The fine structure constant α and the ratio between the Planck constant and the unified atomic mass are keystone constants for the determination of other fundamental physical constants, especially the ones involved in the framework of the future International System of units. This paper presents how these two constants, which can be deduced from one another, are measured. We will present in detail the measurement of performed by atomic interferometry at the Laboratoire Kastler Brossel in Paris. This type of measurement also allows a test of the standard model to be carried out with unparalleled accuracy.
La constante de structure fine α et le rapport entre la constante de Planck et la masse atomique unifiée sont des constantes clés pour la détermination d'autres constantes physiques fondamentales, notamment celles impliquées dans le futur Système international d'unités. Cet article présente comment ces deux constantes, qui peuvent être déduites l'une de l'autre, sont mesurées. Nous présenterons en détail la mesure de effectuée par interférométrie atomique au laboratoire Kastler Brossel à Paris. Ce type de mesure permet également d'effectuer un test du modèle standard avec une précision inégalée.
Mots-clés : Constante de structure fine, Moment magnétique anormal de l'électron, Interférométrie atomique, Système d'unités international
Pierre Cladé 1; François Nez 1; François Biraben 1; Saïda Guellati-Khelifa 1, 2
@article{CRPHYS_2019__20_1-2_77_0, author = {Pierre Clad\'e and Fran\c{c}ois Nez and Fran\c{c}ois Biraben and Sa{\"\i}da Guellati-Khelifa}, title = {State of the art in the determination of the fine-structure constant and the ratio \protect\emph{h}/\protect\emph{m}\protect\textsubscript{u}}, journal = {Comptes Rendus. Physique}, pages = {77--91}, publisher = {Elsevier}, volume = {20}, number = {1-2}, year = {2019}, doi = {10.1016/j.crhy.2018.12.003}, language = {en}, }
TY - JOUR AU - Pierre Cladé AU - François Nez AU - François Biraben AU - Saïda Guellati-Khelifa TI - State of the art in the determination of the fine-structure constant and the ratio h/mu JO - Comptes Rendus. Physique PY - 2019 SP - 77 EP - 91 VL - 20 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2018.12.003 LA - en ID - CRPHYS_2019__20_1-2_77_0 ER -
%0 Journal Article %A Pierre Cladé %A François Nez %A François Biraben %A Saïda Guellati-Khelifa %T State of the art in the determination of the fine-structure constant and the ratio h/mu %J Comptes Rendus. Physique %D 2019 %P 77-91 %V 20 %N 1-2 %I Elsevier %R 10.1016/j.crhy.2018.12.003 %G en %F CRPHYS_2019__20_1-2_77_0
Pierre Cladé; François Nez; François Biraben; Saïda Guellati-Khelifa. State of the art in the determination of the fine-structure constant and the ratio h/mu. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 77-91. doi : 10.1016/j.crhy.2018.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.12.003/
[1] New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) no. 8 | DOI
[2] New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., Volume 100 (2008) no. 12 | DOI
[3] Tenth-order qed contribution to the electron and an improved value of the fine structure constant, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.111807 | DOI
[4] Measurement of the fine-structure constant as a test of the standard model, Science, Volume 360 (2018) no. 6385, pp. 191-195 http://science.sciencemag.org/content/360/6385/191.full.pdf | DOI
[5] Living Rev. Relativ., 14 (2011), p. 2
[6] Research article: adapting the international system of units to the twenty-first century, Philos. Trans. R. Soc. Ser. A, Volume 369 (2011), p. 3907
[7] The quantum theory of spectral lines, Ann. Phys., Volume 51 (1916) no. 17, pp. 1-94
[8] Codata recommended values of the fundamental physical constants: 1998, Rev. Mod. Phys., Volume 72 (2000), p. 351
[9] High-precision calculation of the 4-loop contribution to the electron g-2 in qed, Phys. Lett. B, Volume 772 (2017), pp. 232-238 http://www.sciencedirect.com/science/article/pii/S0370269317305324 | DOI
[10] Revised and improved value of the qed tenth-order electron anomalous magnetic moment, Phys. Rev. D, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevD.97.036001 | DOI
[11] New high-precision comparison of electron and positron g factors, Phys. Rev. Lett., Volume 59 (1987), p. 26
[12] Determination of the fine structure constant based on bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett., Volume 96 (2006) no. 3 http://link.aps.org/abstract/PRL/v96/e033001 | DOI
[13] Combination of bloch oscillations with a Ramsey–Bordé interferometer: new determination of the fine structure constant, Phys. Rev. Lett., Volume 101 (2008) no. 23 http://link.aps.org/abstract/PRL/v101/e230801 | DOI
[14] Codata recommended values of the fundamental physical constants, Rev. Mod. Phys., Volume 80 (2006), pp. 633-730 | arXiv | DOI
[15] Codata recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Volume 84 (2012), pp. 1527-1605 | DOI
[16] Codata recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) https://link.aps.org/doi/10.1103/RevModPhys.88.035009 | DOI
[17] A preliminary measurement of the fine structure constant based on atom interferometry, Phys. Scr. T, Volume 102 (2002), p. 82 | DOI
[18] Revised value of the eighth-order contribution to the electron , Phys. Rev. Lett., Volume 99 (2007) no. 11 | DOI
[19] A realization of the si watt by the npl moving-coil balance, Metrologia, Volume 27 (1990), p. 173
[20] IEEE Trans. Instrum. Meas., 56 (2007), p. 592
[21] Accurate measurement of the planck constant, Phys. Rev. Lett., Volume 81 (1998), pp. 2404-2407 http://link.aps.org/doi/10.1103/PhysRevLett.81.2404 | DOI
[22] Determination of the avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett., Volume 106 (2011) no. 3 | DOI
[23] Consultative Committee for Mass and Related Quantities (CCM), Mise en Pratique of the Definition of the Kilogram, 2014 http://www.bipm.org/cc/CCM/Allowed/15/02A_MeP_kg_141022_v-9.0_clean.pdf (Tech. rep., CCM)
[24] Precise determination of the ratio : a way to link microscopic mass to the new kilogram, Metrologia, Volume 53 (2016) no. 5, p. A75 http://stacks.iop.org/0026-1394/53/i=5/a=A75
[25] Realization of the kilogram by the XRCD method, Metrologia, Volume 53 (2016) no. 5, p. A19 http://stacks.iop.org/0026-1394/53/i=5/a=A19
[26] Atomic interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989) no. 1–2, pp. 10-12 http://www.sciencedirect.com/science/article/pii/0375960189905379 | DOI
[27] Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., Volume 76 (1996), p. 4508 | DOI
[28] Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams, Phys. Rev. A, Volume 55 (1997), p. 2989 | DOI
[29] Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., Volume 76 (1996), pp. 4512-4515 http://link.aps.org/doi/10.1103/PhysRevLett.76.4512 | DOI
[30] Bloch oscillations of ultracold atoms: a tool for a metrological determination of , Phys. Rev. Lett., Volume 92 (2004)
[31] Improving efficiency of bloch oscillations in the tight-binding limit, Phys. Rev. A, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevA.95.063604 | DOI
[32] The feynman path integral approach to atomic interferometry. A tutorial, J. Phys. II France, Volume 4 (1994) no. 11, pp. 1999-2027 | DOI
[33] Theoretical tools for atom optics and interferometry, C. R. Physique, Volume 2 (2001) no. 3, pp. 509-530 http://www.sciencedirect.com/science/article/pii/S1296214701011866 | DOI
[34] Representation-free description of light-pulse atom interferometry including non-inertial effects, Phys. Rep., Volume 605 (2015), pp. 1-50 http://www.sciencedirect.com/science/article/pii/S0370157315003968 | DOI
[35] Interference-filter-stabilized external-cavity diode lasers, Opt. Commun., Volume 266 (2006) no. 2, pp. 609-613 http://www.sciencedirect.com/science/article/pii/S0030401806004561 | DOI
[36] Bloch Oscillations of Ultra-Cold Atoms: Application to High-Precision Measurements, Université Pierre-et-Marie-Curie, Paris-6, 2015 https://tel.archives-ouvertes.fr/tel-01232238 (PhD Thesis)
[37] Bloch oscillations in an optical lattice generated by a laser source based on a fiber amplifier: decoherence effects due to amplified spontaneous emission, J. Opt. Soc. Am. B, Volume 32 (2015) no. 6, pp. 1038-1042 http://josab.osa.org/abstract.cfm?URI=josab-32-6-1038 | DOI
[38] Frequency measurement of the two-photon transition in rubidium, Opt. Commun., Volume 133 (1997), pp. 471-478 | DOI
[39] Operating an atom interferometer beyond its linear range, Metrologia, Volume 46 (2009) no. 1, p. 87 http://stacks.iop.org/0026-1394/46/i=1/a=011
[40] Atom interferometer measurement of the newtonian constant of gravity, Science, Volume 315 (2007), p. 74 | DOI
[41] A bose-einstein condensate in an optical lattice, J. Phys. B, At. Mol. Phys., Volume 35 (2002), pp. 3095-3110 | DOI
[42] Large momentum beam splitter using bloch oscillations, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240402 | DOI
[43] Atom interferometers with scalable enclosed area, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240403 | DOI
[44] High-resolution atom interferometers with suppressed diffraction phases, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.083002 | DOI
[45] large area atom interferometers, Phys. Rev. Lett., Volume 107 (2011) http://link.aps.org/doi/10.1103/PhysRevLett.107.130403 | DOI
[46] Precise measurement of using bloch oscillations in a vertical optical lattice: determination of the fine-structure constant, Phys. Rev. A, Volume 74 (2006) no. 5 http://link.aps.org/abstract/PRA/v74/e052109 | DOI
[47] Bloch oscillations of ultracold atoms: a tool for metrological measurements, September 07–09, 2005, Dijon, France (J. Phys. IV), Volume vol. 135 (2006), pp. 3-7 | DOI
[48] Resolution of the Abraham–Minkowski dilemma, Phys. Rev. Lett., Volume 104 (2010) http://link.aps.org/doi/10.1103/PhysRevLett.104.070401 | DOI
[49] Phase shift due to atom–atom interactions in a light-pulse atom interferometer, Phys. Rev. A, Volume 92 (2015) http://link.aps.org/doi/10.1103/PhysRevA.92.013616 | DOI
[50] Observation of extra photon recoil in a distorted optical field, Phys. Rev. Lett., Volume 121 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.121.073603 | DOI
[51] The ame2012 atomic mass evaluation, Chin. Phys. C, Volume 36 (2012) no. 12, p. 1287 http://stacks.iop.org/1674-1137/36/i=12/a=002
[52] High-precision measurement of the atomic mass of the electron, Nature, Volume 506 (2012), p. 467
[53] Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett., Volume 92 (2004) https://link.aps.org/doi/10.1103/PhysRevLett.92.161802 | DOI
[54] The size of the proton, Nature, Volume 466 (2010), p. 213 | DOI
Cited by Sources:
Comments - Policy