[Le nouveau paradigme de l'énergie solaire photovoltaïque : de l'alimentation électrique des satellites à celle de l'humanité]
L'effet photovoltaïque a été découvert par Edmond Becquerel en 1839. Il a fallu 115 ans pour fabriquer la première cellule efficace à hauteur de quelques watts, puis environ 50 ans pour atteindre 3 GW de capacité installée dans le monde, et seulement 13 ans pour atteindre 300 GW en 2016. 500 GW sont attendus en 2020, et plus d'un TW au cours de la prochaine décennie. Comment une telle accélération a-t-elle été possible ? Quels sont les mécanismes de la conversion photovoltaïque ? Son rendement maximum ? Quels scénarios sont établis pour le futur dans le contexte de la transition énergétique ? L'article examinera tous ces aspects, en partant du contexte historique jusqu'à l'état de l'art actuel, en incluant les cellules solaires émergentes et les nouveaux concepts.
The photovoltaic effect has been discovered by Edmond Becquerel in 1839. Then it took 115 years to make the first efficient solar cell, with a few watts produced, about 50 years to deploy 3 GW of production capacity worldwide, and only 13 years to reach 300 GW in 2016. 500 GW are expected in 2020, and the TW within the next decade. How did this occur? How does photovoltaics work? What is the physical limit of conversion efficiency? What road map for photovoltaics in the energy transition? This paper aims at providing a review and discussion of these aspects, from the historical background to the state of the art and the emerging devices and concepts.
Mot clés : Énergie photovoltaïque, Changement climatique, Cellules solaires, Silicium, Perovskite, Nouveaux concepts
Daniel Lincot 1
@article{CRPHYS_2017__18_7-8_381_0, author = {Daniel Lincot}, title = {The new paradigm of photovoltaics: {From} powering satellites to powering humanity}, journal = {Comptes Rendus. Physique}, pages = {381--390}, publisher = {Elsevier}, volume = {18}, number = {7-8}, year = {2017}, doi = {10.1016/j.crhy.2017.09.003}, language = {en}, }
Daniel Lincot. The new paradigm of photovoltaics: From powering satellites to powering humanity. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 381-390. doi : 10.1016/j.crhy.2017.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.09.003/
[1] Mémoire sur les effets électriques produits sous l'influence des rayons solaires, C. R. Acad. Sci. Paris, Volume 9 (1839), p. 561
[3] The action of light on selenium, J. Soc. Telegraph Eng., Volume 2 (1873), p. 32
[4] The action of light on selenium, Philos. Trans. R. Soc. Lond., Volume 168 (1877), p. 341
[5] On a new form of selenium photocell, Am. J. Sci., Volume 26 (1883), p. 465
[6] On the electromotive action of illuminated selenium discovered by Mr. Fritts of New York, Van Nostrand Eng. Mag., Volume 32 (1885), p. 392
[7] C. Maxwell, letter, 31 October 1876, Archives of the Royal Society, London, RR, p. 429.
[8] La chaleur solaire et ses applications industrielles, 1879 A. Blanchard (Ed.), Paris, 1980
[9] From Space to Earth, the Story of Solar Electricity, AATEC Publications, 1999, p. 18
[10] On a heuristic viewpoint concerning the production and transformation of light, Ann. Phys. (Berlin), Volume 17 (1905), p. 132
[11] The origin of the PN junction, IEEE Spectr. ( June 1997 ), p. 46 (and references therein)
[12] R. Ohl, Ligh sensitive electric device, US patent No. 2,402,662, priority date 1941.
[13] Photoelectric properties of ionically bombarded silicon, Bell Syst. Tech. J., Volume 31 (1952), p. 814
[14] Photovoltaic materials, Series on Properties of Semiconducting Materials, vol. 1, Imperial College Press, 1998, p. 36 (and references therein)
[15] A new silicon P–N junction photocell for converting solar radiation into electrical power, J. Appl. Phys., Volume 25 (1954), p. 676
[16] M. Rodot, La conversion de l'énergie solaire en énergie électrique par les semiconducteurs: thermopiles et photopiles, in: Proceedings of the International Congress “Thermal Applications of Solar Energy in Research and Industry”, Montlouis, France, 23–28 juin 1958, CNRS editions, p. 697 (in French).
[17] Prog. Photovolt., 3 (1995), p. 51
[18] Press release, Sun Power web site, 26 June 2016.
[19] https://www.nrel.gov/pv/assets/images/efficiency-chart.png (Record PV cell efficiencies chart, National Renewable Energy Laboratory)
[20] et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, Volume 2 (2017)
[21] The first 40 years: a brief history of modern PV age, Prog. Photovolt., Volume 1 (1993), p. 67
[22] Photovoltaic effect in GaAs p–n junctions and solar energy conversion, Phys. Rev., Volume 101 ( February 1956 )
[23] The opto-electronic physics that broke the efficiency limit in solar cells, Austin, TX, USA (2012), p. 001556
[24] Photovoltaic effect in cadmium sulfide, Phys. Rev., Volume 96 (1954), p. 533
[25] New results on CdS solar cells, 9th EEE PV Specialist Conference, 1972, p. 91
[26] CdTe Solar Cells and PV heterojunctions in II–VI Compounds, Solid-State Electron., Volume 2 (1963), p. 217
[27] Fundamental losses in solar cells, Prog. Photovolt. Res. Appl., Volume 19 (2011), pp. 286-293
[28] Silicon solar energy converters, J. Appl. Phys., Volume 26 (1954), p. 534
[29] Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion, J. Appl. Phys., Volume 27 (1956), p. 777
[30] Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys., Volume 32 (1961), p. 510
[31] Third Generation Photovoltaics: Advanced Solar Energy Conversion, Springer, 2003
[32] et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nat. Energy, Volume 2 (2017)
[33] et al. Toward microscale Cu(In, Ga)Se2 solar cells for efficient conversion and optimized material usage: theoretical evaluation, J. Appl. Phys., Volume 108 (2010)
[34] et al. Innovation highway: breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint, Thin Solid Films, Volume 633 (2017), p. 2
[35] et al. Statistical process control for Cu(In, Ga) (S,Se)2 electrodeposition-based manufacturing process of modules up to 14,0% efficiency, New Orleans, LA, USA (2015), pp. 1-5 | DOI
[36] Nature, 353 (1991), pp. 737-740
[37] et al. Organometal Halide Perovskites as visible light sensitizers for photovoltaic cells, J. Am. Chem. Soc., Volume 131 (2009), p. 6050
[38] Perovkite solar cells: an emerging PV technology, Mater. Today, Volume 18 (2015), p. 65
[39] et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., Volume 9 (2016), pp. 1989-1997
[40] De la lumière à l'énergie : de la photosynthèse au photovoltaïque, Actual. Chim., Volume 2016 (2016) no. 408–409, pp. 54-60
[41] Two carrier temperatures non-equilibrium generalized Planck law for semiconductors, Physica B, Condens. Matter, Volume 498 (2016), pp. 7-14
[42] et al. Absorption enhancement through Fabry–Pérot resonant modes in a 430 ∼ nm thick InGaAs/GaAsP multiple quantum wells solar cell, Appl. Phys. Lett., Volume 106 (2015)
[43] Solare Weltwirtschaft, A. Kunstmann GmbH, Munchen, 1999 (Le solaire et l'économie mondiale, 2001, Solin, Actes sud The Solar Economy: Renewable Energy for a Sustainable Global Future, 2002, Earthscan)
[44] The Emergence of Electricity from the Sun: Power for the World, Pan Stanford Publishing, 2011
[46] A vision for Crystalline Silicon photovoltaics, Prog. Photovolt., Volume 14 (2006), p. 443
[48] http://www.irena.org/DocumentDownloads/Publications/IRENA_REthinking_Energy_2017.pdf
[49] http://energy.mit.edu/wp-content/uploads/2015/05/MITEI-The-Future-of-Solar-Energy.pdf
[50] http://itrpv.net/Reports/Downloads/:ITRPV_Seventh_Edition_including_maturity_report_20161026.pdf
[51] http://www.ipvf.fr/wp-content/uploads/2016/03/Mid-term-technology-strategy-in-PV-EN.pdf
[52] et al. On the role of solar photovoltaics in global energy transition scenarios, Prog. Photovolt.: Res. Appl. (2017) (DOI: 10.1002)
[53] et al. The underestimated potential of solar energy to mitigate climate change, Nat. Energy, Volume 2 (2017)
Cité par Sources :
Commentaires - Politique