When a film is strained in two dimensions, it can relax by developing a corrugation in the third dimension. We review here the resulting morphological instability that occurs by surface diffusion, called the Asaro–Tiller–Grinfel'd instability (ATG), especially on the paradigmatic silicon/germanium system. The instability is dictated by the balance between the elastic relaxation induced by the morphological evolution, and its surface energy cost. We focus here on its development at the nanoscales in epitaxial systems when a crystal film is coherently deposited on a substrate with a different lattice parameter, thence inducing epitaxial stresses. It eventually leads to the self-organization of quantum dots whose localization is dictated by the instability long-time dynamics. In these systems, new effects, such as film/substrate wetting or crystalline anisotropy, come into play and lead to a variety of behaviors.
Un film qui subit une pression selon deux dimensions peut relaxer cette contrainte en ondulant dans la troisième dimension. Nous analysons ici l'instabilité morphologique qui en résulte grâce à la diffusion de surface, l'instabilité d'Asaro–Tiller–Grinfel'd (ATG), en particulier sur le système paradigmatique silicium/germanium. L'instabilité est régie par l'équilibre entre la relaxation élastique liée à l'évolution de la surface, et son coût en énergie de surface. Nous nous focalisons ici sur sa manifestation aux échelles nanométriques dans les systèmes épitaxiés, quand un film cristallin est déposé sur un substrat de paramètre de maille différent, induisant une contrainte élastique bi-axiale. Cette évolution débouche aux temps longs sur l'auto-organisation de boites quantiques dont la localisation est dictée par la dynamique aux temps longs. Dans ces systèmes, des nouveaux effets entrent en jeu, comme le mouillage entre le film et son substrat ou l'anisotropie cristalline, et débouchent sur une diversité de comportements nouveaux.
Jean-Noël Aqua 1; Thomas Frisch 2
@article{CRPHYS_2015__16_8_741_0, author = {Jean-No\"el Aqua and Thomas Frisch}, title = {Instability-driven quantum dots}, journal = {Comptes Rendus. Physique}, pages = {741--757}, publisher = {Elsevier}, volume = {16}, number = {8}, year = {2015}, doi = {10.1016/j.crhy.2015.08.002}, language = {en}, }
Jean-Noël Aqua; Thomas Frisch. Instability-driven quantum dots. Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 741-757. doi : 10.1016/j.crhy.2015.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.002/
[1] Silicon quantum electronics, Rev. Mod. Phys., Volume 85 (2013), p. 961 http://link.aps.org/doi/10.1103/RevModPhys.85.961
[2] Ge dots and nanostructures grown epitaxially on Si, J. Phys. Condens. Matter, Volume 18 (2006)
[3] Quantum dots: self-organized and self-limiting structures (A.V. Narlikar; Y.Y. Fu, eds.), Oxford Handbook of Nanoscience and Technology, vol. 3, Oxford University Press, Oxford, England, 2010, p. 205
[4] et al. Authors certificate 28448, U.S.S.R.Zh., Sov. Phys., Solid State, Volume 9 (1967), p. 208
[5] A proposed class of heterojunction injection lasers, Proc. IEEE, Volume 51 (1963), p. 1782
[6] Efficient blue light-emitting diodes leading to bright and energy-saving white light sources, The Royal Swedish Academy of Sciences, 7 Oct. 2014.
[7] Interface morphology development during stress-corrosion cracking: Part 1: via surface diffusion, Metall. Trans., Volume 3 (1972), p. 1789
[8] Instability of the separation boundary between a nonhydrostatiscally stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831
[9] Stress-induced melting and surface instability of 4He crystals, Europhys. Lett., Volume 20 (1992), p. 707
[10] Helium crystals under stress: the Grinfeld instability, Rev. Mod. Phys., Volume 77 (2005), p. 317
[11] The growth of atomically rough 4He crystals, Z. Phys. B, Condens. Matter, Volume 64 (1986), p. 55
[12] Surface patterns on single-crystal films under uniaxial stress: experimental evidence for the Grinfeld instability, Phys. Rev. B, Volume 46 (1992), p. 13487
[13] Structure of lattice-strained layers studied by transmission electron microscopy, Appl. Phys. Lett., Volume 53 (1988), p. 1420
[14] Evolution of surface morphology and strain during SiGe epitaxy, Thin Solid Films, Volume 222 (1992), p. 78
[15] Surface roughening of heteroepitaxial thin film, Annu. Rev. Mater. Sci., Volume 29 (1999), p. 173
[16] Instabilities in crystal growth by atomic or molecular beams, Phys. Rep., Volume 324 (2000), p. 271
[17] Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013), p. 59 http://www.sciencedirect.com/science/article/pii/S0370157312002761 | DOI
[18] Self organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), p. 335
[19] Morphological instability in epitaxially strained dislocation-free solid films: linear stability theory, J. Appl. Phys., Volume 73 (1993), p. 4955
[20] The effect of surface stress on crystal–melt and crystal–crystal equilibrium, Acta Metall., Volume 37 (1989), p. 3119
[21] Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333
[22] Barrierless formation and faceting of SiGe islands on Si(001), Phys. Rev. Lett., Volume 89 (2002) http://link.aps.org/doi/10.1103/PhysRevLett.89.196104
[23] Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallfläschen, Z. Kristallogr., Volume 34 (1901), p. 449
[24] A numerical study of stress controlled surface diffusion during epitaxial film growth (S.P. Baker et al., eds.), Thin Films: Stresses and Mechanical Properties V, MRS Symposia Proceedings, vol. 356, Materials Research Society, Pittsburgh, 1995, p. 33 | DOI
[25] The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition, Appl. Surf. Sci., Volume 102 (1996), p. 6 http://www.sciencedirect.com/science/article/pii/0169433296000098
[26] Morphological instability in epitaxially strained dislocation-free solid films, Phys. Rev. Lett., Volume 67 (1991), p. 3696 http://link.aps.org/doi/10.1103/PhysRevLett.67.3696
[27] Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B, Volume 75 (2007) http://link.aps.org/doi/10.1103/PhysRevB.75.205312
[28] Stress singularities along a cycloid rough surface, Int. J. Solids Struct., Volume 30 (1993), p. 2983
[29] Interrupted self-organization of SiGe pyramids, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.096101
[30] Accommodation of SiGe strain on a universally compliant porous silicon substrate, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.035315
[31] Configurable compliant substrates for SiGe nanomembrane fabrication, Cryst. Growth Des., Volume 15 (2015), p. 3399 | DOI
[32] Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), p. 4637 http://link.aps.org/doi/10.1103/PhysRevLett.84.4637
[33] Mechanism for coherent island formation during heteroepitaxy, J. Phys. I (France), Volume 6 (1996), p. 575
[34] Structural transition in large-lattice-mismatch heteroepitaxy, Phys. Rev. Lett., Volume 77 (1996), p. 4046
[35] Competing roughening mechanisms in strained heteroepitaxy: a fast kinetic Monte Carlo study, Phys. Rev. Lett., Volume 89 (2002) http://link.aps.org/doi/10.1103/PhysRevLett.89.216102
[36] Kinetic aspects of thermodynamical instabilities, C. R. Phys., Volume 4 (2003), p. 201 http://www.sciencedirect.com/science/article/pii/S1631070503000021 | DOI
[37] Orientation dependence of the elastic instability on strained SiGe films, Appl. Phys. Lett., Volume 98 (2011), p. 161909 | DOI
[38] Pathway for the strain-driven two-dimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett., Volume 85 (2000), p. 3672
[39] Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid, Acta Metall. Mater., Volume 42 (1994), p. 3629
[40] Cracklike surface instabilities in stressed solids, Phys. Rev. Lett., Volume 71 (1993), p. 1593 http://link.aps.org/doi/10.1103/PhysRevLett.71.1593
[41] Self-organization of quantum dots in epitaxially strained solid films, Phys. Rev. E, Volume 68 (2003) http://link.aps.org/doi/10.1103/PhysRevE.68.056203
[42] Shape and growth of crystals (C. Godrèche, ed.), Solids far from Equilibrium, Cambridge University Press, Cambridge, 1991, p. 1
[43] Stress-induced layer-by-layer growth of Ge on Si(100), Phys. Rev. B, Volume 43 (1991), p. 9377 http://link.aps.org/doi/10.1103/PhysRevB.43.9377
[44] Towards quantitative understanding of formation and stability of Ge hut islands on Si(001), Phys. Rev. Lett., Volume 94 (2005) http://link.aps.org/doi/10.1103/PhysRevLett.94.176103
[45] Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B, Volume 70 (2004) http://link.aps.org/doi/10.1103/PhysRevB.70.205337
[46] Defects in epitaxial multilayers, I: misfit dislocations, J. Cryst. Growth, Volume 27 (1974), p. 118
[47] SiGe nanostructures: new insights into growth processes, J. Phys. Condens. Matter, Volume 14 (2002), p. 8283
[48] SiGe coherent islanding and stress relaxation in the high mobility regime, Phys. Rev. Lett., Volume 79 (1997), p. 3946
[49] Strain relaxation and defect formation in heteroepitaxial films via surface roughening induced by controlled annealing experiments, Appl. Phys. Lett., Volume 70 (1997), p. 2247
[50] Dependence of SiGe growth instability on Si substrate orientation, Surf. Sci., Volume 412 (1998), p. 415
[51] Instability-driven SiGe island growth, Phys. Rev. Lett., Volume 84 (2000), p. 4641 http://link.aps.org/doi/10.1103/PhysRevLett.84.4641
[52] Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films, Phys. Rev. B, Volume 74 (2006)
[53] Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B, Volume 76 (2007) http://link.aps.org/doi/10.1103/PhysRevB.76.165319
[54] Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy, Phys. Rev. B, Volume 87 (2013)
[55] Island formation in submonolayer epitaxy, J. Phys. I (France), Volume 3 (1993), p. 935
[56] Physics of Crystal Growth, Cambridge University Press, 1998
[57] Equilibrium shape of Si, Phys. Rev. Lett., Volume 70 (1993), p. 1643
[58] The equilibrium shape of silicon, Surf. Sci., Volume 330 (1995), p. 48
[59] Orientation dependence of strained-Ge surface energies near (001): role of dimer–vacancy lines and their interactions with steps, Phys. Rev. Lett., Volume 96 (2006)
[60] Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B, Volume 68 (2003)
[61] Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020 http://link.aps.org/doi/10.1103/PhysRevLett.65.1020
[62] Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.125310
[63] Reversible shape evolution of Ge islands on Si(001), Phys. Rev. Lett., Volume 87 (2001)
[64] Model for faceting in a kinetically controlled crystal growth, Phys. Rev. E, Volume 59 (1999), p. 803
[65] Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett., Volume 85 (1999), p. 1286
[66] Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B, Volume 61 (2000), p. 10388
[67] Nonlinear evolution equation for the stress-driven morphological instability, J. Appl. Phys., Volume 91 (2002), p. 9414
[68] Three-dimensional simulations of self-assembly of hut-shaped Si–Ge quantum dots, J. Appl. Phys., Volume 95 (2004), p. 7813
[69] Numerical simulation for the formation of nanostructures on the Stranski–Krastanow systems by surface undulation, J. Appl. Phys., Volume 101 (2007)
[70] Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010) http://link.aps.org/doi/10.1103/PhysRevB.82.085322
[71] http://www.insp.jussieu.fr/Films.html ([online link])
[72] Morphological evolution of SiGe layers, Surf. Sci., Volume 531 (2003), p. 231
[73] Ordering of Ge quantum dots with buried Si dislocation networks, Appl. Phys. Lett., Volume 80 (2002), p. 3078 http://scitation.aip.org/content/aip/journal/apl/80/17/10.1063/1.1474601
[74] Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates, Nanotechnology, Volume 24 (2013), p. 105601 http://stacks.iop.org/0957-4484/24/i=10/a=105601
[75] Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752 http://link.aip.org/link/?APL/75/2752/1
[76] Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Appl. Phys. Lett., Volume 80 (2002), p. 497 http://link.aip.org/link/?APL/80/497/1
[77] Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004) http://link.aps.org/doi/10.1103/PhysRevLett.92.025502
[78] Real-time scanning tunneling microscopy observation of the evolution of Ge quantum dots on nanopatterned Si(001) surfaces, Phys. Rev. B, Volume 69 (2004) http://link.aps.org/doi/10.1103/PhysRevB.69.201309
[79] Ge island formation on stripe-patterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 445 http://link.aip.org/link/?APL/82/445/1
[80] Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition, Nanotechnology, Volume 21 (2010), p. 475302 http://stacks.iop.org/0957-4484/21/i=47/a=475302
[81] Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate, Nanotechnology, Volume 24 (2013) http://stacks.iop.org/0957-4484/24/i=1/a=015304
[82] SiGe nanostructures, Surf. Sci. Rep., Volume 64 (2009), p. 47 http://www.sciencedirect.com/science/article/pii/S0167572908000769
[83] Enhanced growth instability of strained film on wavy substrate, J. Appl. Phys., Volume 104 (2008) | DOI
[84] Positioning of strained islands by interaction with surface nanogrooves, Phys. Rev. Lett., Volume 101 (2008) http://link.aps.org/doi/10.1103/PhysRevLett.101.096103
[85] Growth kinetics in a strained crystal film on a wavy patterned substrate, J. Phys. Condens. Matter, Volume 24 (2012) http://stacks.iop.org/0953-8984/24/i=4/a=045002
[86] Growth of a strained epitaxial film on a patterned substrate, C. R. Phys., Volume 14 (2013), p. 199 | DOI
[87] Directed self-organization of quantum dots, Phys. Rev. E, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevE.90.030402
[88] Growth of quantum dots on pit-patterns, Surf. Sci., Volume 639 (2015), p. 20 http://www.sciencedirect.com/science/article/pii/S0039602815001016 | DOI
[89] Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions, Phys. Rev. Lett., Volume 84 (2000), p. 701 http://link.aps.org/doi/10.1103/PhysRevLett.84.701
[90] Coarsening dynamics at unstable crystal surfaces, C. R. Phys., Volume 16 (2015), p. 280
[91] The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Volume 19 (1961), p. 35
[92] J. Chem. Phys., 81 (1984), p. 976
[93] Thin Solid Films, 346 (1999), p. 1
[94] Ostwald ripening of three-dimensional clusters on a surface studied with an ultrafast kinetic Monte Carlo algorithm, Phys. Rev. B, Volume 84 (2011) http://link.aps.org/doi/10.1103/PhysRevB.84.045434
[95] J. Phys. Chem. Solids, 19 (1961), p. 35
[96] Spontaneous ordering of arrays of coherent strained islands, Phys. Rev. Lett., Volume 75 (1995), p. 2968
[97] Kinetic evolution and equilibrium morphology of strained islands, Phys. Rev. Lett., Volume 95 (2005) http://link.aps.org/doi/10.1103/PhysRevLett.95.026103
Cited by Sources:
Comments - Policy