Comptes Rendus
Prix Gustave-Ribaud 2014 de l'Académie des sciences
Instability-driven quantum dots
[Instabilité et boîtes quantiques]
Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 741-757.

Un film qui subit une pression selon deux dimensions peut relaxer cette contrainte en ondulant dans la troisième dimension. Nous analysons ici l'instabilité morphologique qui en résulte grâce à la diffusion de surface, l'instabilité d'Asaro–Tiller–Grinfel'd (ATG), en particulier sur le système paradigmatique silicium/germanium. L'instabilité est régie par l'équilibre entre la relaxation élastique liée à l'évolution de la surface, et son coût en énergie de surface. Nous nous focalisons ici sur sa manifestation aux échelles nanométriques dans les systèmes épitaxiés, quand un film cristallin est déposé sur un substrat de paramètre de maille différent, induisant une contrainte élastique bi-axiale. Cette évolution débouche aux temps longs sur l'auto-organisation de boites quantiques dont la localisation est dictée par la dynamique aux temps longs. Dans ces systèmes, des nouveaux effets entrent en jeu, comme le mouillage entre le film et son substrat ou l'anisotropie cristalline, et débouchent sur une diversité de comportements nouveaux.

When a film is strained in two dimensions, it can relax by developing a corrugation in the third dimension. We review here the resulting morphological instability that occurs by surface diffusion, called the Asaro–Tiller–Grinfel'd instability (ATG), especially on the paradigmatic silicon/germanium system. The instability is dictated by the balance between the elastic relaxation induced by the morphological evolution, and its surface energy cost. We focus here on its development at the nanoscales in epitaxial systems when a crystal film is coherently deposited on a substrate with a different lattice parameter, thence inducing epitaxial stresses. It eventually leads to the self-organization of quantum dots whose localization is dictated by the instability long-time dynamics. In these systems, new effects, such as film/substrate wetting or crystalline anisotropy, come into play and lead to a variety of behaviors.

Publié le :
DOI : 10.1016/j.crhy.2015.08.002
Mots clés : Strained film, Morphological instability, Epitaxy
Jean-Noël Aqua 1 ; Thomas Frisch 2

1 Institut des nanosciences de Paris, UPMC (Université Paris-6), CNRS, UMR 7588, 4, place Jussieu, 75005 Paris, France
2 Institut Non Linéaire de Nice, Université de Nice Sophia Antipolis, UMR, CNRS 6618, 1361, routes des Lucioles, 06560 Valbonne, France
@article{CRPHYS_2015__16_8_741_0,
     author = {Jean-No\"el Aqua and Thomas Frisch},
     title = {Instability-driven quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {741--757},
     publisher = {Elsevier},
     volume = {16},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crhy.2015.08.002},
     language = {en},
}
TY  - JOUR
AU  - Jean-Noël Aqua
AU  - Thomas Frisch
TI  - Instability-driven quantum dots
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 741
EP  - 757
VL  - 16
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.08.002
LA  - en
ID  - CRPHYS_2015__16_8_741_0
ER  - 
%0 Journal Article
%A Jean-Noël Aqua
%A Thomas Frisch
%T Instability-driven quantum dots
%J Comptes Rendus. Physique
%D 2015
%P 741-757
%V 16
%N 8
%I Elsevier
%R 10.1016/j.crhy.2015.08.002
%G en
%F CRPHYS_2015__16_8_741_0
Jean-Noël Aqua; Thomas Frisch. Instability-driven quantum dots. Comptes Rendus. Physique, Volume 16 (2015) no. 8, pp. 741-757. doi : 10.1016/j.crhy.2015.08.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.002/

[1] F.A. Zwanenburg; A.S. Dzurak; A. Morello; M.Y. Simmons; L.C.L. Hollenberg; G. Klimeck; S. Rogge; S.N. Coppersmith; M.A. Eriksson Silicon quantum electronics, Rev. Mod. Phys., Volume 85 (2013), p. 961 http://link.aps.org/doi/10.1103/RevModPhys.85.961

[2] J.-M. Baribeau; X. Wu; N.L. Rowell; D.J. Lockwood Ge dots and nanostructures grown epitaxially on Si, J. Phys. Condens. Matter, Volume 18 (2006)

[3] D.D. Vvedensky Quantum dots: self-organized and self-limiting structures (A.V. Narlikar; Y.Y. Fu, eds.), Oxford Handbook of Nanoscience and Technology, vol. 3, Oxford University Press, Oxford, England, 2010, p. 205

[4] Z.I. Alferov; R.F. Kazarinov; I. Alferov et al. Authors certificate 28448, U.S.S.R.Zh., Sov. Phys., Solid State, Volume 9 (1967), p. 208

[5] H. Kroemer A proposed class of heterojunction injection lasers, Proc. IEEE, Volume 51 (1963), p. 1782

[6] Efficient blue light-emitting diodes leading to bright and energy-saving white light sources, The Royal Swedish Academy of Sciences, 7 Oct. 2014.

[7] R.J. Asaro; W.A. Tiller Interface morphology development during stress-corrosion cracking: Part 1: via surface diffusion, Metall. Trans., Volume 3 (1972), p. 1789

[8] M.A. Grinfel'd Instability of the separation boundary between a nonhydrostatiscally stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831

[9] M. Thiel; A. Willibald; P. Evers; A. Levchenko; P. Leiderer; S. Balibar Stress-induced melting and surface instability of 4He crystals, Europhys. Lett., Volume 20 (1992), p. 707

[10] S. Balibar; H. Alles; A.Y. Parshin Helium crystals under stress: the Grinfeld instability, Rev. Mod. Phys., Volume 77 (2005), p. 317

[11] J. Bodensohn; K. Nicolai; P. Leiderer The growth of atomically rough 4He crystals, Z. Phys. B, Condens. Matter, Volume 64 (1986), p. 55

[12] J. Berréhar; C. Caroli; C. Lapersonne-Meyer; M. Schott Surface patterns on single-crystal films under uniaxial stress: experimental evidence for the Grinfeld instability, Phys. Rev. B, Volume 46 (1992), p. 13487

[13] J.Y. Yao; T.G. Andersson; G.L. Dunlop Structure of lattice-strained InxGa1xAs/GaAs layers studied by transmission electron microscopy, Appl. Phys. Lett., Volume 53 (1988), p. 1420

[14] A.J. Pidduck; D.J. Robbins; A.G. Cullis; W.Y. Leong; A.M. Pitt Evolution of surface morphology and strain during SiGe epitaxy, Thin Solid Films, Volume 222 (1992), p. 78

[15] H. Gao; W. Nix Surface roughening of heteroepitaxial thin film, Annu. Rev. Mater. Sci., Volume 29 (1999), p. 173

[16] P. Politi; G. Grenet; A. Marty; A. Ponchet; J. Villain Instabilities in crystal growth by atomic or molecular beams, Phys. Rep., Volume 324 (2000), p. 271

[17] J.-N. Aqua; I. Berbezier; L. Favre; T. Frisch; A. Ronda Growth and self-organization of SiGe nanostructures, Phys. Rep., Volume 522 (2013), p. 59 http://www.sciencedirect.com/science/article/pii/S0370157312002761 | DOI

[18] C. Teichert Self organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), p. 335

[19] B.J. Spencer; P.W. Voorhees; S.H. Davies Morphological instability in epitaxially strained dislocation-free solid films: linear stability theory, J. Appl. Phys., Volume 73 (1993), p. 4955

[20] P.H. Leo; R.F. Sekerka The effect of surface stress on crystal–melt and crystal–crystal equilibrium, Acta Metall., Volume 37 (1989), p. 3119

[21] W.W. Mullins Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333

[22] J. Tersoff; B.J. Spencer; A. Rastelli; H. von Känel Barrierless formation and faceting of SiGe islands on Si(001), Phys. Rev. Lett., Volume 89 (2002) http://link.aps.org/doi/10.1103/PhysRevLett.89.196104

[23] G. Wulff Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallfläschen, Z. Kristallogr., Volume 34 (1901), p. 449

[24] C.-H. Chiu; H. Gao A numerical study of stress controlled surface diffusion during epitaxial film growth (S.P. Baker et al., eds.), Thin Films: Stresses and Mechanical Properties V, MRS Symposia Proceedings, vol. 356, Materials Research Society, Pittsburgh, 1995, p. 33 | DOI

[25] P. Müller; R. Kern The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition, Appl. Surf. Sci., Volume 102 (1996), p. 6 http://www.sciencedirect.com/science/article/pii/0169433296000098

[26] B.J. Spencer; P.W. Voorhees; S.H. Davis Morphological instability in epitaxially strained dislocation-free solid films, Phys. Rev. Lett., Volume 67 (1991), p. 3696 http://link.aps.org/doi/10.1103/PhysRevLett.67.3696

[27] M.S. Levine; A.A. Golovin; S.H. Davis; P.W. Voorhees Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B, Volume 75 (2007) http://link.aps.org/doi/10.1103/PhysRevB.75.205312

[28] C.-H. Chiu; H. Gao Stress singularities along a cycloid rough surface, Int. J. Solids Struct., Volume 30 (1993), p. 2983

[29] J.-N. Aqua; A. Gouyé; A. Ronda; T. Frisch; I. Berbezier Interrupted self-organization of SiGe pyramids, Phys. Rev. Lett., Volume 110 (2013) http://link.aps.org/doi/10.1103/PhysRevLett.110.096101

[30] I. Berbezier; J.-N. Aqua; M. Aouassa; L. Favre; S. Escoubas; A. Gouyé; A. Ronda Accommodation of SiGe strain on a universally compliant porous silicon substrate, Phys. Rev. B, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevB.90.035315

[31] J.-N. Aqua; L. Favre; A. Ronda; A. Benkouider; I. Berbezier Configurable compliant substrates for SiGe nanomembrane fabrication, Cryst. Growth Des., Volume 15 (2015), p. 3399 | DOI

[32] P. Sutter; M.G. Lagally Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), p. 4637 http://link.aps.org/doi/10.1103/PhysRevLett.84.4637

[33] C. Ratsch; P. Smilauer; D.D. Vvedensky; A. Zangwill Mechanism for coherent island formation during heteroepitaxy, J. Phys. I (France), Volume 6 (1996), p. 575

[34] Y. Chen; J. Washburn Structural transition in large-lattice-mismatch heteroepitaxy, Phys. Rev. Lett., Volume 77 (1996), p. 4046

[35] C.-H. Lam; C.-K. Lee; L.M. Sander Competing roughening mechanisms in strained heteroepitaxy: a fast kinetic Monte Carlo study, Phys. Rev. Lett., Volume 89 (2002) http://link.aps.org/doi/10.1103/PhysRevLett.89.216102

[36] J. Villain Kinetic aspects of thermodynamical instabilities, C. R. Phys., Volume 4 (2003), p. 201 http://www.sciencedirect.com/science/article/pii/S1631070503000021 | DOI

[37] J.-N. Aqua; A. Gouyé; T. Auphan; T. Frisch; A. Ronda; I. Berbezier Orientation dependence of the elastic instability on strained SiGe films, Appl. Phys. Lett., Volume 98 (2011), p. 161909 | DOI

[38] A. Vailionis; B. Cho; G. Glass; P. Desjardins; D.G. Cahill; J.E. Greene Pathway for the strain-driven two-dimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett., Volume 85 (2000), p. 3672

[39] B.J. Spencer; D.I. Meiron Nonlinear evolution of the stress-driven morphological instability in a two-dimensional semi-infinite solid, Acta Metall. Mater., Volume 42 (1994), p. 3629

[40] W.H. Yang; D.J. Srolovitz Cracklike surface instabilities in stressed solids, Phys. Rev. Lett., Volume 71 (1993), p. 1593 http://link.aps.org/doi/10.1103/PhysRevLett.71.1593

[41] A.A. Golovin; S.H. Davis; P.W. Voorhees Self-organization of quantum dots in epitaxially strained solid films, Phys. Rev. E, Volume 68 (2003) http://link.aps.org/doi/10.1103/PhysRevE.68.056203

[42] P. Nozières Shape and growth of crystals (C. Godrèche, ed.), Solids far from Equilibrium, Cambridge University Press, Cambridge, 1991, p. 1

[43] J. Tersoff Stress-induced layer-by-layer growth of Ge on Si(100), Phys. Rev. B, Volume 43 (1991), p. 9377 http://link.aps.org/doi/10.1103/PhysRevB.43.9377

[44] G.-H. Lu; F. Liu Towards quantitative understanding of formation and stability of Ge hut islands on Si(001), Phys. Rev. Lett., Volume 94 (2005) http://link.aps.org/doi/10.1103/PhysRevLett.94.176103

[45] M.J. Beck; A. van de Walle; M. Asta Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B, Volume 70 (2004) http://link.aps.org/doi/10.1103/PhysRevB.70.205337

[46] J.W. Matthews; A.E. Blakeslee Defects in epitaxial multilayers, I: misfit dislocations, J. Cryst. Growth, Volume 27 (1974), p. 118

[47] I. Berbezier; A. Ronda; A. Portavoce SiGe nanostructures: new insights into growth processes, J. Phys. Condens. Matter, Volume 14 (2002), p. 8283

[48] J.A. Floro; E. Chason; R.D. Twesten; R.Q. Hwang; L.B. Freund SiGe coherent islanding and stress relaxation in the high mobility regime, Phys. Rev. Lett., Volume 79 (1997), p. 3946

[49] C.S. Ozkan; W.D. Nix; H. Gao Strain relaxation and defect formation in heteroepitaxial Si1xGex films via surface roughening induced by controlled annealing experiments, Appl. Phys. Lett., Volume 70 (1997), p. 2247

[50] I. Berbezier; B. Gallas; A. Ronda; J. Derrien Dependence of SiGe growth instability on Si substrate orientation, Surf. Sci., Volume 412 (1998), p. 415

[51] R.M. Tromp; F.M. Ross; M.C. Reuter Instability-driven SiGe island growth, Phys. Rev. Lett., Volume 84 (2000), p. 4641 http://link.aps.org/doi/10.1103/PhysRevLett.84.4641

[52] Y. Pang; R. Huang Nonlinear effect of stress and wetting on surface evolution of epitaxial thin films, Phys. Rev. B, Volume 74 (2006)

[53] J.-N. Aqua; T. Frisch; A. Verga Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B, Volume 76 (2007) http://link.aps.org/doi/10.1103/PhysRevB.76.165319

[54] C.G. Gamage; Z.-F. Huang Nonlinear dynamics of island coarsening and stabilization during strained film heteroepitaxy, Phys. Rev. B, Volume 87 (2013)

[55] L.-H. Tang Island formation in submonolayer epitaxy, J. Phys. I (France), Volume 3 (1993), p. 935

[56] A. Pimpinelli; J. Villain Physics of Crystal Growth, Cambridge University Press, 1998

[57] D.J. Eaglesham; A.E. White; L.C. Feldman; N. Moriya; D.C. Jacobson Equilibrium shape of Si, Phys. Rev. Lett., Volume 70 (1993), p. 1643

[58] J.M. Bermond; J.J. Métois; X. Egéa; F. Floret The equilibrium shape of silicon, Surf. Sci., Volume 330 (1995), p. 48

[59] C.J. Moore; C.M. Retford; M.J. Beck; M. Asta; M.J. Miksis; P.W. Voorhees Orientation dependence of strained-Ge surface energies near (001): role of dimer–vacancy lines and their interactions with steps, Phys. Rev. Lett., Volume 96 (2006)

[60] A. Rastelli; H. Von Känel; B.J. Spencer; J. Tersoff Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B, Volume 68 (2003)

[61] Y.W. Mo; D.E. Savage; B.S. Swartzentruber; M.G. Lagally Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett., Volume 65 (1990), p. 1020 http://link.aps.org/doi/10.1103/PhysRevLett.65.1020

[62] P. Gaillard; J.-N. Aqua; T. Frisch Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids, Phys. Rev. B, Volume 87 (2013) http://link.aps.org/doi/10.1103/PhysRevB.87.125310

[63] A. Rastelli; M. Kummer; H. von Känel Reversible shape evolution of Ge islands on Si(001), Phys. Rev. Lett., Volume 87 (2001)

[64] A.A. Golovin; S.H. Davis; A.A. Nepomnyashchy Model for faceting in a kinetically controlled crystal growth, Phys. Rev. E, Volume 59 (1999), p. 803

[65] H.R. Eisenberg; D. Kandel Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett., Volume 85 (1999), p. 1286

[66] Y.W. Zhang Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B, Volume 61 (2000), p. 10388

[67] Y. Xiang; W. E Nonlinear evolution equation for the stress-driven morphological instability, J. Appl. Phys., Volume 91 (2002), p. 9414

[68] A. Ramasubramaniam; V.B. Shenoy Three-dimensional simulations of self-assembly of hut-shaped Si–Ge quantum dots, J. Appl. Phys., Volume 95 (2004), p. 7813

[69] C.-H. Chiu; Z. Huang Numerical simulation for the formation of nanostructures on the Stranski–Krastanow systems by surface undulation, J. Appl. Phys., Volume 101 (2007)

[70] J.-N. Aqua; T. Frisch Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010) http://link.aps.org/doi/10.1103/PhysRevB.82.085322

[71] http://www.insp.jussieu.fr/Films.html ([online link])

[72] I. Berbezier; A. Ronda; F. Volpi; A. Portavoce Morphological evolution of SiGe layers, Surf. Sci., Volume 531 (2003), p. 231

[73] F. Leroy; J. Eymery; P. Gentile; F. Fournel Ordering of Ge quantum dots with buried Si dislocation networks, Appl. Phys. Lett., Volume 80 (2002), p. 3078 http://scitation.aip.org/content/aip/journal/apl/80/17/10.1063/1.1474601

[74] M. Grydlik; G. Langer; T. Fromherz; F. Schäffler; M. Brehm Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates, Nanotechnology, Volume 24 (2013), p. 105601 http://stacks.iop.org/0957-4484/24/i=10/a=105601

[75] G. Jin; J.L. Liu; S.G. Thomas; Y.H. Luo; K.L. Wang; B.-Y. Nguyen Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752 http://link.aip.org/link/?APL/75/2752/1

[76] T. Kitajima; B. Liu; S.R. Leone Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Appl. Phys. Lett., Volume 80 (2002), p. 497 http://link.aip.org/link/?APL/80/497/1

[77] B. Yang; F. Liu; M.G. Lagally Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004) http://link.aps.org/doi/10.1103/PhysRevLett.92.025502

[78] P.D. Szkutnik; A. Sgarlata; S. Nufris; N. Motta; A. Balzarotti Real-time scanning tunneling microscopy observation of the evolution of Ge quantum dots on nanopatterned Si(001) surfaces, Phys. Rev. B, Volume 69 (2004) http://link.aps.org/doi/10.1103/PhysRevB.69.201309

[79] Z. Zhong; A. Halilovic; M. Muhlberger; F. Schaffler; G. Bauer Ge island formation on stripe-patterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 445 http://link.aip.org/link/?APL/82/445/1

[80] M. Bollani; D. Chrastina; A. Fedorov; R. Sordan; A. Picco; E. Bonera Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition, Nanotechnology, Volume 21 (2010), p. 475302 http://stacks.iop.org/0957-4484/21/i=47/a=475302

[81] Y.J. Ma; Z. Zhong; X.J. Yang; Y.L. Fan; Z.M. Jiang Factors influencing epitaxial growth of three-dimensional Ge quantum dot crystals on pit-patterned Si substrate, Nanotechnology, Volume 24 (2013) http://stacks.iop.org/0957-4484/24/i=1/a=015304

[82] I. Berbezier; A. Ronda SiGe nanostructures, Surf. Sci. Rep., Volume 64 (2009), p. 47 http://www.sciencedirect.com/science/article/pii/S0167572908000769

[83] H. Wang; Y. Zhang; F. Liu Enhanced growth instability of strained film on wavy substrate, J. Appl. Phys., Volume 104 (2008) | DOI

[84] G. Katsaros; J. Tersoff; M. Stoffel; A. Rastelli; P. Acosta-Diaz; G.S. Kar; G. Costantini; O.G. Schmidt; K. Kern Positioning of strained islands by interaction with surface nanogrooves, Phys. Rev. Lett., Volume 101 (2008) http://link.aps.org/doi/10.1103/PhysRevLett.101.096103

[85] X. Xu; J.-N. Aqua; T. Frisch Growth kinetics in a strained crystal film on a wavy patterned substrate, J. Phys. Condens. Matter, Volume 24 (2012) http://stacks.iop.org/0953-8984/24/i=4/a=045002

[86] X. Xu; J.-N. Aqua; T. Frisch Growth of a strained epitaxial film on a patterned substrate, C. R. Phys., Volume 14 (2013), p. 199 | DOI

[87] J.N. Aqua; X. Xu Directed self-organization of quantum dots, Phys. Rev. E, Volume 90 (2014) http://link.aps.org/doi/10.1103/PhysRevE.90.030402

[88] J.-N. Aqua; X. Xu Growth of quantum dots on pit-patterns, Surf. Sci., Volume 639 (2015), p. 20 http://www.sciencedirect.com/science/article/pii/S0039602815001016 | DOI

[89] J.A. Floro; M.B. Sinclair; E. Chason; L.B. Freund; R.D. Twesten; R.D. Hwang; G.A. Lucadamo Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions, Phys. Rev. Lett., Volume 84 (2000), p. 701 http://link.aps.org/doi/10.1103/PhysRevLett.84.701

[90] P. Politi Coarsening dynamics at unstable crystal surfaces, C. R. Phys., Volume 16 (2015), p. 280

[91] I.M. Lifshitz; V.V. Slyozov The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, Volume 19 (1961), p. 35

[92] J.A. Marqusee J. Chem. Phys., 81 (1984), p. 976

[93] M. Zinke-Allmang Thin Solid Films, 346 (1999), p. 1

[94] G. Prévot Ostwald ripening of three-dimensional clusters on a surface studied with an ultrafast kinetic Monte Carlo algorithm, Phys. Rev. B, Volume 84 (2011) http://link.aps.org/doi/10.1103/PhysRevB.84.045434

[95] I.M. Lifshitz; V.V. Slyozov J. Phys. Chem. Solids, 19 (1961), p. 35

[96] V.A. Shchukin; N.N. Ledentsov; P.S. Kop'ev; D. Bimberg Spontaneous ordering of arrays of coherent strained islands, Phys. Rev. Lett., Volume 75 (1995), p. 2968

[97] A. Rastelli; M. Stoffel; J. Tersoff; G.S. Kar; O.G. Schmidt Kinetic evolution and equilibrium morphology of strained islands, Phys. Rev. Lett., Volume 95 (2005) http://link.aps.org/doi/10.1103/PhysRevLett.95.026103

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Growth of a strained epitaxial film on a patterned substrate

Xianbin Xu; Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2013)


Growth of hexagonal quantum dots under preferential evaporation

Guido Schifani; Thomas Frisch; Jean-Noël Aqua

C. R. Méca (2019)


Role of patterning in islands nucleation on semiconductor surfaces

Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; ...

C. R. Phys (2006)