Comptes Rendus
Coarsening dynamics at unstable crystal surfaces
[Dynamique de coarsening sur des surfaces cristallines instables]
Comptes Rendus. Physique, Volume 16 (2015) no. 3, pp. 280-290.

Nous nous intéressons dans cet article aux surfaces cristallines amenées à s'écarter de l'équilibre par un processus de croissance ou d'érosion. En conséquence de cela, la surface peut subir des instabilités morphologiques et développer une structure distincte : ondulations, monticules ou pyramides, amas de marches, rides. La taille typique du motif émergent peut être fixée ou croître au cours du temps à travers un processus de coarsening qui peut durer éternellement ou s'interrompre au bout d'un certain temps. Nous étudions la dynamique dans trois cas différents, en insistant sur les principaux ingrédients physiques et sur les caractéristiques principales du coarsening : instabilité cinétique, instabilité énergétique, instabilité athermique.

In this paper we focus on crystal surfaces led out of equilibrium by a growth or erosion process. As a consequence of that, the surface may undergo morphological instabilities and develop a distinct structure: undulations, mounds or pyramids, bunches of steps, ripples. The typical size of the emergent pattern may be fixed or it may increase over time through a coarsening process that in turn may last forever or it may be interrupted at some relevant length scale. We study dynamics in three different cases, stressing the main physical ingredients and the main features of coarsening: a kinetic instability, an energetic instability, and an athermal instability.

Publié le :
DOI : 10.1016/j.crhy.2015.03.003
Keywords: Coarsening, Instability, Crystal growth, Crystal erosion
Mot clés : Mûrissement, Instabilité, Croissance cristalline, Érosion
Paolo Politi 1

1 Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
@article{CRPHYS_2015__16_3_280_0,
     author = {Paolo Politi},
     title = {Coarsening dynamics at unstable crystal surfaces},
     journal = {Comptes Rendus. Physique},
     pages = {280--290},
     publisher = {Elsevier},
     volume = {16},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.003},
     language = {en},
}
TY  - JOUR
AU  - Paolo Politi
TI  - Coarsening dynamics at unstable crystal surfaces
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 280
EP  - 290
VL  - 16
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.003
LA  - en
ID  - CRPHYS_2015__16_3_280_0
ER  - 
%0 Journal Article
%A Paolo Politi
%T Coarsening dynamics at unstable crystal surfaces
%J Comptes Rendus. Physique
%D 2015
%P 280-290
%V 16
%N 3
%I Elsevier
%R 10.1016/j.crhy.2015.03.003
%G en
%F CRPHYS_2015__16_3_280_0
Paolo Politi. Coarsening dynamics at unstable crystal surfaces. Comptes Rendus. Physique, Volume 16 (2015) no. 3, pp. 280-290. doi : 10.1016/j.crhy.2015.03.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.003/

[1] J.-K. Zuo; J.F. Wendelken Phys. Rev. Lett., 78 (1997), p. 2791

[2] N. Néel; T. Maroutian; L. Douillard; H.-J. Ernst J. Phys. Condens. Matter, 15 (2003), p. S3227

[3] M. Kalff; P. Šmilauer; G. Comsa; T. Michely Surf. Sci., 426 (1999), p. L447

[4] M. Engler; S. Macko; F. Frost; T. Michely Phys. Rev. B, 89 (2014), p. 245412

[5] J. Stewart; N. Goldenfeld Phys. Rev. A, 46 (1992), p. 6505

[6] F. Liu; H. Metiu Phys. Rev. B, 48 (1993), p. 5808

[7] S. Paulin; F. Gillet; O. Pierre-Louis; C. Misbah Phys. Rev. Lett., 86 (2001), p. 5538

[8] C. Misbah; O. Pierre-Louis; Y. Saito Rev. Mod. Phys., 82 (2010), p. 981

[9] G.B. Whitham, Linear and Nonlinear Waves, vol. 42, John Wiley & Sons, 2011

[10] P. Politi; C. Misbah Phys. Rev. E, 73 (2006), p. 036133

[11] G. Danker; O. Pierre-Louis; K. Kassner; C. Misbah Phys. Rev. E, 68 (2003), p. 020601

[12] S. Biagi; C. Misbah; P. Politi Phys. Rev. Lett., 109 (2012), p. 096101

[13] S. Biagi; C. Misbah; P. Politi Phys. Rev. E, 89 (2014), p. 062114

[14] L. Golubovic; A. Levandovsky; D. Moldovan East Asian J. Appl. Math., 1 (2011), p. 297

[15] A. Levandovsky; L. Golubović Phys. Rev. B, 69 (2004), p. 241402

[16] M. Siegert Phys. Rev. Lett., 81 (1998), p. 5481

[17] P. Politi C. R. Physique, 7 (2006), p. 272

[18] P. Politi; G. Grenet; A. Marty; A. Ponchet; J. Villain Phys. Rep., 324 (2000), p. 271

[19] Y. Saito Statistical Physics of Crystal Growth, vol. 2, World Scientific, 1996

[20] T. Kamins; G. Medeiros-Ribeiro; D. Ohlberg; R.S. Williams J. Appl. Phys., 85 (1999), p. 1159

[21] U. Dahmen; S. Xiao; S. Paciornik; E. Johnson; A. Johansen Phys. Rev. Lett., 78 (1997), p. 471

[22] V.A. Shchukin; N.N. Ledentsov; P.S. Kop'ev; D. Bimberg Phys. Rev. Lett., 75 (1995), p. 2968

[23] V.A. Shchukin; D. Bimberg Rev. Mod. Phys., 71 (1999), p. 1125

[24] V.A. Shchukin; D. Bimberg; T.P. Munt; D.E. Jesson Phys. Rev. Lett., 90 (2003), p. 076102

[25] G. Medeiros-Ribeiro; A.M. Bratkovski; T.I. Kamins; D.A.A. Ohlberg; R.S. Williams Science, 279 (1998), p. 353

[26] F.M. Ross; J. Tersoff; R.M. Tromp Phys. Rev. Lett., 80 (1998), p. 984

[27] A. Rastelli; M. Stoffel; J. Tersoff; G.S. Kar; O.G. Schmidt Phys. Rev. Lett., 95 (2005), p. 026103

[28] W.T. Tekalign; B. Spencer J. Appl. Phys., 96 (2004), p. 5505

[29] M.S. Levine; A.A. Golovin; S.H. Davis; P.W. Voorhees Phys. Rev. B, 75 (2007), p. 205312

[30] J.-N. Aqua; T. Frisch; A. Verga Phys. Rev. B, 76 (2007), p. 165319

[31] J.-N. Aqua; I. Berbezier; L. Favre; T. Frisch; A. Ronda Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013), p. 59

[32] J.-N. Aqua; A. Gouyé; A. Ronda; T. Frisch; I. Berbezier Phys. Rev. Lett., 110 (2013), p. 096101

[33] E.A. Eklund; R. Bruinsma; J. Rudnick; R.S. Williams Phys. Rev. Lett., 67 (1991), p. 1759

[34] R. Cuerno; A.-L. Barabási Phys. Rev. Lett., 74 (1995), p. 4746

[35] R.M. Bradley; J.M.E. Harper J. Vac. Sci. Technol. A, 6 (1988), p. 2390

[36] S.A. Norris; M.P. Brenner; M.J. Aziz J. Phys. Condens. Matter, 21 (2009), p. 224017

[37] R. Cuerno; M. Castro; J. Muñoz-García; R. Gago; L. Vázquez ICACS-24, Nucl. Instrum. Methods B, 269 (2011), p. 894

[38] M. Teichmann; J. Lorbeer; B. Ziberi; F. Frost; B. Rauschenbach New J. Phys., 15 (2013), p. 103029

[39] W. Hauffe Phys. Status Solidi A, 35 (1976), p. K93

[40] J. Muñoz García; R. Gago; L. Vázquez; J.A. Sánchez-García; R. Cuerno Phys. Rev. Lett., 104 (2010), p. 026101

[41] J. Muñoz García et al. J. Phys. Condens. Matter, 24 (2012), p. 375302

[42] J. Muñoz-García et al. Mater. Sci. Eng., R Rep., 86 (2014), p. 1

[43] T. Frisch; A. Verga Phys. Rev. Lett., 96 (2006), p. 166104

[44] M. Nicoli; C. Misbah; P. Politi Phys. Rev. E, 87 (2013), p. 063302

[45] K. Kassner; C. Misbah; J. Müller; J. Kappey; P. Kohlert Phys. Rev. E, 63 (2001), p. 036117

[46] I. Elkinani; J. Villain J. Phys. I, 4 (1994), p. 949

[47] P. Politi; J. Villain Phys. Rev. B, 54 (1996), p. 5114

[48] F. Corberi Coarsening in inhomogeneous systems, C. R. Physique, Volume 16 (2015) ( in this issue )

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dynamics of crystal steps

Olivier Pierre-Louis

C. R. Phys (2005)


Instability-driven quantum dots

Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2015)


Analysis of a combined influence of substrate wetting and surface electromigration on a thin film stability and dynamical morphologies

Mikhail Khenner

C. R. Phys (2013)