Comptes Rendus
Prix Jacques-Herbrand 2014 de l'Académie des sciences
Tiling solutions for optimal biological sensing
[Structures de pavage pour optimiser la sensibilité biologique]
Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 761-772.

Les systèmes biologiques, depuis la cellule jusqu'à l'organisme, ne peuvent survivre et fonctionner que s'ils s'adaptent aux changements continuels de l'environnement. Ce n'est pas une tâche aisée, à cause de la nature aléatoire des signaux qu'ils reçoivent, de la nature collective et souvent autoorganisée des phénomènes qui contrôlent leur réponse, et aussi en raison de la limitation des ressources. Malgré la diversité des échelles et des fonctions qu'on observe dans le monde vivant, on peut faire apparaître quelques principes généraux qui gouvernent le comportement des systèmes biologiques. Je considère ici deux exemples très différents de problèmes biologiques : la transmission de l'information dans les réseaux de régulation des gènes et le système immunitaire adaptatif qui nous protège des agents pathogènes. Je discute les compromis que les lois physiques imposent à ces systèmes, et je montre que la structure optimale des systèmes immunitaires comme des réseaux de régulation des gènes est organisée de façon semblable, en forme de pavage discret. Ces solutions correspondent à des dispositions sans recouvrement des unités de réponse (gènes et récepteurs) qui remplissent l'espace de façon presque uniforme.

Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.

Publié le :
DOI : 10.1016/j.crhy.2015.09.004
Keywords: Tiling solutions, Stochastic gene regulation, Immune repertoire, Optimization in biology
Mot clés : Solutions de pavage, Régulation stochastique des gènes, Répertoires immunitaires, Optimisation en biologie
Aleksandra M. Walczak 1

1 CNRS and Laboratoire de physique théorique de l'École normale supérieure, Paris, France
@article{CRPHYS_2015__16_8_761_0,
     author = {Aleksandra M. Walczak},
     title = {Tiling solutions for optimal biological sensing},
     journal = {Comptes Rendus. Physique},
     pages = {761--772},
     publisher = {Elsevier},
     volume = {16},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crhy.2015.09.004},
     language = {en},
}
TY  - JOUR
AU  - Aleksandra M. Walczak
TI  - Tiling solutions for optimal biological sensing
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 761
EP  - 772
VL  - 16
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.09.004
LA  - en
ID  - CRPHYS_2015__16_8_761_0
ER  - 
%0 Journal Article
%A Aleksandra M. Walczak
%T Tiling solutions for optimal biological sensing
%J Comptes Rendus. Physique
%D 2015
%P 761-772
%V 16
%N 8
%I Elsevier
%R 10.1016/j.crhy.2015.09.004
%G en
%F CRPHYS_2015__16_8_761_0
Aleksandra M. Walczak. Tiling solutions for optimal biological sensing. Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 761-772. doi : 10.1016/j.crhy.2015.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.09.004/

[1] J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 4135-4139

[2] J. Ninio Kinetic amplification of enzyme discrimination, Biochimie, Volume 57 (1975), pp. 587-595

[3] F. Tostevin; P.R. ten Wolde; M. Howard Fundamental limits to position determination by concentration gradients, PLoS Comput. Biol., Volume 3 (2007)

[4] T.E. Saunders; M. Howard Morphogen profiles can be optimized to buffer against noise, Phys. Rev. E, Volume 80 (2009)

[5] G. Tkacik; C.G. Callan; W. Bialek Information flow and optimization in transcriptional regulation, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 12265-12270

[6] P. Mehta; S. Goyal; T. Long; B.L. Bassler; N.S. Wingreen Information processing and signal integration in bacterial quorum sensing, Mol. Syst. Biol., Volume 5 (2009), p. 325

[7] A.M. Walczak; G. Tkačik; W. Bialek Optimizing information flow in small genetic networks. II. Feed-forward interactions, Phys. Rev. E, Volume 81 (2010)

[8] J.O. Dubuis; G. Tkacik; E.F. Wieschaus; T. Gregor; W. Bialek Positional information, in bits, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 16301-16308

[9] F. Tostevin; P.R. ten Wolde Mutual information between input and output trajectories of biochemical networks, Phys. Rev. Lett., Volume 102 (2009)

[10] F. Tostevin; P.R. ten Wolde Mutual information in time-varying biochemical systems, Phys. Rev. E, Volume 81 (2010)

[11] W.H. de Ronde; F. Tostevin; P.R. ten Wolde Effect of feedback on the fidelity of information transmission of time-varying signals, Phys. Rev. E, Volume 82 (2010)

[12] M. Vergassola; E. Villermaux; B.I. Shraiman ‘Infotaxis’ as a strategy for searching without gradients, Nature, Volume 445 (2007), pp. 406-409

[13] E.D. Siggia; M. Vergassola Decisions on the fly in cellular sensory systems, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), p. E3704-E3712

[14] A. Celani; M. Vergassola Bacterial strategies for chemotaxis response, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 1391-1396

[15] P. François; V. Hakim Design of genetic networks with specified functions by evolution in silico, Proc. Natl. Acad. Sci. USA, Volume 101 (2004), pp. 580-584

[16] P. François; V. Hakim; E.D. Siggia Deriving structure from evolution: metazoan segmentation, Mol. Syst. Biol., Volume 3 (2007), p. 154

[17] P. François; E.D. Siggia Predicting embryonic patterning using mutual entropy fitness and in silico evolution, Development, Volume 137 (2010), pp. 2385-2395

[18] U. Gerland; T. Hwa Evolutionary selection between alternative modes of gene regulation, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 8841-8846

[19] M.A. Savageau Design of molecular control mechanisms and the demand for gene expression, Proc. Natl. Acad. Sci., Volume 74 (1977), pp. 5647-5651

[20] M. Scott; C.W. Gunderson; E.M. Mateescu; Z. Zhang; T. Hwa Interdependence of cell growth and gene expression: origins and consequences, Science, Volume 330 (2010), pp. 1099-1102

[21] S. Klumpp; T. Hwa Growth-rate-dependent partitioning of RNA polymerases in bacteria, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 20245-20250

[22] H. Barlow Sensory Communication, 1961, p. 217

[23] S. Laughlin A simple coding procedure enhances a neuron's information capacity, Z. Naturforsch., Volume 36 (1981), pp. 910-912

[24] G. Tkačik; A. Walczak; W. Bialek Optimizing information flow in small genetic networks, Phys. Rev. E, Volume 80 (2009)

[25] G. Tkačik; A.M. Walczak Information transmission in genetic regulatory networks: a review, J. Phys. Condens. Matter, Volume 23 (2011), p. 153102

[26] G. Tkačik; A.M. Walczak; W. Bialek Optimizing information flow in small genetic networks. III. A self-interacting gene, Phys. Rev. E, Volume 85 (2012)

[27] A. Mayer; V. Balasubramanian; T. Mora; A.M. Walczak How a well-adapted immune system is organized, Proc. Natl. Acad. Sci. USA (2015), pp. 1-15

[28] M. Delbrück Statistical fluctuation in autocatalytic reactions, J. Chem. Phys., Volume 8 (1940), pp. 120-124

[29] M.B. Elowitz; A.J. Levine; E.D. Siggia; P.S. Swain Stochastic gene expression in a single cell, Science, Volume 297 (2002), pp. 1183-1186

[30] E.M. Ozbudak; M. Thattai; I. Kurtser; A.D. Grossman; A. van Oudenaarden Regulation of noise in the expression of a single gene, Nat. Genet., Volume 31 (2002), pp. 69-73

[31] J. Raser; E. O'Shea Control of stochasticity in eukaryotic gene expression, Science, Volume 304 (2004), p. 1811

[32] M. Kaern; T.C. Elston; W.J. Blake; J.J. Collins Stochasticity in gene expression: from theories to phenotypes, Nat. Rev. Genet., Volume 6 (2005), pp. 451-464

[33] A.M. Walczak; J.N. Onuchic; P.G. Wolynes Absolute rate theories of epigenetic stability, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 18926-18931

[34] J.E.M. Hornos et al. Self-regulating gene: an exact solution, Phys. Rev. E, Volume 72 (2005)

[35] A.M. Walczak; A. Mugler; C.H. Wiggins Computational Modeling of Signaling Networks, 2012, pp. 273-322

[36] I. Golding; J. Paulsson; S.M. Zawilski; E.C. Cox Real-time kinetics of gene activity in individual bacteria, Cell, Volume 123 (2005), pp. 1025-1036

[37] L. Cai; N. Friedman; X.S. Xie Stochastic protein expression in individual cells at the single molecule level, Nature, Volume 440 (2006), pp. 358-362

[38] J. Elf; G.W. Li; X. Xie Probing transcription factor dynamics at the single molecule level in a living cell, Science, Volume 316 (2007), pp. 1191-1195

[39] T. Gregor; D.W. Tank; E.F. Wieschaus; W. Bialek Probing the limits to positional information, Cell, Volume 130 (2007), pp. 153-164

[40] P. Lawrence The Making of a Fly: The Genetics of Animal Design, Blackwell Scientific Publications, Oxford, 1992

[41] O. Crauk; N. Dostatni Bicoid determines sharp and precise target gene expression in the Drosophila embryo, Curr. Biol., Volume 15 (2005), pp. 1888-1898

[42] J. Jaeger The gap gene network, Cell. Mol. Life Sci., Volume 68 (2011), pp. 243-274

[43] T. Gregor; E.F. Wieschaus; A.P. McGregor; W. Bialek; D.W. Tank Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, Volume 130 (2007), pp. 141-152

[44] C. Shannon A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), p. 623

[45] T. Cover; J. Thomas Elements of Information Theory, John Wiley, New York, New York, USA, 1991

[46] H.C. Berg; E.M. Purcell Physics of chemoreception, Biophys. J., Volume 20 (1977), pp. 193-219

[47] K. Kaizu et al. The Berg–Purcell limit revisited, Biophys. J., Volume 106 (2014), pp. 976-985

[48] R. Phillips; J. Kondev; J. Theriot; H. Garcia Physical Biology of the Cell, Garland Science, New York, NY, 2012

[49] K. Murphy; P. Travers; M. Walport Janeway's Immunobiology, vol. 2, Garland Science, 2001

[50] A.S. Perelson; G.F. Oster Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination, J. Theor. Biol., Volume 81 (1979), pp. 645-670

[51] T.R. Sokolowski; A.M. Walczak; W. Bialek; G. Tkačik Extending the dynamic range of transcription factor action by translational regulation, 2015 (p. 4) | arXiv

[52] T. Lucas et al. Live imaging of bicoid-dependent transcription in Drosophila embryos, Curr. Biol., Volume 23 (2013), pp. 2135-2139

[53] A. Porcher; N. Dostatni The bicoid morphogen system, Curr. Biol., Volume 20 (2010) (R249–R254)

[54] A. Murugan; T. Mora; A.M. Walczak; C.G. Callan Statistical inference of the generation probability of T-cell receptors from sequence repertoires, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 16161-16166

[55] Y. Elhanati; A. Murugan; C.G. Callan; T. Mora; A.M. Walczak Quantifying selection in immune receptor repertoires, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 9875-9880

[56] V. Venturi et al. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 18691-18696

[57] V. Venturi; D.A. Price; D.C. Douek; M.P. Davenport The molecular basis for public T-cell responses?, Nat. Rev. Immunol., Volume 8 (2008), pp. 231-238

[58] T. Mora; A.M. Walczak; W. Bialek; C.G. Callan Maximum entropy models for antibody diversity, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 5405-5410

[59] J.A. Weinstein; N. Jiang; R.A. White; D.S. Fisher; S.R. Quake High-throughput sequencing of the zebrafish antibody repertoire, Science (New York, N.Y.), Volume 324 (2009), pp. 807-810

[60] A. Fairhall; G. Lewen; W. Bialek; R. van Steveninck Efficiency and ambiguity in an adaptive neural code, Nature, Volume 412 (2001), p. 787

[61] B.W. Andrews; P.A. Iglesias An information-theoretic characterization of the optimal gradient sensing response of cells, PLoS Comput. Biol., Volume 3 (2007)

[62] J.G. Smith The information capacity of amplitude- and variance-constrained scalar Gaussian channels, Inf. Control, Volume 18:203–219 (1971)

[63] J. Huang; S. Meyn Characterization and computation of optimal distributions for channel coding, IEEE Trans. Inf. Theory, Volume 51 (2005), pp. 2336-2351

[64] A. Nikitin; N. Stocks; R. Morse; M. McDonnell Neural population coding is optimized by discrete tuning curves, Phys. Rev. Lett., Volume 103 (2009)

[65] R. Johnstone Honest signalling, perceptual error and the evolution of “all-or-nothing” displays, Proc. - Royal Soc., Biol. Sci., Volume 256 (1994), pp. 169-175

[66] B.G. Borghuis; C.P. Ratliff; R.G. Smith; P. Sterling; V. Balasubramanian Design of a neuronal array, J. Neurosci., Volume 28 (2008), pp. 3178-3189

[67] J.L. Gauthier et al. Receptive fields in primate retina are coordinated to sample visual space more uniformly, PLoS Biol., Volume 7 (2009)

[68] J.J. Kelly A new interpretation of information rate, IRE Trans. Inf. Theory, Volume 2 (1956), pp. 917-926

[69] A. Sasaki; S. Ellner The evolutionary stable phenotype distribution in a random environment, Evolution, Volume 49 (1995), pp. 337-350

[70] A. Sasaki Clumped distribution by neighborhood competition, J. Theor. Biol., Volume 186 (1997), pp. 415-430

[71] G. Meszéna; M. Gyllenberg; L. Pásztor; J.A.J. Metz Competitive exclusion and limiting similarity: a unified theory, Theor. Popul. Biol., Volume 69 (2006), pp. 68-87

[72] J. Mathiesen; N. Mitarai; K. Sneppen; A. Trusina Ecosystems with mutually exclusive interactions self-organize to a state of high diversity, Phys. Rev. Lett., Volume 107 (2011)

[73] K. Sneppen; N. Mitarai Multistability with a metastable mixed state, Phys. Rev. Lett., Volume 109 (2012)

[74] J. Bouchaud; M. Potters Theory of Financial Risks, Cambridge University Press, Cambridge, UK, 2000

[75] R.H. Masland The fundamental plan of the retina, Nat. Neurosci., Volume 4 (2001), pp. 877-886

[76] L. Buck; R. Axel A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell, Volume 65 (1991), pp. 175-187

[77] J. Shlens; F. Rieke; E. Chichilnisky Synchronized firing in the retina, Curr. Opin. Neurobiol., Volume 18 (2008), pp. 396-402

[78] M. Meister; L. Lagnado; D.A. Baylor Concerted signaling by retinal Ganglion cells, Science, Volume 8 (1995), pp. 1207-1210

[79] V. Balasubramanian; M. Berry A test of metabolically efficient coding in the retina, Netw. Comput. Neural Syst., Volume 13 (2002), pp. 531-552

[80] E. Schneidman; M.J. Berry; R. Segev; W. Bialek Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, Volume 440 (2006), pp. 1007-1012

[81] J.L. Puchalla; E. Schneidman; R.A. Harris; M.J. Berry Redundancy in the population code of the retina, Neuron, Volume 46 (2005), pp. 493-504

[82] P. Szabó; G. Meszéna Limiting similarity revisited, Oikos, Volume 3 (2006), pp. 612-619

[83] H.K. Hartline; H.G. Wagner; F. Ratliff Inhibition in the eye of Limulus, J. Gen. Physiol., Volume 39 (1956), pp. 651-673

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Self–nonself discrimination by T lymphocytes

Jacques Miller

C. R. Biol (2004)


Construction of naïve camelids VHH repertoire in phage display-based library

Jamal S.M. Sabir; Ahmed Atef; Fotouh M. El-Domyati; ...

C. R. Biol (2014)


Pathogen recognition or homeostasis? APC receptor functions in innate immunity

Siamon Gordon

C. R. Biol (2004)