Max Hofheinz 1, 2, 3, 4; Benjamin Huard 3, 4; Fabien Portier 4
@article{CRPHYS_2016__17_7_679_0, author = {Max Hofheinz and Benjamin Huard and Fabien Portier}, title = {Foreword}, journal = {Comptes Rendus. Physique}, pages = {679--683}, publisher = {Elsevier}, volume = {17}, number = {7}, year = {2016}, doi = {10.1016/j.crhy.2016.07.013}, language = {en}, }
Max Hofheinz; Benjamin Huard; Fabien Portier. Foreword. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 679-683. doi : 10.1016/j.crhy.2016.07.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.013/
[1] One-atom maser, Phys. Rev. Lett., Volume 54 (1985) no. 6, pp. 551-554 | DOI
[2] Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys., Volume 85 (2013), p. 1083 | DOI
[3] Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 60 (1988), p. 764 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.764
[4] Energy-level quantization in the zero-voltage state of a current-biased Josephson junction, Phys. Rev. Lett., Volume 55 (1985) no. 15, pp. 1543-1546 | DOI
[5] Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, Volume 431 (2004), pp. 162-167 http://www.nature.com/nature/journal/v431/n7005/abs/nature02851.html
[6] Circuit QED: superconducting qubits coupled to microwave photons (M. Devoret; B. Huard; R. Schoelkopf; L.F. Cugliandolo, eds.), Quantum Machines: Measurement and Control of Engineered Quantum Systems, Lecture Notes of the Les Houches Summer School, vol. 96, Oxford University Press, USA, 2014, p. 113
[7] Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010) no. 7289, pp. 697-703 | DOI
[8] Entangling mechanical motion with microwave fields, Science, Volume 342 (2013), p. 710 | DOI
[9] Propagating phonons coupled to an artificial atom, Science, Volume 346 (2014) no. 6206, pp. 207-211 | DOI
[10] Cryogenic, HEMT, low-noise receivers for 1.3 to 43 GHz range, 1988, IEEE MTT-S International Microwave Symposium Digest, IEEE, 1988, pp. 945-948 | DOI
[11] Quantum state tomography of an itinerant squeezed microwave field, Phys. Rev. Lett., Volume 106 (2011) no. 22 | DOI
[12] Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Phys. Rev. A, Volume 86 (2012) | DOI
[13] Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Phys. Rev. A, Volume 39 (1989), p. 2519 | DOI
[14] Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett., Volume 107 (2011) no. 11 | DOI
[15] Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012) no. 18 | DOI
[16] Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett., Volume 114 (2014) | DOI
[17] Robust concurrent remote entanglement between two superconducting qubits, 2016 | arXiv
[18] Single microwave-photon detector using an artificial Lambda-type three-level system, 2016 | arXiv
[19] Resonance fluorescence of a single artificial atom, Science, Volume 327 (2010) no. 5967, pp. 840-843 | DOI
[20] Demonstration of a single-photon router in the microwave regime, Phys. Rev. Lett., Volume 107 (2011) no. 7 | DOI
[21] Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2012) no. 7373, pp. 376-379 | DOI
[22] Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, Volume 490 (2012) no. 7418, pp. 77-80 | DOI
[23] Feedback control of a solid-state qubit using high-fidelity projective measurement, Phys. Rev. Lett., Volume 109 (2012) no. 24 | DOI
[24] Persistent control of a superconducting qubit by stroboscopic measurement feedback, Phys. Rev. X, Volume 3 (2013) no. 2 | DOI
[25] Using spontaneous emission of a qubit as a resource for feedback control, 2016 | arXiv
[26] Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, Volume 502 (2013) no. 7471, pp. 350-354 | DOI
[27] Real-time quantum feedback prepares and stabilizes photon number states, Nature, Volume 477 (2011), pp. 73-77 | DOI
[28] Quantum feedback experiments stabilizing Fock states of light in a cavity, Phys. Rev. A, Volume 87 (2013) no. 4 | DOI
[29] Reversing quantum trajectories with analog feedback, Phys. Rev. Lett., Volume 112 (2014) no. 8 | DOI
[30] Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013) no. 6124, pp. 1169-1174 | DOI
[31] Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, Volume 86 (2012) no. 3 | DOI
[32] Demonstrating quantum error correction that extends the lifetime of quantum information, 2016 | arXiv
[33] On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012) no. 4, pp. 292-299 | DOI
[34] Demonstration of quantum advantage in machine learning, 2015 | arXiv
Cited by Sources:
Comments - Policy