Monolayer- and compact-multilayer-stacked ingestible TX coils are investigated for ingestible capsule systems. The inductive link through the human body is modeled. The efficiency of the near-field magnetic induction link budget is evaluated in the air, in the homogeneous human body and in the three-layer human body. The variations of the position and the orientation of the TX capsule coil are taken into account to evaluate the coupling response between the TX ingestible and RX on-body coils.
Des boucles monocouches et multicouches compactes sont étudiées pour des systèmes de gélules ingérables. Le lien inductif à travers le corps humain est modélisé. L'efficacité du bilan de liaison en champ proche par induction magnétique est évalué dans l'air, dans le corps humain homogène et dans le corps humain trois couches. Les variations de la position et de l'orientation de la boucle dans la gélule d'émission sont prises en compte pour évaluer la réponse de couplage entre les boucles d'émission dans la gélule ingérable et de réception sur le corps humain.
Mots-clés : Inductance mutuelle, Bilan de liaison par induction magnétique, Boucle monocouche et multicouche, Boucle spirale sur le corps, Gélule ingérable sans fil
Marjorie Grzeskowiak 1; Fatiha El Hatmi 1; Antoine Diet 2; Megdouda Benamara 1; David Delcroix 1; Thierry Alves 1; Stéphane Protat 1; Shermila Mostarshedi 1; Odile Picon 1; Yann Le Bihan 2; Gaelle Lissorgues 1
@article{CRPHYS_2015__16_9_819_0, author = {Marjorie Grzeskowiak and Fatiha El Hatmi and Antoine Diet and Megdouda Benamara and David Delcroix and Thierry Alves and St\'ephane Protat and Shermila Mostarshedi and Odile Picon and Yann Le Bihan and Gaelle Lissorgues}, title = {Coils for ingestible capsules: {Near-field} magnetic induction link}, journal = {Comptes Rendus. Physique}, pages = {819--835}, publisher = {Elsevier}, volume = {16}, number = {9}, year = {2015}, doi = {10.1016/j.crhy.2015.07.009}, language = {en}, }
TY - JOUR AU - Marjorie Grzeskowiak AU - Fatiha El Hatmi AU - Antoine Diet AU - Megdouda Benamara AU - David Delcroix AU - Thierry Alves AU - Stéphane Protat AU - Shermila Mostarshedi AU - Odile Picon AU - Yann Le Bihan AU - Gaelle Lissorgues TI - Coils for ingestible capsules: Near-field magnetic induction link JO - Comptes Rendus. Physique PY - 2015 SP - 819 EP - 835 VL - 16 IS - 9 PB - Elsevier DO - 10.1016/j.crhy.2015.07.009 LA - en ID - CRPHYS_2015__16_9_819_0 ER -
%0 Journal Article %A Marjorie Grzeskowiak %A Fatiha El Hatmi %A Antoine Diet %A Megdouda Benamara %A David Delcroix %A Thierry Alves %A Stéphane Protat %A Shermila Mostarshedi %A Odile Picon %A Yann Le Bihan %A Gaelle Lissorgues %T Coils for ingestible capsules: Near-field magnetic induction link %J Comptes Rendus. Physique %D 2015 %P 819-835 %V 16 %N 9 %I Elsevier %R 10.1016/j.crhy.2015.07.009 %G en %F CRPHYS_2015__16_9_819_0
Marjorie Grzeskowiak; Fatiha El Hatmi; Antoine Diet; Megdouda Benamara; David Delcroix; Thierry Alves; Stéphane Protat; Shermila Mostarshedi; Odile Picon; Yann Le Bihan; Gaelle Lissorgues. Coils for ingestible capsules: Near-field magnetic induction link. Comptes Rendus. Physique, Radio science for connecting humans with information systems / L’homme connecté, Volume 16 (2015) no. 9, pp. 819-835. doi : 10.1016/j.crhy.2015.07.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.009/
[1] et al. Wireless robotic capsule endoscopy: state-of-the-art and challenges, WCICA ( June 2004 ), pp. 5561-5565
[2] Fat arm spiral antenna for wideband capsule endoscope systems, RWS, IEEE ( Jan 2010 ), pp. 579-582
[3] A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig, IEEE Trans. Biomed. Eng., Volume 58 (2011) no. 6, pp. 1734-1741
[4] Design of battery-less and real-time telemetry system for gastrointestinal applications, IEEE International Conference on Control and Automation, May–June 2007 , pp. 245-249
[5] In situ characterization of two wireless transmission schemes for ingestible capsules, IEEE Trans. Biomed. Eng., Volume 54 ( Nov. 2007 ) no. 11, pp. 2020-2027
[6] Design and implementation of a spread spectrum based communication system for an ingestible capsule, 24th Biomedical Engineering Society EMBS/BMES Conference Engineering in Medicine and Biology, vol. 2, 2002, pp. 1773-1774
[7] Novel ingestible capsule antenna designs for medical monitoring and diagnostics, EuCAP ( April 2010 ), pp. 1-5
[8] Ingestible RFID bio-capsule tag design for medical monitoring, Proceedings IEEE AP-S/USNC-URSI, July 2010
[9] Measurement of core body temperature by an ingestible capsule sensor and evaluation of its wireless communication performance, Adv. Biomed. Eng., Volume 1 (2012) no. 1, pp. 9-15
[10] Link budget analysis and characterization for ingestible capsule antenna, IWAT ( March 2010 ), pp. 1-4
[11] Study of a wireless power transmission system for an active capsule endoscope, Int. J. Med. Robot. Comput. Assist. Surg. (2010), pp. 113-122
[12] Ingestible wireless capsule technology: a review of development and future indication, Int. J. Antennas Propag. (2012), pp. 1-14
[13] The optimization of wireless power transmission: design and realization, Int. J. Med. Robot. Comput. Assist. Surg. (2012), pp. 337-347
[14] An inductive power link for a wireless endoscope, Biosens. Bioelectron. (2007), pp. 1390-1395
[15] RF transmission power loss variation with abdominal tissues thicknesses for ingestible source, Healthcom (2011), pp. 282-287
[16] Conformal ingestible capsule antenna: a novel chandelier meandered design, IEEE Trans. Antennas Propag., Volume 57 (2009) no. 4, pp. 900-909
[17] Circularly polarized helical antenna for ism-band ingestible capsule endoscope systems, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 12, pp. 6027-6039
[18] Bandwidth enhancement of an implantable antenna, IEEE Antennas Wirel. Propag. Lett. (2014)
[19] In vivo testing of circularly polarized implantable antennas in rats, IEEE Antennas Wirel. Propag. Lett., Volume 14 (2015), pp. 783-786
[20] Wireless powering for a self-propelled ad steerable endoscopic capsule for stomach inspection, Biosens, Bioelectron., Volume 25 (2009), pp. 845-851
[21] et al. Design, realization and measurements of a miniature antenna for implantable wireless communication systems, IEEE Trans. Antennas Propag., Volume 59 (2011) no. 10, pp. 3544-3555
[22] http://cp.literature.agilent.com/litweb/pdf/5988–3326EN.pdf
[23] Effects of dielectric values of human body on specific absorption rate following 430, 800, and 1200 MHz RF exposure to ingestible wireless device, IEEE Trans. Inf. Technol. Biomed., Volume 14 (2010) no. 1, pp. 52-59
[24] Near field magnetic induction communication link budget: Agbinya–Masihpour model, IB2Com ( Dec 2010 ), pp. 1-6
[25] RFID Handbook: Radio-Frequency Identification Fundamentals and Application, Wiley, 2003
[26] Geometric approach for coupling enhancement of magnetically coupled coils, IEEE Trans. Biomed. Eng. (1996), pp. 708-714
[27] NMR Probeheads for Biophysical and Biomedial Experiments, Imperial College Press, 2006
[28] http://www.ansys.com/Products/Simulation+Technology/Electronics/Signal+Integrity/ANSYS+HFSS
[29] niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixC.html#FF
[30] Link budget of magnetic antennas for ingestible capsule at 40 MHz, Prog. Electromagn. Res., Volume 134 (2013), pp. 111-131
[31] http://www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf
[32] A multilayered coil antenna for ingestible capsule: near-filed magnetic induction link, IEEE Antennas Wirel. Propag. Lett., Volume 12 (2013), pp. 1118-1121
[33] et al. Use of balun chokes in small-antenna radiation measurements, IEEE Trans. Instrum. Meas., Volume 53 (2004) no. 2, pp. 498-506
[34] et al. Experimental investigation of radiating current distribution and measurement cable interaction on wireless devices, EUCAP, 2011, pp. 1585-1588
[35] A method for measuring the characteristics of an EMI suppression ferrite core, IEEE Trans. Electromagn. Compat., Volume 45 (2006) no. 4, pp. 774-780
[36] Non-invasive measurement of electrically small ultra-wideband and smart antennas, Antennas and Propagation Conference, 2013, pp. 456-460
[37] Efficient filtering of cable interaction in small antenna measurements, ANTEM, 2010, pp. 1-3
[38] Hybrid localization of microrobotic endoscopic capsule inside small intestine by data fusion of vision and RF sensors, IEEE Sens. J., Volume 15 (2015) no. 5, pp. 2669-2678
[39] Topographic correction of GPR profile based on odometer and inclinometer data, International Conference Ground Penetrating Radar, June 2012 , pp. 425-429
[40] Characterisation of human body-based thermal and vibration energy harvesting for wearable devices, IEEE Circuits Syst. Mag., Volume 4 (2014) no. 3, pp. 354-363
[41] Electromagnetic respiratory effort harvester: human testing and metabolic cost analysis, Biomed. Health Inform., Volume 19 (2015) no. 2, pp. 399-405
[42] Electromagnetic energy harvester with flexible coils and magnetic spring for 1–10 Hz resonance, J. Microelectromech. Syst., Volume 24 (2015) no. 4, pp. 1193-1206
[43] Micro blood pressure energy harvester for intracardiac pacemaker, J. Microelectromech. Syst., Volume 23 (2014) no. 3, pp. 651-660
[44] Design and loss analysis of loosely coupled transformer for an underwater high-power inductive power transfer system, IEEE Trans. Magn., Volume 51 (2014) no. 7
Cited by Sources:
Comments - Policy