In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of non-linear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton–polariton systems.
Au cours de la dernière décennie s'est opéré un progrès significatif dans l'étude des phénomènes non linéaires de polaritons dans des microcavités à semiconducteurs. Un des phénomènes caractéristiques des systèmes non linéaires est l'émergence de solitons. La complexité et la forte non-linéarité inhérente au système de polaritons en fait un parfait terrain de jeu pour observer des effets solitoniques dans un environnement mi-lumière mi-matière. Cet article passe en revue la théorie et les tout derniers développements physiques expérimentaux ainsi que des applications potentielles des solitons conservatifs et dissipatifs dans les systèmes de polaritons excitoniques.
Mot clés : Solitons, Polaritons, Microcavité, Guide d'ondes, Exciton
Maksym Sich 1; Dmitry V. Skryabin 2, 3; Dmitry N. Krizhanovskii 1
@article{CRPHYS_2016__17_8_908_0, author = {Maksym Sich and Dmitry V. Skryabin and Dmitry N. Krizhanovskii}, title = {Soliton physics with semiconductor exciton{\textendash}polaritons in confined systems}, journal = {Comptes Rendus. Physique}, pages = {908--919}, publisher = {Elsevier}, volume = {17}, number = {8}, year = {2016}, doi = {10.1016/j.crhy.2016.05.002}, language = {en}, }
TY - JOUR AU - Maksym Sich AU - Dmitry V. Skryabin AU - Dmitry N. Krizhanovskii TI - Soliton physics with semiconductor exciton–polaritons in confined systems JO - Comptes Rendus. Physique PY - 2016 SP - 908 EP - 919 VL - 17 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2016.05.002 LA - en ID - CRPHYS_2016__17_8_908_0 ER -
Maksym Sich; Dmitry V. Skryabin; Dmitry N. Krizhanovskii. Soliton physics with semiconductor exciton–polaritons in confined systems. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 908-919. doi : 10.1016/j.crhy.2016.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.05.002/
[1] Report on waves, Report of the British Association for the Advancement of Science, vol. 14, 1845, pp. 311-390 (London, plus plates XLVII–LVII)
[2] Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., Volume 45 (1980) no. 13, pp. 1095-1098 | DOI
[3] Optical Solitons: From Fibers to Photonic Crystals, Academic Press, 2003
[4] Colloquium: looking at a soliton through the prism of optical supercontinuum, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1287-1299 | DOI
[5] Formation of a matter-wave bright soliton, Science, Volume 296 (2002) no. 5571, pp. 1290-1293 | DOI
[6] Formation and propagation of matter-wave soliton trains, Nature, Volume 417 (2002), pp. 150-153 | DOI
[7] Bright Bose–Einstein gap solitons of atoms with repulsive interaction, Phys. Rev. Lett., Volume 92 (2004) no. 23 | DOI
[8] Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, Volume 422 (2003), pp. 147-150 | DOI
[9] Dissipative Solitons (N. Akhmediev; A. Ankiewicz-Kik, eds.), Springer, 2005
[10] Fundamentals and applications of spatial dissipative solitons in photonic devices (P.R.B.E. Arimondo; C.C. Lin, eds.), Advances in Atomic, Molecular and Optical Physics, vol. 57, Academic Press, 2009, pp. 323-421 (Chapter 6, Advances in Atomic, Molecular and Optical Physics) | DOI
[11] Cavity solitons as pixels in semiconductor microcavities, Nature, Volume 419 (2002), pp. 699-702 | DOI
[12] All-optical delay line using semiconductor cavity solitons, Appl. Phys. Lett., Volume 92 (2008) no. 1 | DOI
[13] Microcavities, Semiconductor Science and Technology, Oxford University Press, 2007 | DOI
[14] Exciton Polaritons in Microcavities: New Frontiers, Solid State Sciences, vol. 172, Springer, 2012 | DOI
[15] Exciton–polariton light-semiconductor coupling effects, Nat. Photonics, Volume 5 (2011) no. 273, pp. 275-282 | DOI
[16] Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366 | DOI
[17] Interactions in confined polariton condensates, Phys. Rev. Lett., Volume 106 (2011) | DOI
[18] Polarization multistability of cavity polaritons, Phys. Rev. Lett., Volume 98 (2007) | DOI
[19] Optical circuits based on polariton neurons in semiconductor microcavities, Phys. Rev. Lett., Volume 101 (2008) | DOI
[20] All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer, Nat. Commun., Volume 5 (2014), p. 3278 | DOI
[21] Bose–Einstein condensation of exciton polaritons, Nat. Phys., Volume 443 (2006), pp. 409-414 | DOI
[22] Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007) no. 5827, pp. 1007-1010 | DOI
[23] Superfluifidy of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009), pp. 805-810 | DOI
[24] Polariton superfluids reveal quantum hydrodynamic solitons, Science, Volume 332 (2011) no. 6034, pp. 1167-1170 | DOI
[25] Observation of bright polariton solitons in a semiconductor microcavity, Nat. Photonics, Volume 6 (2012) no. 1, pp. 50-55 | DOI
[26] Polariton condensation in solitonic gap states in a one-dimensional periodic potential, Nat. Commun., Volume 4 (2013), p. 1749 | DOI
[27] Ultra-low-power hybrid light matter solitons, Nat. Commun., Volume 6 (2015), p. 8317 | DOI
[28] Exciton–polariton gap solitons in two-dimensional lattices, Phys. Rev. Lett., Volume 111 (2013) | DOI
[29] Half-solitons in a polariton quantum fluid behave like magnetic monopoles, Nat. Phys., Volume 8 (2012) no. 10, pp. 724-728 | DOI
[30] Effects of spin-dependent interactions on polarization of bright polariton solitons, Phys. Rev. Lett., Volume 112 (2014) | DOI
[31] Polarization bistability and resultant spin rings in semiconductor microcavities, Phys. Rev. Lett., Volume 105 (2010) | DOI
[32] Bright cavity polariton solitons, Phys. Rev. Lett., Volume 102 (2009) no. 15 | DOI
[33] Hydrodynamic nucleation of vortices and solitons in a resonantly excited polariton superfluid, Phys. Rev. B, Volume 83 (2011) | DOI
[34] Oblique half-solitons and their generation in exciton–polariton condensates, Phys. Rev. B, Volume 83 (2011) | DOI
[35] Dark solitons and vortices in the intrinsic bistability regime in exciton polariton condensates, Phys. Rev. B, Volume 92 (2015) | DOI
[36] Excitons in cores of exciton–polariton vortices, Phys. Rev. B, Volume 86 (2012) | DOI
[37] Self-focusing and transverse instabilities of solitary waves, Phys. Rep., Volume 331 (2000) no. 4, pp. 117-195 | DOI
[38] Two-dimensional localization of exciton polaritons in microcavities, Phys. Rev. Lett., Volume 105 (2010) no. 7 | DOI
[39] Parametric polariton solitons in coherently pumped semiconductor microcavities, Phys. Rev. B, Volume 84 (2011) | DOI
[40] Polariton solitons due to saturation of the exciton–photon coupling, Phys. Rev. B, Volume 82 (2010) | DOI
[41] Existence threshold for the AC-driven damped nonlinear Schrödinger solitons, Physica D, Volume 132 (1999) no. 3, pp. 363-372 | DOI
[42] Energy of the soliton internal modes and broken symmetries in nonlinear optics, J. Opt. Soc. Am. B, Volume 19 (2002) no. 3, pp. 529-536 | DOI
[43] Multi-stability and polariton solitons in microcavity wires, Opt. Lett., Volume 40 (2015) no. 8, pp. 1787-1790 | DOI
[44] Dark polariton solitons in semiconductor microcavities, Phys. Rev. A, Volume 78 (2008) | DOI
[45] Spin dynamics of dark polariton solitons, Phys. Rev. B, Volume 85 (2012) | DOI
[46] Soliton instabilities and vortex street formation in a polariton quantum fluid, Phys. Rev. Lett., Volume 107 (2011) | DOI
[47] Linear wave dynamics explains observations attributed to dark solitons in a polariton quantum fluid, Phys. Rev. Lett., Volume 113 (2014) | DOI
[48] Comment on “Linear wave dynamics explains observations attributed to dark solitons in a polariton quantum fluid”, Phys. Rev. Lett., Volume 115 (2015) | DOI
[49] Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005) | DOI
[50] Transmutation of Skyrmions to half-solitons driven by the nonlinear optical spin Hall effect, Phys. Rev. Lett., Volume 110 (2013) | DOI
[51] Solitons in nonlinear lattices, Rev. Mod. Phys., Volume 83 (2011), pp. 247-305 | DOI
[52] Spatial patterns of dissipative polariton solitons in semiconductor microcavities, Phys. Rev. Lett., Volume 115 (2015) | DOI
[53] Logic gates with bright dissipative polariton solitons in Bragg cavity systems, Phys. Rev. B, Volume 92 (2015) | DOI
[54] Squeezing in semiconductor microcavities in the strong-coupling regime, Phys. Rev. A, Volume 69 (2004) | DOI
[55] Polariton-generated intensity squeezing in semiconductor micropillars, Nat. Commun., Volume 5 (2014), p. 3260 | DOI
[56] Polariton topological insulator, Phys. Rev. Lett., Volume 114 (2015) | DOI
[57] Topological polaritons, Phys. Rev. X, Volume 5 (2015) | DOI
[58] Self-localized states in photonic topological insulators, Phys. Rev. Lett., Volume 111 (2013) | DOI
Cited by Sources:
Comments - Policy