Comptes Rendus
Chirality in photonic systems
[Chiralité dans les systèmes photoniques]
Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 920-933.

Les modes optiques des structures photoniques sont les modes TE et TM, qui confèrent un couplage spin–orbite intrinsèque et une chiralité à ces systèmes. Ceci, combiné avec la flexibilité unique de design du potentiel photonique et la possibilité de mélanger des états photoniques avec des résonances excitoniques, sensibles au champ magnétique et aux interactions, nous permet d'atteindre de nombreux phénomènes, souvent analogues à ceux observés dans des systèmes à l'état solide. Dans cet article, nous passons en revue, de manière qualitative et exhaustive, plusieurs de ces réalisations, notamment l'effet Hall optique de spin, la création de courants de spin protégés par une géométrie non triviale, la courbure de Berry pour les photons, ainsi que l'isolant photonique/polaritonique topologique.

The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin–orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.

Publié le :
DOI : 10.1016/j.crhy.2016.07.003
Keywords: Topological photonics, Spin–orbit coupling, Polaritons
Mot clés : Photonique topologique, Couplage spin–orbite, Polaritons
Dmitry Solnyshkov 1 ; Guillaume Malpuech 1

1 Institut Pascal, Photon-N2, Université Clermont Auvergne & CNRS, 4, avenue Blaise-Pascal, 63178 Aubière cedex, France
@article{CRPHYS_2016__17_8_920_0,
     author = {Dmitry Solnyshkov and Guillaume Malpuech},
     title = {Chirality in photonic systems},
     journal = {Comptes Rendus. Physique},
     pages = {920--933},
     publisher = {Elsevier},
     volume = {17},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.003},
     language = {en},
}
TY  - JOUR
AU  - Dmitry Solnyshkov
AU  - Guillaume Malpuech
TI  - Chirality in photonic systems
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 920
EP  - 933
VL  - 17
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.003
LA  - en
ID  - CRPHYS_2016__17_8_920_0
ER  - 
%0 Journal Article
%A Dmitry Solnyshkov
%A Guillaume Malpuech
%T Chirality in photonic systems
%J Comptes Rendus. Physique
%D 2016
%P 920-933
%V 17
%N 8
%I Elsevier
%R 10.1016/j.crhy.2016.07.003
%G en
%F CRPHYS_2016__17_8_920_0
Dmitry Solnyshkov; Guillaume Malpuech. Chirality in photonic systems. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 920-933. doi : 10.1016/j.crhy.2016.07.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.003/

[1] W. Gerlach; O. Stern; W. Gerlach; O. Stern Z. Phys., 9 (1922), p. 349

[2] M.I. D'Yakonov; V.I. Perel JETP Lett., 13 (1971), p. 467

[3] H. Kamerlingh Onnes Proc. K. Ned. Akad. Wet., 13 (1911), p. 1107

[4] P. Kapitza; J.F. Allen; A.D. Misener Nature, 141 (1938), p. 74

[5] M.V. Berry Proc. R. Soc. Lond. A, 392 (1984), p. 45

[6] S. Pantcharatnam Proc. Indiana Acad. Sci. A, 44 (1956), p. 127

[7] S.S. Chern Ann. Math., 47 (1946), p. 85

[8] K.V. Klitzing; G. Dorda; M. Pepper Phys. Rev. Lett., 45 (1980), p. 494

[9] Y. Hatsugai Phys. Rev. Lett., 71 (1993), p. 3697

[10] M.Z. Hasan; C.L. Kane Rev. Mod. Phys., 82 (2010), p. 3045

[11] F.D.M. Haldane Phys. Rev. Lett., 61 (1988), p. 2015

[12] C.L. Kane; E.J. Mele; C.L. Kane; E.J. Mele; B.A. Bernevig; T.A. Hughes; S.C. Zhang Science, 95 (2005), p. 1757

[13] F.D.M. Haldane; S. Raghu Phys. Rev. Lett., 100 (2008)

[14] Z. Wang; Y. Chong; D. Joannopoulos; M. Soljacic Nature, 461 (2009), p. 772

[15] L. Lu; J.D. Joannopoulos; M. Soljacic Nat. Photonics, 8 (2014), p. 821

[16] J. Cho; D.G. Angelakis; S. Bose Phys. Rev. Lett., 101 (2008)

[17] M.C. Rechtsman et al. Nature, 496 (2013), p. 196

[18] K. Fang; Z. Yu; S. Fang Nat. Photonics, 6 (2012), p. 236

[19] J. Koch; A.A. Houck; K. Le Hur; S.M. Girvin Phys. Rev. A, 82 (2010)

[20] R.O. Umucalilar; I. Carusotto Phys. Rev. A, 84 (2011)

[21] M. Hafezi J. Mod. Phys. B, 28 (2014), p. 1441002

[22] W. Gao et al. Phys. Rev. Lett., 114 (2015)

[23] V. Yannopapas Phys. Rev. B, 83 (2011)

[24] K.Y. Bliokh; D. Smirnova; F. Nori Science, 348 (2015), p. 1448

[25] A. Kavokin; G. Malpuech; M. Glazov; C. Leyder et al. Nat. Phys., 95 (2005), p. 628

[26] V.G. Sala et al. Phys. Rev. X, 5 (2015)

[27] I.A. Shelykh; G. Pavlovic; D.D. Solnyshkov; G. Malpuech Phys. Rev. Lett., 102 (2009)

[28] A.V. Nalitov; D.D. Solnyshkov; G. Malpuech Phys. Rev. Lett., 114 (2015)

[29] C.E. Bardyn; T. Karzig; G. Refael; T.C.H. Liew Phys. Rev. B, 161413 (2015)

[30] E.I. Rashba; E.I. Rashba; V.I. Sheka Fiz. Tverd. Tela, 1 (1959), p. 368

[31] G. Dresselhaus Phys. Rev., 100 (1955), p. 580

[32] I.A. Shelykh; A.V. Kavokin; Y.G. Rubo; T.C.H. Liew; G. Malpuech Semicond. Sci. Technol., 25 (2010)

[33] G. Panzarini et al. Phys. Rev. B, 59 (1999), p. 5082

[34] T.C.H. Liew et al. Phys. Rev. B, 80 (2009)

[35] V.S. Liberman; B.Ya. Zel'dovich Phys. Rev. A, 46 (1992), p. 5199

[36] K.Y. Bliokh; A. Niv; V. Kleiner; E. Hasman Nat. Photonics, 2 (2008), p. 748

[37] S. Dufferwiel et al. Phys. Rev. Lett., 115 (2015)

[38] S.A. Skirlo; L. Lu; M. Soljacic Phys. Rev. Lett., 113 (2014)

[39] H. Terças; H. Flayac; D.D. Solnyshkov; G. Malpuech Phys. Rev. Lett., 112 (2014)

[40] A. Nalitov; G. Malpuech; H. Terças; D. Solnyshkov Phys. Rev. Lett., 114 (2015)

[41] D. Solnyshkov et al. | arXiv

[42] T. Jacqmin et al. Phys. Rev. Lett., 112 (2014)

[43] T. Karzig; C.-E. Bardyn; N.H. Lindner; G. Refael Phys. Rev. X, 5 (2015)

[44] K. Yi; T. Karzig | arXiv

[45] M. Hafezi et al. Nat. Phys., 7 (2011), p. 907

[46] A.B. Khanikaev et al. Nat. Mater., 12 (2013), p. 233

[47] A. Kavokin; G. Malpuech; F.-P. Laussy; I. Carusotto; C. Ciuti Phys. Rev. Lett., 306 (2003), p. 187

[48] A. Amo; et al.; A. Amo et al. Science, 5 (2009), p. 805

[49] F. Li et al. Phys. Rev. Lett., 110 (2013)

[50] X. Chen et al. Science, 338 (2012), p. 1604

[51] R.O. Umucalilar; I. Carusotto Phys. Rev. Lett., 108 (2012)

[52] M. Hafezi; M.D. Lukin; J.M. Talyor New J. Phys., 15 (2013)

[53] Y. Lumer et al. Phys. Rev. Lett., 111 (2013)

[54] D. Jalas et al. Nat. Photonics, 7 (2013), p. 579

[55] Y. Yang et al. Appl. Phys. Lett., 102 (2013), p. 231113

[56] S. Mittal et al. Phys. Rev. Lett., 113 (2014)

[57] J. Koch et al. Phys. Rev. A, 82 (2010)

[58] A. Aspuru-Guzik et al. Nat. Commun., 3 (2012), p. 882

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Artificial gauge fields in materials and engineered systems

Monika Aidelsburger; Sylvain Nascimbene; Nathan Goldman

C. R. Phys (2018)


Topological wave insulators: a review

Farzad Zangeneh-Nejad; Andrea Alù; Romain Fleury

C. R. Phys (2020)


Exciton-polaritons in lattices: A non-linear photonic simulator

Alberto Amo; Jacqueline Bloch

C. R. Phys (2016)