In this article, we report on the work done with the LNE–SYRTE atomic clock ensemble during the last 10 years. We cover the progress made in atomic fountains and in their application to timekeeping. We also cover the development of optical lattice clocks based on strontium and on mercury. We report on tests of fundamental physical laws made with these highly accurate atomic clocks. We also report on work relevant to a future possible redefinition of the SI second.
Dans cet article, nous rapportons le travail réalisé avec les horloges atomiques du LNE–SYRTE au cours des dix dernières années. Nous décrivons les progrès accomplis en matière de fontaines atomiques et leur application à la mesure du temps, ainsi que le développement des horloges à réseau optique basées sur le strontium et le mercure. Nous décrivons les tests des lois physiques fondamentales réalisés avec ces horloges atomiques très précises. Nous faisons également le point sur des travaux se rattachant à une possible future redéfinition de la seconde SI.
Mots-clés : Horloges à fontaine atomique, Horloges à réseau optique, Peignes de fréquence optique, Stabilité des constantes fondamentales, Mesure du temps
Michel Abgrall 1; Baptiste Chupin 1; Luigi De Sarlo 1; Jocelyne Guéna 1; Philippe Laurent 1; Yann Le Coq 1; Rodolphe Le Targat 1; Jérôme Lodewyck 1; Michel Lours 1; Peter Rosenbusch 1; Giovanni Daniele Rovera 1; Sébastien Bize 1
@article{CRPHYS_2015__16_5_461_0, author = {Michel Abgrall and Baptiste Chupin and Luigi De Sarlo and Jocelyne Gu\'ena and Philippe Laurent and Yann Le Coq and Rodolphe Le Targat and J\'er\^ome Lodewyck and Michel Lours and Peter Rosenbusch and Giovanni Daniele Rovera and S\'ebastien Bize}, title = {Atomic fountains and optical clocks at {SYRTE:} {Status} and perspectives}, journal = {Comptes Rendus. Physique}, pages = {461--470}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.03.010}, language = {en}, }
TY - JOUR AU - Michel Abgrall AU - Baptiste Chupin AU - Luigi De Sarlo AU - Jocelyne Guéna AU - Philippe Laurent AU - Yann Le Coq AU - Rodolphe Le Targat AU - Jérôme Lodewyck AU - Michel Lours AU - Peter Rosenbusch AU - Giovanni Daniele Rovera AU - Sébastien Bize TI - Atomic fountains and optical clocks at SYRTE: Status and perspectives JO - Comptes Rendus. Physique PY - 2015 SP - 461 EP - 470 VL - 16 IS - 5 PB - Elsevier DO - 10.1016/j.crhy.2015.03.010 LA - en ID - CRPHYS_2015__16_5_461_0 ER -
%0 Journal Article %A Michel Abgrall %A Baptiste Chupin %A Luigi De Sarlo %A Jocelyne Guéna %A Philippe Laurent %A Yann Le Coq %A Rodolphe Le Targat %A Jérôme Lodewyck %A Michel Lours %A Peter Rosenbusch %A Giovanni Daniele Rovera %A Sébastien Bize %T Atomic fountains and optical clocks at SYRTE: Status and perspectives %J Comptes Rendus. Physique %D 2015 %P 461-470 %V 16 %N 5 %I Elsevier %R 10.1016/j.crhy.2015.03.010 %G en %F CRPHYS_2015__16_5_461_0
Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; Jocelyne Guéna; Philippe Laurent; Yann Le Coq; Rodolphe Le Targat; Jérôme Lodewyck; Michel Lours; Peter Rosenbusch; Giovanni Daniele Rovera; Sébastien Bize. Atomic fountains and optical clocks at SYRTE: Status and perspectives. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 461-470. doi : 10.1016/j.crhy.2015.03.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.010/
[1] An optical lattice clock with accuracy and stability at the level, Nature, Volume 506 (2014), p. 71
[2] et al. Advances in atomic fountains, C. R. Physique, Volume 5 (2004) no. 8, pp. 829-843
[3] The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015), pp. 540-552 ( this issue )
[4] Some fundamental physics experiments using atomic clocks and sensors, C. R. Physique, Volume 16 (2015), pp. 565-575 ( this issue )
[5] et al. Development of a strontium optical lattice clock for the SOC mission on the ISS, C. R. Physique, Volume 16 (2015), pp. 553-564 ( this issue )
[6] Optical frequency dissemination for metrology applications, C. R. Physique, Volume 16 (2015), pp. 531-539 ( this issue this issue )
[7] et al. Progress in atomic fountains at LNE–SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 391-409
[8] Phase variations in microwave cavities for atomic clocks, Metrologia, Volume 41 (2004) no. 6, p. 376
[9] Evaluating and minimizing distributed cavity phase errors in atomic clocks, Metrologia, Volume 47 (2010) no. 5, p. 534
[10] Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks, Phys. Rev. Lett., Volume 106 (2011) no. 13, p. 130801
[11] Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts, Metrologia, Volume 48 (2011) no. 5, p. 283
[12] Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2, Metrologia, Volume 49 (2012) no. 1, p. 82
[13] Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002) no. 5, pp. 435-463
[14] Recoil effects in microwave Ramsey spectroscopy | arXiv
[15] Difference between a photon's momentum and an atom's recoil, Phys. Rev. Lett., Volume 97 (2006) no. 7, p. 073002
[16] Measurement of the Stark shift of the Cs hyperfine splitting in an atomic fountain, Phys. Rev. A, Volume 57 (1998) no. 1, p. 436
[17] Blackbody radiation shift in primary frequency standards, Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007, pp. 1060-1063
[18] et al. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 56 (2009) no. 7, p. 1319
[19] Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, pp. 647-653
[20] Spectroscopy of strontium atoms in the Lamb–Dicke confinement, Proceedings of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323
[21] Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003) no. 17, p. 173005
[22] et al. Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109
[23] An atomic clock with instability, Science, Volume 341 (2013), pp. 1215-1218
[24] A strontium lattice clock with inaccuracy and its frequency, New J. Phys., Volume 16 (2014) no. 7, p. 073023
[25] Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), p. 185
[26] Hyperpolarizability effects in a Sr optical lattice clock, Phys. Rev. Lett., Volume 96 (2006), p. 103003
[27] Lattice-induced frequency shifts in Sr optical lattice clocks at the level, Phys. Rev. Lett., Volume 106 (2011) no. 21, p. 210801
[28] Magneto-optical trap of neutral mercury for an optical lattice clock, Proceedings of the 2008 IEEE International Frequency Control Symposium, 2008, pp. 451-454
[29] Trapping of neutral mercury atoms and prospects for optical lattice clocks, Phys. Rev. Lett., Volume 100 (2008), p. 053001
[30] Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap, Opt. Lett., Volume 35 (2010) no. 18, pp. 3078-3080
[31] Ultrastable lasers based on vibration insensitive cavities, Phys. Rev. A, Volume 79 (2009) no. 5, p. 053829
[32] An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock, Appl. Phys. B, Lasers Opt., Volume 99 (2010), p. 41
[33] Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury, Phys. Rev. Lett., Volume 101 (2008) no. 18, p. 183004
[34] Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet clock transition, Phys. Rev. Lett., Volume 106 (2011) no. 7, p. 073005
[35] Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty , Phys. Rev. Lett., Volume 108 (2012), p. 183004
[36] Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock, Appl. Phys. Lett., Volume 94 (2009), p. 141105
[37] Amplitude to phase conversion of InGaAs PIN photodiodes for femtosecond lasers microwave signal generation, Appl. Phys. B, Lasers Opt., Volume 106 (2012), p. 301
[38] Optical-fiber pulse rate multiplier for ultra-low phase-noise signal generation, Opt. Lett., Volume 36 (2011), p. 3654
[39] Dual photo-detector system for low phase noise microwave generation with femtosecond lasers, Opt. Lett., Volume 39 (2014), p. 1204
[40] Spectral purity transfer between optical wavelengths at the level, Nat. Photonics, Volume 8 (2014), p. 219
[41] Consultative Committee for Time and Frequency 2012, Recommendation CCTF 1 (2012), Report of the 19th meeting (13–14 September 2012) to the International Committee for Weights and Measures (2012), p. 59.
[42] Improved tests of local position invariance using 87Rb and 133Cs fountains, Phys. Rev. Lett., Volume 109 (2012), p. 080801
[43] Tests of local position invariance using continuously running atomic clocks, Phys. Rev. A, Volume 87 (2013) no. 1, p. 010102
[44] et al. New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., Volume 92 (2004) no. 23, p. 230802
[45] Cs-based optical frequency measurement using cross-linked optical and microwave oscillators, Phys. Rev. A, Volume 89 (2014) no. 2, p. 023820
[46] et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance, Phys. Rev. Lett., Volume 98 (2007) no. 7, p. 070801
[47] New limits on variation of the fine-structure constant using atomic dysprosium, Phys. Rev. Lett., Volume 111 (2013) no. 6, p. 060801
[48] et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008) no. 5871, pp. 1808-1812
[49] 88Sr+ 445-THz single-ion reference at the level via control and cancellation of systematic uncertainties and its measurement against the SI second, Phys. Rev. Lett., Volume 109 (2012), p. 203002
[50] Agreement between two 88Sr+ optical clocks to 4 parts in 1017, Phys. Rev. A, Volume 89 (2014), p. 050501
[51] Spin-1/2 optical lattice clock, Phys. Rev. Lett., Volume 103 (2009), p. 063001
[52] International atomic time: status and future challenges, C. R. Physique, Volume 16 (2015), pp. 480-488 ( this issue )
[53] et al. Design of the cold atom PHARAO space clock and initial test results, Appl. Phys. B, Volume 84 (2006) no. 4, pp. 683-690
[54] et al. Atomic clock ensemble in space: scientific objectives and mission status, Nucl. Phys. B, Proc. Suppl., Volume 166 (2007), pp. 303-306
[55] Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009), pp. 57-68
[56] Contributing to TAI with a secondary representation of the SI second, Metrologia, Volume 51 (2014) no. 1, p. 108
[57] The new UTC(OP) based on LNE–SYRTE atomic fountains, Proceedings of the 27th European Frequency and Time Forum Joint with the 2013 IEEE International Frequency Control Symposium, 2013, pp. 649-651
[58] Performances of UTC(OP) based on LNE–SYRTE atomic fountains, Proceedings of the 28th European Frequency and Time Forum, 2014, p. 564
[59] An optical lattice clock with spin-polarized 87Sr atoms, Eur. Phys. J. D, Volume 48 (2008), p. 11
[60] Accuracy evaluation of an optical lattice clock with bosonic atoms, Opt. Lett., Volume 32 (2007), p. 1812
[61] et al. Improved measurement of the hydrogen 1S–2S transition frequency, Phys. Rev. Lett., Volume 107 (2011) no. 20, p. 203001
[62] et al. Absolute frequency measurement of the 40Ca+ 4s S1/2–3d D5/2 clock transition, Phys. Rev. Lett., Volume 102 (2009) no. 2, p. 023002
Cited by Sources:
Comments - Policy