Comptes Rendus
Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications
[Rapports de fréquence du Sr, Yb et Hg dans des horloges optiques à réseau et leurs applications]
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 489-498.

Cet article décrit les progrès récents des horloges optiques à réseau avec des atomes neutres de strontium (87Sr), ytterbium (171Yb) et mercure (199Hg). Nous présentons en particulier une comparaison locale des fréquences entre des horloges en utilisant un peigne de fréquences et entre deux horloges à Sr distantes à l'aide d'un lien fibré stabilisé en phase. Nous commençons par une revue des horloges optiques à Sr cryogéniques qui réduisent le décalage de fréquence dû au corps noir à température ambiante de deux ordres de grandeur et servent de référence dans les comparaisons d'horloges qui sont décrites ensuite. Les propriétés physiques similaires du Sr et Yb, telles que les longueurs d'onde de transition et les pressions de vapeur saturante, nous ont permis de développer une horloge compatible avec les deux espèces. Une horloge à Yb cryogénique est évaluée par référence à une horloge à Sr cryogénique. Nous décrivons aussi une horloge à mercure qui présente une sensibilité au rayonnement du corps noir à température ambiante dix fois plus faible, alliée à une charge nucléaire élevée qui rend l'horloge sensible aux variations de la constante de structure fine. En connectant les trois types d'horloges avec un peigne de fréquences optiques, les rapports de fréquences sont mesurés avec des incertitudes plus faibles que ce qui est possible avec des mesures de fréquences absolues. Finalement, nous décrivons une comparaison de fréquence synchrone entre deux horloges à Sr distantes de 15 km entre RIKEN et l'université de Tokyo, une étape vers la géodésie relativiste.

This article describes the recent progress of optical lattice clocks with neutral strontium (87Sr), ytterbium (171Yb) and mercury (199Hg) atoms. In particular, we present frequency comparison between the clocks locally via an optical frequency comb and between two Sr clocks at remote sites using a phase-stabilized fibre link. We first review cryogenic Sr optical lattice clocks that reduce the room-temperature blackbody radiation shift by two orders of magnitude and serve as a reference in the following clock comparisons. Similar physical properties of Sr and Yb atoms, such as transition wavelengths and vapour pressure, have allowed our development of a compatible clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr clock. We also report on an Hg clock, which shows one order of magnitude less sensitivity to blackbody radiation, while its large nuclear charge makes the clock sensitive to the variation of fine-structure constant. Connecting all three types of clocks by an optical frequency comb, the ratios of the clock frequencies are determined with uncertainties smaller than possible through absolute frequency measurements. Finally, we describe a synchronous frequency comparison between two Sr-based remote clocks over a distance of 15 km between RIKEN and the University of Tokyo, as a step towards relativistic geodesy.

Publié le :
DOI : 10.1016/j.crhy.2015.04.003
Keywords: Time and frequency metrology, Atomic clock, Optical lattice clock, Constancy of fundamental constants, Relativistic geodesy
Mot clés : Métrologie du temps et des fréquences, Horloge atomique, Horloge optique à réseau, Stabilité des constantes fondamentales, Géodésie relativiste
Masao Takamoto 1, 2, 3 ; Ichiro Ushijima 1, 2, 3 ; Manoj Das 1, 2, 3 ; Nils Nemitz 1 ; Takuya Ohkubo 1, 3, 4 ; Kazuhiro Yamanaka 1, 3, 4 ; Noriaki Ohmae 1, 3, 4 ; Tetsushi Takano 3, 4 ; Tomoya Akatsuka 1, 2, 3 ; Atsushi Yamaguchi 1, 2, 3 ; Hidetoshi Katori 1, 2, 3, 4

1 Quantum Metrology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
2 RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
3 Innovative Space-Time Project, ERATO, Japan Science and Technology Agency, Bunkyo-ku, Tokyo 113-8656, Japan
4 Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
@article{CRPHYS_2015__16_5_489_0,
     author = {Masao Takamoto and Ichiro Ushijima and Manoj Das and Nils Nemitz and Takuya Ohkubo and Kazuhiro Yamanaka and Noriaki Ohmae and Tetsushi Takano and Tomoya Akatsuka and Atsushi Yamaguchi and Hidetoshi Katori},
     title = {Frequency ratios of {Sr,} {Yb,} and {Hg} based optical lattice clocks and their applications},
     journal = {Comptes Rendus. Physique},
     pages = {489--498},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.04.003},
     language = {en},
}
TY  - JOUR
AU  - Masao Takamoto
AU  - Ichiro Ushijima
AU  - Manoj Das
AU  - Nils Nemitz
AU  - Takuya Ohkubo
AU  - Kazuhiro Yamanaka
AU  - Noriaki Ohmae
AU  - Tetsushi Takano
AU  - Tomoya Akatsuka
AU  - Atsushi Yamaguchi
AU  - Hidetoshi Katori
TI  - Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 489
EP  - 498
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.04.003
LA  - en
ID  - CRPHYS_2015__16_5_489_0
ER  - 
%0 Journal Article
%A Masao Takamoto
%A Ichiro Ushijima
%A Manoj Das
%A Nils Nemitz
%A Takuya Ohkubo
%A Kazuhiro Yamanaka
%A Noriaki Ohmae
%A Tetsushi Takano
%A Tomoya Akatsuka
%A Atsushi Yamaguchi
%A Hidetoshi Katori
%T Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications
%J Comptes Rendus. Physique
%D 2015
%P 489-498
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.04.003
%G en
%F CRPHYS_2015__16_5_489_0
Masao Takamoto; Ichiro Ushijima; Manoj Das; Nils Nemitz; Takuya Ohkubo; Kazuhiro Yamanaka; Noriaki Ohmae; Tetsushi Takano; Tomoya Akatsuka; Atsushi Yamaguchi; Hidetoshi Katori. Frequency ratios of Sr, Yb, and Hg based optical lattice clocks and their applications. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 489-498. doi : 10.1016/j.crhy.2015.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.04.003/

[1] H. Katori Optical lattice clocks and quantum metrology, Nat. Photonics, Volume 5 (2011), pp. 203-210

[2] W.M. Itano et al. Quantum projection noise: population fluctuations in two-level systems, Phys. Rev. A, Volume 47 (1993), pp. 3554-3570

[3] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005

[4] T. Kessler et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012), pp. 687-692

[5] S. Bize et al. Interrogation oscillator noise rejection in the comparison of atomic fountains, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 47 (2000), pp. 1253-1255

[6] T.L. Nicholson et al. Comparison of two independent Sr optical clocks with 1×1017 stability at 103 s, Phys. Rev. Lett., Volume 109 (2012), p. 230801

[7] N. Hinkley et al. An atomic clock with 1018 instability, Science, Volume 341 (2013), pp. 1215-1218

[8] M. Takamoto; T. Takano; H. Katori Frequency comparison of optical lattice clocks beyond the Dick limit, Nat. Photonics, Volume 5 (2011), pp. 288-292

[9] P.G. Westergaard et al. Lattice-induced frequency shifts in Sr optical lattice clocks at the 1017 level, Phys. Rev. Lett., Volume 106 (2011), p. 210801

[10] I. Ushijima et al. Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), pp. 185-189

[11] B.J. Bloom et al. An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), pp. 71-75

[12] T.P. Heavner et al. First accuracy evaluation of NIST-F2, Metrologia, Volume 51 (2014), p. 174

[13] R. Le Targat et al. Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013)

[14] S. Falke et al. A strontium lattice clock with 3×1017 inaccuracy and its frequency, New J. Phys., Volume 16 (2014), p. 073023

[15] T. Rosenband et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008), pp. 1808-1812

[16] C.W. Chou et al. Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., Volume 104 (2010), p. 070802

[17] K. Matsubara et al. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement, Opt. Express, Volume 20 (2012), pp. 22034-22041

[18] G. Barwood et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017, Phys. Rev. A, Volume 89 (2014), p. 050501

[19] R.M. Godun et al. Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014)

[20] T. Schneider; E. Peik; C. Tamm Sub-hertz optical frequency comparisons between two trapped 171Yb+ ions, Phys. Rev. Lett., Volume 94 (2005), p. 230801

[21] K. Predehl et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012), pp. 441-444

[22] D. Calonico et al. High-accuracy coherent optical frequency transfer over a doubled 642-km fiber link, Appl. Phys. B (2014), pp. 1-8

[23] C.W. Chou; D.B. Hume; T. Rosenband; D.J. Wineland Optical clocks and relativity, Science, Volume 329 (2010), pp. 1630-1633

[24] A. Yamaguchi et al. Direct comparison of distant optical lattice clocks at the 1016 uncertainty, Appl. Phys. Express, Volume 4 (2011), p. 082203

[25] A. Bjerhammar On a relativistic geodesy, Bull. Géod., Volume 59 (1985), pp. 207-220

[26] T. Udem; R. Holzwarth; T.W. Haensch Optical frequency metrology, Nature, Volume 416 (2002), pp. 233-237

[27] L.S. Ma et al. Optical frequency synthesis and comparison with uncertainty at the 1019 level, Science, Volume 303 (2004), pp. 1843-1845

[28] Report of the CCL-CCTF joint working group on frequency standards, in: Report of the 19th Meeting to the International Committee for Weights and Measures BIPM, 13–14 September 2012, p. 13.

[29] N. Huntemann et al. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014)

[30] S. Blatt et al. New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks, Phys. Rev. Lett., Volume 100 (2008), p. 140801

[31] J. Mitroy; M.S. Safronova; W.C. Charles Theory and applications of atomic and ionic polarizabilities, J. Phys. B, Volume 43 (2010), p. 202001

[32] S.G. Porsev; A. Derevianko Multipolar theory of blackbody radiation shift of atomic energy levels and its implications for optical lattice clocks, Phys. Rev. A, Volume 74 (2006), p. 020502

[33] M.S. Safronova et al. Blackbody-radiation shift in the Sr optical atomic clock, Phys. Rev. A, Volume 87 (2013)

[34] T. Middelmann; S. Falke; C. Lisdat; U. Sterr High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012)

[35] J.A. Sherman et al. High-accuracy measurement of atomic polarizability in an optical lattice clock, Phys. Rev. Lett., Volume 108 (2012), p. 153002

[36] K. Beloy et al. Determination of the 5d6s D13 state lifetime and blackbody-radiation clock shift in Yb, Phys. Rev. A, Volume 86 (2012), p. 051404

[37] K. Beloy et al. Atomic clock with 1×1018 room-temperature blackbody stark uncertainty, Phys. Rev. Lett., Volume 113 (2014)

[38] W.M. Itano; L.L. Lewis; D.J. Wineland Shift of S1/22 hyperfine splittings due to blackbody radiation, Phys. Rev. A, Volume 25 (1982), pp. 1233-1235

[39] T. Mukaiyama et al. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature, Phys. Rev. Lett., Volume 90 (2003), p. 113002

[40] Y. Nakajima et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator, Opt. Express, Volume 18 (2010), pp. 1667-1676

[41] K. Iwakuni et al. Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control, Opt. Express, Volume 20 (2012), pp. 13769-13776

[42] D.J. Jones et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, Volume 288 (2000), pp. 635-639

[43] H. Inaba et al. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb, Opt. Express, Volume 21 (2013), pp. 7891-7896

[44] N.D. Lemke et al. Spin-1/2 optical lattice clock, Phys. Rev. Lett., Volume 103 (2009), p. 063001

[45] D. Akamatsu et al. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks, Opt. Express, Volume 22 (2014), pp. 7898-7905

[46] P. Chang Yong et al. Absolute frequency measurement of S01 (F=1/2)–P03 (F=1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS, Metrologia, Volume 50 (2013), p. 119

[47] N. Chen et al. Clock-transition spectrum of 171Yb atoms in a one-dimensional optical lattice, Chin. Phys. B, Volume 22 (2013), p. 090601

[48] G. Mura et al. A transportable optical lattice clock using 171Yb, EFTF/IFC (2013), pp. 376-378

[49] Z.W. Barber et al. Optical lattice induced light shifts in an Yb atomic clock, Phys. Rev. Lett., Volume 100 (2008), p. 103002

[50] A.V. Taichenachev et al. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions, Phys. Rev. Lett., Volume 101 (2008), p. 193601

[51] H. Hachisu et al. Trapping of neutral mercury atoms and prospects for optical lattice clocks, Phys. Rev. Lett., Volume 100 (2008), p. 053001

[52] J. McFerran et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×1015, Phys. Rev. Lett., Volume 108 (2012), p. 183004

[53] J. McFerran et al. Statistical uncertainty of 2.5×1016 for the 199Hg S01P03 clock transition against a primary frequency standard, Phys. Rev. A, Volume 89 (2014), p. 043432

[54] E.J. Angstmann; V.A. Dzuba; V.V. Flambaum Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant, Phys. Rev. A, Volume 70 (2004), p. 014102

[55] J.J. McFerran; L. Yi; S. Mejri; S. Bize Sub-Doppler cooling of fermionic Hg isotopes in a magneto-optical trap, Opt. Lett., Volume 35 (2010), pp. 3078-3080

[56] K. Yamanaka et al. Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit, 2015 | arXiv

[57] G. Santarelli et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 45 (1998), pp. 887-894

[58] L.S. Ma; P. Jungner; J. Ye; J.L. Hall Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path, Opt. Lett., Volume 19 (1994), pp. 1777-1779

[59] http://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.html CIPM Recommendation 1 (CI-2013): Updates to the list of standard frequencies

[60] R. Le Targat et al. Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109

[61] R.V. Pound; G.A. Rebka Apparent weight of photons, Phys. Rev. Lett., Volume 4 (1960), pp. 337-341

[62] A.D. Ludlow et al. Sr lattice clock at 1×1016 fractional uncertainty by remote optical evaluation with a Ca clock, Science, Volume 319 (2008), pp. 1805-1808

[63] O. Terra et al. Phase-coherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link, Appl. Phys. B, Volume 97 (2009), pp. 541-551

[64] F.L. Hong et al. Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer, Opt. Lett., Volume 34 (2009), pp. 692-694

[65] T. Akatsuka et al. 30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks, Jpn. J. Appl. Phys., Volume 53 (2014), p. 032801

[66] P.A. Williams; W.C. Swann; N.R. Newbury High-stability transfer of an optical frequency over long fiber-optic links, J. Opt. Soc. Am. B, Volume 25 (2008), pp. 1284-1293

[67] V.D. Ovsiannikov et al. Multipole, nonlinear, and anharmonic uncertainties of clocks of Sr atoms in an optical lattice, Phys. Rev. A, Volume 88 (2013), p. 013405

[68] S. Okaba et al. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre, Nat. Commun., Volume 5 (2014), p. 4096

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Atomic fountains and optical clocks at SYRTE: Status and perspectives

Michel Abgrall; Baptiste Chupin; Luigi De Sarlo; ...

C. R. Phys (2015)


Towards a redefinition of the second based on optical atomic clocks

Fritz Riehle

C. R. Phys (2015)


Advances in atomic fountains

S. Bize; P. Laurent; M. Abgrall; ...

C. R. Phys (2004)