. Cacciapuoti; N. Dimarcq; G. Santarelli; P. Laurent; P. Lemonde; A. Clairon; P. Berthoud; A. Jornod; F. Reina; S. Feltham et al. Atomic clock ensemble in space: scientific objectives and mission status, Nucl. Phys. B, Proc. Suppl., Volume 166 (2007), pp. 303-306

[55] L. Cacciapuoti; C. Salomon Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009), pp. 57-68

[56] J. Guéna; M. Abgrall; A. Clairon; S. Bize Contributing to TAI with a secondary representation of the SI second, Metrologia, Volume 51 (2014) no. 1, p. 108

[57] G. Rovera; M. Abgrall; S. Bize; B. Chupin; J. Guéna; P. Laurent; P. Rosenbusch; P. Uhrich The new UTC(OP) based on LNE–SYRTE atomic fountains, Proceedings of the 27th European Frequency and Time Forum Joint with the 2013 IEEE International Frequency Control Symposium, 2013, pp. 649-651

[58] M. Abgrall; S. Bize; B. Chupin; J. Guéna; P. Laurent; P. Rosenbusch; P. Uhrich; G.D. Rovera Performances of UTC(OP) based on LNE–SYRTE atomic fountains, Proceedings of the 28th European Frequency and Time Forum, 2014, p. 564

[59] X. Baillard; M. Fouché; R.L. Targat; P.G. Westergaard; A. Lecallier; F. Chapelet; M. Abgrall; G.D. Rovera; P. Laurent; P. Rosenbusch; S. Bize; G. Santarelli; A. Clairon; P. Lemonde; G. Grosche; B. Lipphardt; H. Schnatz An optical lattice clock with spin-polarized 87Sr atoms, Eur. Phys. J. D, Volume 48 (2008), p. 11

[60] X. Baillard; M. Fouché; R.L. Targat; P.G. Westergaard; A. Lecallier; Y.L. Coq; G.D. Rovera; S. Bize; P. Lemonde Accuracy evaluation of an optical lattice clock with bosonic atoms, Opt. Lett., Volume 32 (2007), p. 1812

[61] C.G. Parthey; A. Matveev; J. Alnis; B. Bernhardt; A. Beyer; R. Holzwarth; A. Maistrou; R. Pohl; K. Predehl; T. Udem et al. Improved measurement of the hydrogen 1S–2S transition frequency, Phys. Rev. Lett., Volume 107 (2011) no. 20, p. 203001

[62] M. Chwalla; J. Benhelm; K. Kim; G. Kirchmair; T. Monz; M. Riebe; P. Schindler; A. Villar; W. Hänsel; C. Roos et al. Absolute frequency measurement of the 40Ca+ 4s S1/2–3d D5/2 clock transition, Phys. Rev. Lett., Volume 102 (2009) no. 2, p. 023002

Cited by Sources:

Comments - Policy