Comptes Rendus
Foreword
Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 679-683.
Publié le :
DOI : 10.1016/j.crhy.2016.07.013
Max Hofheinz 1, 2, 3, 4 ; Benjamin Huard 3, 4 ; Fabien Portier 4

1 CEA, INAC–PhElIQS, 38000 Grenoble, France
2 Université Grenoble Alpes, INAC–PhElIQS, 38000 Grenoble, France
3 Laboratoire Pierre-Aigrain, École normale supérieure–PSL Research University, CNRS, Université Pierre-et-Marie-Curie – Sorbonne Universités, Université Paris-Diderot – Sorbonne Paris Cité, 24, rue Lhomond, 75231 Paris cedex 05, France
4 Service de physique de l'état condensé (CNRS URA 2464), IRAMIS, CEA Saclay, 91191 Gif-sur-Yvette, France
@article{CRPHYS_2016__17_7_679_0,
     author = {Max Hofheinz and Benjamin Huard and Fabien Portier},
     title = {Foreword},
     journal = {Comptes Rendus. Physique},
     pages = {679--683},
     publisher = {Elsevier},
     volume = {17},
     number = {7},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.013},
     language = {en},
}
TY  - JOUR
AU  - Max Hofheinz
AU  - Benjamin Huard
AU  - Fabien Portier
TI  - Foreword
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 679
EP  - 683
VL  - 17
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.013
LA  - en
ID  - CRPHYS_2016__17_7_679_0
ER  - 
%0 Journal Article
%A Max Hofheinz
%A Benjamin Huard
%A Fabien Portier
%T Foreword
%J Comptes Rendus. Physique
%D 2016
%P 679-683
%V 17
%N 7
%I Elsevier
%R 10.1016/j.crhy.2016.07.013
%G en
%F CRPHYS_2016__17_7_679_0
Max Hofheinz; Benjamin Huard; Fabien Portier. Foreword. Comptes Rendus. Physique, Volume 17 (2016) no. 7, pp. 679-683. doi : 10.1016/j.crhy.2016.07.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.013/

[1] D. Meschede; H. Walther; G. Müller One-atom maser, Phys. Rev. Lett., Volume 54 (1985) no. 6, pp. 551-554 | DOI

[2] S. Haroche Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys., Volume 85 (2013), p. 1083 | DOI

[3] B. Yurke; P.G. Kaminsky; R.E. Miller; E.A. Whittaker; A.D. Smith; A.H. Silver; R.W. Simon Observation of 4.2-K equilibrium-noise squeezing via a Josephson-parametric amplifier, Phys. Rev. Lett., Volume 60 (1988), p. 764 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.764

[4] J.M. Martinis; M.H. Devoret; J. Clarke Energy-level quantization in the zero-voltage state of a current-biased Josephson junction, Phys. Rev. Lett., Volume 55 (1985) no. 15, pp. 1543-1546 | DOI

[5] A. Wallraff; D.I. Schuster; A. Blais; L. Frunzio; R.S. Huang; J. Majer; S. Kumar; S.M. Girvin; R.J. Schoelkopf Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, Volume 431 (2004), pp. 162-167 http://www.nature.com/nature/journal/v431/n7005/abs/nature02851.html

[6] S. Girvin Circuit QED: superconducting qubits coupled to microwave photons (M. Devoret; B. Huard; R. Schoelkopf; L.F. Cugliandolo, eds.), Quantum Machines: Measurement and Control of Engineered Quantum Systems, Lecture Notes of the Les Houches Summer School, vol. 96, Oxford University Press, USA, 2014, p. 113

[7] A.D. O'Connell; M. Hofheinz; M. Ansmann; R.C. Bialczak; M. Lenander; E. Lucero; M. Neeley; D. Sank; H. Wang; M. Weides; J. Wenner; J.M. Martinis; A.N. Cleland Quantum ground state and single-phonon control of a mechanical resonator, Nature, Volume 464 (2010) no. 7289, pp. 697-703 | DOI

[8] T.a. Palomaki; J.D. Teufel; R.W. Simmonds; K.W. Lehnert Entangling mechanical motion with microwave fields, Science, Volume 342 (2013), p. 710 | DOI

[9] M.V. Gustafsson; T. Aref; A.F. Kockum; M.K. Ekström; G. Johansson; P. Delsing Propagating phonons coupled to an artificial atom, Science, Volume 346 (2014) no. 6206, pp. 207-211 | DOI

[10] S. Weinreb; M. Pospieszalski; R. Norrod Cryogenic, HEMT, low-noise receivers for 1.3 to 43 GHz range, 1988, IEEE MTT-S International Microwave Symposium Digest, IEEE, 1988, pp. 945-948 | DOI

[11] F. Mallet; M.A. Castellanos-Beltran; H.S. Ku; S. Glancy; E. Knill; K.D. Irwin; G.C. Hilton; L.R. Vale; K.W. Lehnert Quantum state tomography of an itinerant squeezed microwave field, Phys. Rev. Lett., Volume 106 (2011) no. 22 | DOI

[12] C. Eichler; D. Bozyigit; A. Wallraff Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors, Phys. Rev. A, Volume 86 (2012) | DOI

[13] B. Yurke; L.R. Corruccini; P.G. Kaminsky; L.W. Rupp; A.D. Smith; A.H. Silver; R.W. Simon; E.A. Whittaker Observation of parametric amplification and deamplification in a Josephson parametric amplifier, Phys. Rev. A, Volume 39 (1989), p. 2519 | DOI

[14] C. Eichler; D. Bozyigit; C. Lang; M. Baur; L. Steffen; J.M. Fink; S. Filipp; A. Wallraff Observation of two-mode squeezing in the microwave frequency domain, Phys. Rev. Lett., Volume 107 (2011) no. 11 | DOI

[15] E. Flurin; N. Roch; F. Mallet; M.H. Devoret; B. Huard Generating entangled microwave radiation over two transmission lines, Phys. Rev. Lett., Volume 109 (2012) no. 18 | DOI

[16] E. Flurin; N. Roch; J. Pillet; F. Mallet; B. Huard Superconducting quantum node for entanglement and storage of microwave radiation, Phys. Rev. Lett., Volume 114 (2014) | DOI

[17] A. Narla; S. Shankar; M. Hatridge; Z. Leghtas; K.M. Sliwa; E. Zalys-Geller; S.O. Mundhada; W. Pfaff; L. Frunzio; R.J. Schoelkopf; M.H. Devoret Robust concurrent remote entanglement between two superconducting qubits, 2016 | arXiv

[18] K. Inomata; Z. Lin; K. Koshino; W.D. Oliver; J.-S. Tsai; T. Yamamoto; Y. Nakamura Single microwave-photon detector using an artificial Lambda-type three-level system, 2016 | arXiv

[19] O. Astafiev; A.M. Zagoskin; A.A. Abdumalikov; Y.A. Pashkin; T. Yamamoto; K. Inomata; Y. Nakamura; J.S. Tsai Resonance fluorescence of a single artificial atom, Science, Volume 327 (2010) no. 5967, pp. 840-843 | DOI

[20] I.-C. Hoi; C.M. Wilson; G. Johansson; T. Palomaki; B. Peropadre; P. Delsing Demonstration of a single-photon router in the microwave regime, Phys. Rev. Lett., Volume 107 (2011) no. 7 | DOI

[21] C.M. Wilson; G. Johansson; A. Pourkabirian; M. Simoen; J. Johansson; T. Duty; F. Nori; P. Delsing Observation of the dynamical Casimir effect in a superconducting circuit, Nature, Volume 479 (2012) no. 7373, pp. 376-379 | DOI

[22] R. Vijay; C. Macklin; D.H. Slichter; S.J. Weber; K.W. Murch; R. Naik; A.N. Korotkov; I. Siddiqi Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, Volume 490 (2012) no. 7418, pp. 77-80 | DOI

[23] D. Ristè; C. Bultink; K. Lehnert; L. Dicarlo Feedback control of a solid-state qubit using high-fidelity projective measurement, Phys. Rev. Lett., Volume 109 (2012) no. 24 | DOI

[24] P. Campagne-Ibarcq; E. Flurin; N. Roch; D. Darson; P. Morfin; M. Mirrahimi; M.H. Devoret; F. Mallet; B. Huard Persistent control of a superconducting qubit by stroboscopic measurement feedback, Phys. Rev. X, Volume 3 (2013) no. 2 | DOI

[25] P. Campagne-Ibarcq; S. Jezouin; N. Cottet; P. Six; L. Bretheau; F. Mallet; A. Sarlette; P. Rouchon; B. Huard Using spontaneous emission of a qubit as a resource for feedback control, 2016 | arXiv

[26] D. Ristè; M. Dukalski; C.a. Watson; G. de Lange; M.J. Tiggelman; Y.M. Blanter; K.W. Lehnert; R.N. Schouten; L. DiCarlo Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, Volume 502 (2013) no. 7471, pp. 350-354 | DOI

[27] C. Sayrin; I. Dotsenko; X. Zhou; B. Peaudecerf; T. Rybarczyk; S. Gleyzes; P. Rouchon; M. Mirrahimi; H. Amini; M. Brune; J. Raimond; S. Haroche Real-time quantum feedback prepares and stabilizes photon number states, Nature, Volume 477 (2011), pp. 73-77 | DOI

[28] B. Peaudecerf; C. Sayrin; X. Zhou; T. Rybarczyk; S. Gleyzes; I. Dotsenko; J. Raimond; M. Brune; S. Haroche Quantum feedback experiments stabilizing Fock states of light in a cavity, Phys. Rev. A, Volume 87 (2013) no. 4 | DOI

[29] G. de Lange; D. Ristè; M. Tiggelman; C. Eichler; L. Tornberg; G. Johansson; a. Wallraff; R. Schouten; L. DiCarlo Reversing quantum trajectories with analog feedback, Phys. Rev. Lett., Volume 112 (2014) no. 8 | DOI

[30] Schoelkopf Devoret Superconducting circuits for quantum information: an outlook, Science, Volume 339 (2013) no. 6124, pp. 1169-1174 | DOI

[31] A.G. Fowler; M. Mariantoni; J.M. Martinis; A.N. Cleland Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, Volume 86 (2012) no. 3 | DOI

[32] N. Ofek; A. Petrenko; R. Heeres; P. Reinhold; Z. Leghtas; B. Vlastakis; Y. Liu; L. Frunzio; S.M. Girvin; L. Jiang; M. Mirrahimi; M.H. Devoret; R.J. Schoelkopf Demonstrating quantum error correction that extends the lifetime of quantum information, 2016 | arXiv

[33] A.A. Houck; H.E. Tureci; J. Koch On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012) no. 4, pp. 292-299 | DOI

[34] D. Ristè; M.P. da Silva; C.A. Ryan; A.W. Cross; J.A. Smolin; J.M. Gambetta; J.M. Chow; B.R. Johnson Demonstration of quantum advantage in machine learning, 2015 | arXiv

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Cat-qubits for quantum computation

Mazyar Mirrahimi

C. R. Phys (2016)


Quantum trajectories of superconducting qubits

Steven J. Weber; Kater W. Murch; Mollie E. Kimchi-Schwartz; ...

C. R. Phys (2016)


Towards a spin-ensemble quantum memory for superconducting qubits

Cécile Grezes; Yuimaru Kubo; Brian Julsgaard; ...

C. R. Phys (2016)