Biological systems, from cells to organisms, must respond to the ever-changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many-body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.
Les systèmes biologiques, depuis la cellule jusqu'à l'organisme, ne peuvent survivre et fonctionner que s'ils s'adaptent aux changements continuels de l'environnement. Ce n'est pas une tâche aisée, à cause de la nature aléatoire des signaux qu'ils reçoivent, de la nature collective et souvent autoorganisée des phénomènes qui contrôlent leur réponse, et aussi en raison de la limitation des ressources. Malgré la diversité des échelles et des fonctions qu'on observe dans le monde vivant, on peut faire apparaître quelques principes généraux qui gouvernent le comportement des systèmes biologiques. Je considère ici deux exemples très différents de problèmes biologiques : la transmission de l'information dans les réseaux de régulation des gènes et le système immunitaire adaptatif qui nous protège des agents pathogènes. Je discute les compromis que les lois physiques imposent à ces systèmes, et je montre que la structure optimale des systèmes immunitaires comme des réseaux de régulation des gènes est organisée de façon semblable, en forme de pavage discret. Ces solutions correspondent à des dispositions sans recouvrement des unités de réponse (gènes et récepteurs) qui remplissent l'espace de façon presque uniforme.
Mots-clés : Solutions de pavage, Régulation stochastique des gènes, Répertoires immunitaires, Optimisation en biologie
Aleksandra M. Walczak 1
@article{CRPHYS_2015__16_8_761_0, author = {Aleksandra M. Walczak}, title = {Tiling solutions for optimal biological sensing}, journal = {Comptes Rendus. Physique}, pages = {761--772}, publisher = {Elsevier}, volume = {16}, number = {8}, year = {2015}, doi = {10.1016/j.crhy.2015.09.004}, language = {en}, }
Aleksandra M. Walczak. Tiling solutions for optimal biological sensing. Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 761-772. doi : 10.1016/j.crhy.2015.09.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.09.004/
[1] Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 4135-4139
[2] Kinetic amplification of enzyme discrimination, Biochimie, Volume 57 (1975), pp. 587-595
[3] Fundamental limits to position determination by concentration gradients, PLoS Comput. Biol., Volume 3 (2007)
[4] Morphogen profiles can be optimized to buffer against noise, Phys. Rev. E, Volume 80 (2009)
[5] Information flow and optimization in transcriptional regulation, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 12265-12270
[6] Information processing and signal integration in bacterial quorum sensing, Mol. Syst. Biol., Volume 5 (2009), p. 325
[7] Optimizing information flow in small genetic networks. II. Feed-forward interactions, Phys. Rev. E, Volume 81 (2010)
[8] Positional information, in bits, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 16301-16308
[9] Mutual information between input and output trajectories of biochemical networks, Phys. Rev. Lett., Volume 102 (2009)
[10] Mutual information in time-varying biochemical systems, Phys. Rev. E, Volume 81 (2010)
[11] Effect of feedback on the fidelity of information transmission of time-varying signals, Phys. Rev. E, Volume 82 (2010)
[12] ‘Infotaxis’ as a strategy for searching without gradients, Nature, Volume 445 (2007), pp. 406-409
[13] Decisions on the fly in cellular sensory systems, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), p. E3704-E3712
[14] Bacterial strategies for chemotaxis response, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 1391-1396
[15] Design of genetic networks with specified functions by evolution in silico, Proc. Natl. Acad. Sci. USA, Volume 101 (2004), pp. 580-584
[16] Deriving structure from evolution: metazoan segmentation, Mol. Syst. Biol., Volume 3 (2007), p. 154
[17] Predicting embryonic patterning using mutual entropy fitness and in silico evolution, Development, Volume 137 (2010), pp. 2385-2395
[18] Evolutionary selection between alternative modes of gene regulation, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 8841-8846
[19] Design of molecular control mechanisms and the demand for gene expression, Proc. Natl. Acad. Sci., Volume 74 (1977), pp. 5647-5651
[20] Interdependence of cell growth and gene expression: origins and consequences, Science, Volume 330 (2010), pp. 1099-1102
[21] Growth-rate-dependent partitioning of RNA polymerases in bacteria, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 20245-20250
[22] Sensory Communication, 1961, p. 217
[23] A simple coding procedure enhances a neuron's information capacity, Z. Naturforsch., Volume 36 (1981), pp. 910-912
[24] Optimizing information flow in small genetic networks, Phys. Rev. E, Volume 80 (2009)
[25] Information transmission in genetic regulatory networks: a review, J. Phys. Condens. Matter, Volume 23 (2011), p. 153102
[26] Optimizing information flow in small genetic networks. III. A self-interacting gene, Phys. Rev. E, Volume 85 (2012)
[27] How a well-adapted immune system is organized, Proc. Natl. Acad. Sci. USA (2015), pp. 1-15
[28] Statistical fluctuation in autocatalytic reactions, J. Chem. Phys., Volume 8 (1940), pp. 120-124
[29] Stochastic gene expression in a single cell, Science, Volume 297 (2002), pp. 1183-1186
[30] Regulation of noise in the expression of a single gene, Nat. Genet., Volume 31 (2002), pp. 69-73
[31] Control of stochasticity in eukaryotic gene expression, Science, Volume 304 (2004), p. 1811
[32] Stochasticity in gene expression: from theories to phenotypes, Nat. Rev. Genet., Volume 6 (2005), pp. 451-464
[33] Absolute rate theories of epigenetic stability, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 18926-18931
[34] et al. Self-regulating gene: an exact solution, Phys. Rev. E, Volume 72 (2005)
[35] Computational Modeling of Signaling Networks, 2012, pp. 273-322
[36] Real-time kinetics of gene activity in individual bacteria, Cell, Volume 123 (2005), pp. 1025-1036
[37] Stochastic protein expression in individual cells at the single molecule level, Nature, Volume 440 (2006), pp. 358-362
[38] Probing transcription factor dynamics at the single molecule level in a living cell, Science, Volume 316 (2007), pp. 1191-1195
[39] Probing the limits to positional information, Cell, Volume 130 (2007), pp. 153-164
[40] The Making of a Fly: The Genetics of Animal Design, Blackwell Scientific Publications, Oxford, 1992
[41] Bicoid determines sharp and precise target gene expression in the Drosophila embryo, Curr. Biol., Volume 15 (2005), pp. 1888-1898
[42] The gap gene network, Cell. Mol. Life Sci., Volume 68 (2011), pp. 243-274
[43] Stability and nuclear dynamics of the bicoid morphogen gradient, Cell, Volume 130 (2007), pp. 141-152
[44] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), p. 623
[45] Elements of Information Theory, John Wiley, New York, New York, USA, 1991
[46] Physics of chemoreception, Biophys. J., Volume 20 (1977), pp. 193-219
[47] et al. The Berg–Purcell limit revisited, Biophys. J., Volume 106 (2014), pp. 976-985
[48] Physical Biology of the Cell, Garland Science, New York, NY, 2012
[49] Janeway's Immunobiology, vol. 2, Garland Science, 2001
[50] Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination, J. Theor. Biol., Volume 81 (1979), pp. 645-670
[51] Extending the dynamic range of transcription factor action by translational regulation, 2015 (p. 4) | arXiv
[52] et al. Live imaging of bicoid-dependent transcription in Drosophila embryos, Curr. Biol., Volume 23 (2013), pp. 2135-2139
[53] The bicoid morphogen system, Curr. Biol., Volume 20 (2010) (R249–R254)
[54] Statistical inference of the generation probability of T-cell receptors from sequence repertoires, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), pp. 16161-16166
[55] Quantifying selection in immune receptor repertoires, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 9875-9880
[56] et al. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination, Proc. Natl. Acad. Sci. USA, Volume 103 (2006), pp. 18691-18696
[57] The molecular basis for public T-cell responses?, Nat. Rev. Immunol., Volume 8 (2008), pp. 231-238
[58] Maximum entropy models for antibody diversity, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), pp. 5405-5410
[59] High-throughput sequencing of the zebrafish antibody repertoire, Science (New York, N.Y.), Volume 324 (2009), pp. 807-810
[60] Efficiency and ambiguity in an adaptive neural code, Nature, Volume 412 (2001), p. 787
[61] An information-theoretic characterization of the optimal gradient sensing response of cells, PLoS Comput. Biol., Volume 3 (2007)
[62] The information capacity of amplitude- and variance-constrained scalar Gaussian channels, Inf. Control, Volume 18:203–219 (1971)
[63] Characterization and computation of optimal distributions for channel coding, IEEE Trans. Inf. Theory, Volume 51 (2005), pp. 2336-2351
[64] Neural population coding is optimized by discrete tuning curves, Phys. Rev. Lett., Volume 103 (2009)
[65] Honest signalling, perceptual error and the evolution of “all-or-nothing” displays, Proc. - Royal Soc., Biol. Sci., Volume 256 (1994), pp. 169-175
[66] Design of a neuronal array, J. Neurosci., Volume 28 (2008), pp. 3178-3189
[67] et al. Receptive fields in primate retina are coordinated to sample visual space more uniformly, PLoS Biol., Volume 7 (2009)
[68] A new interpretation of information rate, IRE Trans. Inf. Theory, Volume 2 (1956), pp. 917-926
[69] The evolutionary stable phenotype distribution in a random environment, Evolution, Volume 49 (1995), pp. 337-350
[70] Clumped distribution by neighborhood competition, J. Theor. Biol., Volume 186 (1997), pp. 415-430
[71] Competitive exclusion and limiting similarity: a unified theory, Theor. Popul. Biol., Volume 69 (2006), pp. 68-87
[72] Ecosystems with mutually exclusive interactions self-organize to a state of high diversity, Phys. Rev. Lett., Volume 107 (2011)
[73] Multistability with a metastable mixed state, Phys. Rev. Lett., Volume 109 (2012)
[74] Theory of Financial Risks, Cambridge University Press, Cambridge, UK, 2000
[75] The fundamental plan of the retina, Nat. Neurosci., Volume 4 (2001), pp. 877-886
[76] A novel multigene family may encode odorant receptors: a molecular basis for odor recognition, Cell, Volume 65 (1991), pp. 175-187
[77] Synchronized firing in the retina, Curr. Opin. Neurobiol., Volume 18 (2008), pp. 396-402
[78] Concerted signaling by retinal Ganglion cells, Science, Volume 8 (1995), pp. 1207-1210
[79] A test of metabolically efficient coding in the retina, Netw. Comput. Neural Syst., Volume 13 (2002), pp. 531-552
[80] Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, Volume 440 (2006), pp. 1007-1012
[81] Redundancy in the population code of the retina, Neuron, Volume 46 (2005), pp. 493-504
[82] Limiting similarity revisited, Oikos, Volume 3 (2006), pp. 612-619
[83] Inhibition in the eye of Limulus, J. Gen. Physiol., Volume 39 (1956), pp. 651-673
Cited by Sources:
Comments - Policy