[L'état de l'art de la détermination de la constante de structure fine et du rapport h/mu]
La constante de structure fine α et le rapport
The fine structure constant α and the ratio
Mots-clés : Constante de structure fine, Moment magnétique anormal de l'électron, Interférométrie atomique, Système d'unités international
Pierre Cladé 1 ; François Nez 1 ; François Biraben 1 ; Saïda Guellati-Khelifa 1, 2
@article{CRPHYS_2019__20_1-2_77_0, author = {Pierre Clad\'e and Fran\c{c}ois Nez and Fran\c{c}ois Biraben and Sa{\"\i}da Guellati-Khelifa}, title = {State of the art in the determination of the fine-structure constant and the ratio \protect\emph{h}/\protect\emph{m}\protect\textsubscript{u}}, journal = {Comptes Rendus. Physique}, pages = {77--91}, publisher = {Elsevier}, volume = {20}, number = {1-2}, year = {2019}, doi = {10.1016/j.crhy.2018.12.003}, language = {en}, }
TY - JOUR AU - Pierre Cladé AU - François Nez AU - François Biraben AU - Saïda Guellati-Khelifa TI - State of the art in the determination of the fine-structure constant and the ratio h/mu JO - Comptes Rendus. Physique PY - 2019 SP - 77 EP - 91 VL - 20 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2018.12.003 LA - en ID - CRPHYS_2019__20_1-2_77_0 ER -
%0 Journal Article %A Pierre Cladé %A François Nez %A François Biraben %A Saïda Guellati-Khelifa %T State of the art in the determination of the fine-structure constant and the ratio h/mu %J Comptes Rendus. Physique %D 2019 %P 77-91 %V 20 %N 1-2 %I Elsevier %R 10.1016/j.crhy.2018.12.003 %G en %F CRPHYS_2019__20_1-2_77_0
Pierre Cladé; François Nez; François Biraben; Saïda Guellati-Khelifa. State of the art in the determination of the fine-structure constant and the ratio h/mu. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 77-91. doi : 10.1016/j.crhy.2018.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.12.003/
[1] New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) no. 8 | DOI
[2] New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., Volume 100 (2008) no. 12 | DOI
[3] Tenth-order qed contribution to the electron
[4] Measurement of the fine-structure constant as a test of the standard model, Science, Volume 360 (2018) no. 6385, pp. 191-195 http://science.sciencemag.org/content/360/6385/191.full.pdf | DOI
[5] Living Rev. Relativ., 14 (2011), p. 2
[6] Research article: adapting the international system of units to the twenty-first century, Philos. Trans. R. Soc. Ser. A, Volume 369 (2011), p. 3907
[7] The quantum theory of spectral lines, Ann. Phys., Volume 51 (1916) no. 17, pp. 1-94
[8] Codata recommended values of the fundamental physical constants: 1998, Rev. Mod. Phys., Volume 72 (2000), p. 351
[9] High-precision calculation of the 4-loop contribution to the electron g-2 in qed, Phys. Lett. B, Volume 772 (2017), pp. 232-238 http://www.sciencedirect.com/science/article/pii/S0370269317305324 | DOI
[10] Revised and improved value of the qed tenth-order electron anomalous magnetic moment, Phys. Rev. D, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevD.97.036001 | DOI
[11] New high-precision comparison of electron and positron g factors, Phys. Rev. Lett., Volume 59 (1987), p. 26
[12] Determination of the fine structure constant based on bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett., Volume 96 (2006) no. 3 http://link.aps.org/abstract/PRL/v96/e033001 | DOI
[13] Combination of bloch oscillations with a Ramsey–Bordé interferometer: new determination of the fine structure constant, Phys. Rev. Lett., Volume 101 (2008) no. 23 http://link.aps.org/abstract/PRL/v101/e230801 | DOI
[14] Codata recommended values of the fundamental physical constants, Rev. Mod. Phys., Volume 80 (2006), pp. 633-730 | arXiv | DOI
[15] Codata recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Volume 84 (2012), pp. 1527-1605 | DOI
[16] Codata recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) https://link.aps.org/doi/10.1103/RevModPhys.88.035009 | DOI
[17] A preliminary measurement of the fine structure constant based on atom interferometry, Phys. Scr. T, Volume 102 (2002), p. 82 | DOI
[18] Revised value of the eighth-order contribution to the electron
[19] A realization of the si watt by the npl moving-coil balance, Metrologia, Volume 27 (1990), p. 173
[20] IEEE Trans. Instrum. Meas., 56 (2007), p. 592
[21] Accurate measurement of the planck constant, Phys. Rev. Lett., Volume 81 (1998), pp. 2404-2407 http://link.aps.org/doi/10.1103/PhysRevLett.81.2404 | DOI
[22] Determination of the avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett., Volume 106 (2011) no. 3 | DOI
[23] Consultative Committee for Mass and Related Quantities (CCM), Mise en Pratique of the Definition of the Kilogram, 2014 http://www.bipm.org/cc/CCM/Allowed/15/02A_MeP_kg_141022_v-9.0_clean.pdf (Tech. rep., CCM)
[24] Precise determination of the ratio
[25] Realization of the kilogram by the XRCD method, Metrologia, Volume 53 (2016) no. 5, p. A19 http://stacks.iop.org/0026-1394/53/i=5/a=A19
[26] Atomic interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989) no. 1–2, pp. 10-12 http://www.sciencedirect.com/science/article/pii/0375960189905379 | DOI
[27] Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., Volume 76 (1996), p. 4508 | DOI
[28] Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams, Phys. Rev. A, Volume 55 (1997), p. 2989 | DOI
[29] Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., Volume 76 (1996), pp. 4512-4515 http://link.aps.org/doi/10.1103/PhysRevLett.76.4512 | DOI
[30] Bloch oscillations of ultracold atoms: a tool for a metrological determination of
[31] Improving efficiency of bloch oscillations in the tight-binding limit, Phys. Rev. A, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevA.95.063604 | DOI
[32] The feynman path integral approach to atomic interferometry. A tutorial, J. Phys. II France, Volume 4 (1994) no. 11, pp. 1999-2027 | DOI
[33] Theoretical tools for atom optics and interferometry, C. R. Physique, Volume 2 (2001) no. 3, pp. 509-530 http://www.sciencedirect.com/science/article/pii/S1296214701011866 | DOI
[34] Representation-free description of light-pulse atom interferometry including non-inertial effects, Phys. Rep., Volume 605 (2015), pp. 1-50 http://www.sciencedirect.com/science/article/pii/S0370157315003968 | DOI
[35] Interference-filter-stabilized external-cavity diode lasers, Opt. Commun., Volume 266 (2006) no. 2, pp. 609-613 http://www.sciencedirect.com/science/article/pii/S0030401806004561 | DOI
[36] Bloch Oscillations of Ultra-Cold Atoms: Application to High-Precision Measurements, Université Pierre-et-Marie-Curie, Paris-6, 2015 https://tel.archives-ouvertes.fr/tel-01232238 (PhD Thesis)
[37] Bloch oscillations in an optical lattice generated by a laser source based on a fiber amplifier: decoherence effects due to amplified spontaneous emission, J. Opt. Soc. Am. B, Volume 32 (2015) no. 6, pp. 1038-1042 http://josab.osa.org/abstract.cfm?URI=josab-32-6-1038 | DOI
[38] Frequency measurement of the
[39] Operating an atom interferometer beyond its linear range, Metrologia, Volume 46 (2009) no. 1, p. 87 http://stacks.iop.org/0026-1394/46/i=1/a=011
[40] Atom interferometer measurement of the newtonian constant of gravity, Science, Volume 315 (2007), p. 74 | DOI
[41] A bose-einstein condensate in an optical lattice, J. Phys. B, At. Mol. Phys., Volume 35 (2002), pp. 3095-3110 | DOI
[42] Large momentum beam splitter using bloch oscillations, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240402 | DOI
[43] Atom interferometers with scalable enclosed area, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240403 | DOI
[44] High-resolution atom interferometers with suppressed diffraction phases, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.083002 | DOI
[45]
[46] Precise measurement of
[47] Bloch oscillations of ultracold atoms: a tool for metrological measurements, September 07–09, 2005, Dijon, France (J. Phys. IV), Volume vol. 135 (2006), pp. 3-7 | DOI
[48] Resolution of the Abraham–Minkowski dilemma, Phys. Rev. Lett., Volume 104 (2010) http://link.aps.org/doi/10.1103/PhysRevLett.104.070401 | DOI
[49] Phase shift due to atom–atom interactions in a light-pulse atom interferometer, Phys. Rev. A, Volume 92 (2015) http://link.aps.org/doi/10.1103/PhysRevA.92.013616 | DOI
[50] Observation of extra photon recoil in a distorted optical field, Phys. Rev. Lett., Volume 121 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.121.073603 | DOI
[51] The ame2012 atomic mass evaluation, Chin. Phys. C, Volume 36 (2012) no. 12, p. 1287 http://stacks.iop.org/1674-1137/36/i=12/a=002
[52] High-precision measurement of the atomic mass of the electron, Nature, Volume 506 (2012), p. 467
[53] Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett., Volume 92 (2004) https://link.aps.org/doi/10.1103/PhysRevLett.92.161802 | DOI
[54] The size of the proton, Nature, Volume 466 (2010), p. 213 | DOI
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier