Comptes Rendus
The new International System of Units / Le nouveau Système international d'unités
State of the art in the determination of the fine-structure constant and the ratio h/mu
[L'état de l'art de la détermination de la constante de structure fine et du rapport h/mu]
Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 77-91.

La constante de structure fine α et le rapport h/mu entre la constante de Planck et la masse atomique unifiée sont des constantes clés pour la détermination d'autres constantes physiques fondamentales, notamment celles impliquées dans le futur Système international d'unités. Cet article présente comment ces deux constantes, qui peuvent être déduites l'une de l'autre, sont mesurées. Nous présenterons en détail la mesure de h/mRb effectuée par interférométrie atomique au laboratoire Kastler Brossel à Paris. Ce type de mesure permet également d'effectuer un test du modèle standard avec une précision inégalée.

The fine structure constant α and the ratio h/mu between the Planck constant and the unified atomic mass are keystone constants for the determination of other fundamental physical constants, especially the ones involved in the framework of the future International System of units. This paper presents how these two constants, which can be deduced from one another, are measured. We will present in detail the measurement of h/mRb performed by atomic interferometry at the Laboratoire Kastler Brossel in Paris. This type of measurement also allows a test of the standard model to be carried out with unparalleled accuracy.

Publié le :
DOI : 10.1016/j.crhy.2018.12.003
Keywords: Fine structure constant, Electron moment anomaly, Atom interferometry, International system of units
Mot clés : Constante de structure fine, Moment magnétique anormal de l'électron, Interférométrie atomique, Système d'unités international

Pierre Cladé 1 ; François Nez 1 ; François Biraben 1 ; Saïda Guellati-Khelifa 1, 2

1 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS–PSL University, Collège de France, 4, place Jussieu, 75005 Paris, France
2 Conservatoire national des arts et métiers, 292, rue Saint-Martin, 75003 Paris, France
@article{CRPHYS_2019__20_1-2_77_0,
     author = {Pierre Clad\'e and Fran\c{c}ois Nez and Fran\c{c}ois Biraben and Sa{\"\i}da Guellati-Khelifa},
     title = {State of the art in the determination of the fine-structure constant and the ratio \protect\emph{h}/\protect\emph{m}\protect\textsubscript{u}},
     journal = {Comptes Rendus. Physique},
     pages = {77--91},
     publisher = {Elsevier},
     volume = {20},
     number = {1-2},
     year = {2019},
     doi = {10.1016/j.crhy.2018.12.003},
     language = {en},
}
TY  - JOUR
AU  - Pierre Cladé
AU  - François Nez
AU  - François Biraben
AU  - Saïda Guellati-Khelifa
TI  - State of the art in the determination of the fine-structure constant and the ratio h/mu
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 77
EP  - 91
VL  - 20
IS  - 1-2
PB  - Elsevier
DO  - 10.1016/j.crhy.2018.12.003
LA  - en
ID  - CRPHYS_2019__20_1-2_77_0
ER  - 
%0 Journal Article
%A Pierre Cladé
%A François Nez
%A François Biraben
%A Saïda Guellati-Khelifa
%T State of the art in the determination of the fine-structure constant and the ratio h/mu
%J Comptes Rendus. Physique
%D 2019
%P 77-91
%V 20
%N 1-2
%I Elsevier
%R 10.1016/j.crhy.2018.12.003
%G en
%F CRPHYS_2019__20_1-2_77_0
Pierre Cladé; François Nez; François Biraben; Saïda Guellati-Khelifa. State of the art in the determination of the fine-structure constant and the ratio h/mu. Comptes Rendus. Physique, Volume 20 (2019) no. 1-2, pp. 77-91. doi : 10.1016/j.crhy.2018.12.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.12.003/

[1] R. Bouchendira; P. Cladé; S. Guellati-Khélifa; F. Nez; F. Biraben New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) no. 8 | DOI

[2] D. Hanneke; S. Fogwell; G. Gabrielse New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., Volume 100 (2008) no. 12 | DOI

[3] T. Aoyama; M. Hayakawa; T. Kinoshita; M. Nio Tenth-order qed contribution to the electron g2 and an improved value of the fine structure constant, Phys. Rev. Lett., Volume 109 (2012) http://link.aps.org/doi/10.1103/PhysRevLett.109.111807 | DOI

[4] R.H. Parker; C. Yu; W. Zhong; B. Estey; H. Müller Measurement of the fine-structure constant as a test of the standard model, Science, Volume 360 (2018) no. 6385, pp. 191-195 http://science.sciencemag.org/content/360/6385/191.full.pdf | DOI

[5] J.P. Uzan Living Rev. Relativ., 14 (2011), p. 2

[6] I.M. Mills; P.J. Mohr; T.J. Quinn; B.N. Taylor; E.R. Williams Research article: adapting the international system of units to the twenty-first century, Philos. Trans. R. Soc. Ser. A, Volume 369 (2011), p. 3907

[7] A. Sommerfeld The quantum theory of spectral lines, Ann. Phys., Volume 51 (1916) no. 17, pp. 1-94

[8] P. Mohr; B. Taylor Codata recommended values of the fundamental physical constants: 1998, Rev. Mod. Phys., Volume 72 (2000), p. 351

[9] S. Laporta High-precision calculation of the 4-loop contribution to the electron g-2 in qed, Phys. Lett. B, Volume 772 (2017), pp. 232-238 http://www.sciencedirect.com/science/article/pii/S0370269317305324 | DOI

[10] T. Aoyama; T. Kinoshita; M. Nio Revised and improved value of the qed tenth-order electron anomalous magnetic moment, Phys. Rev. D, Volume 97 (2018) https://link.aps.org/doi/10.1103/PhysRevD.97.036001 | DOI

[11] R.V. Dyck; P. Schwinberg; H. Dehmelt New high-precision comparison of electron and positron g factors, Phys. Rev. Lett., Volume 59 (1987), p. 26

[12] P. Cladé; E. de Mirandes; M. Cadoret; S. Guellati-Khélifa; C. Schwob; F. Nez; L. Julien; F. Biraben Determination of the fine structure constant based on bloch oscillations of ultracold atoms in a vertical optical lattice, Phys. Rev. Lett., Volume 96 (2006) no. 3 http://link.aps.org/abstract/PRL/v96/e033001 | DOI

[13] M. Cadoret; E. de Mirandes; P. Cladé; S. Guellati-Khelifa; C. Schwob; F. Nez; L. Julien; F. Biraben Combination of bloch oscillations with a Ramsey–Bordé interferometer: new determination of the fine structure constant, Phys. Rev. Lett., Volume 101 (2008) no. 23 http://link.aps.org/abstract/PRL/v101/e230801 | DOI

[14] P.J. Mohr; B.N. Taylor; D.B. Newell Codata recommended values of the fundamental physical constants, Rev. Mod. Phys., Volume 80 (2006), pp. 633-730 | arXiv | DOI

[15] P.J. Mohr; B.N. Taylor; D.B. Newell Codata recommended values of the fundamental physical constants: 2010, Rev. Mod. Phys., Volume 84 (2012), pp. 1527-1605 | DOI

[16] P.J. Mohr; D.B. Newell; B.N. Taylor Codata recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) https://link.aps.org/doi/10.1103/RevModPhys.88.035009 | DOI

[17] A. Wicht; J. Hensley; E. Sarajlic; S. Chu A preliminary measurement of the fine structure constant based on atom interferometry, Phys. Scr. T, Volume 102 (2002), p. 82 | DOI

[18] T. Aoyama; M. Hayakawa; T. Kinoshita; M. Nio Revised value of the eighth-order contribution to the electron g2, Phys. Rev. Lett., Volume 99 (2007) no. 11 | DOI

[19] B.P. Kibble; I.A. Robinson; J.H. Belliss A realization of the si watt by the npl moving-coil balance, Metrologia, Volume 27 (1990), p. 173

[20] R.L. Steiner; E.R. Williams; R. Liu; D.B. Newell IEEE Trans. Instrum. Meas., 56 (2007), p. 592

[21] E.R. Williams; R.L. Steiner; D.B. Newell; P.T. Olsen Accurate measurement of the planck constant, Phys. Rev. Lett., Volume 81 (1998), pp. 2404-2407 http://link.aps.org/doi/10.1103/PhysRevLett.81.2404 | DOI

[22] B. Andreas; Y. Azuma; G. Bartl; P. Becker; H. Bettin; M. Borys; I. Busch; M. Gray; P. Fuchs; K. Fujii; H. Fujimoto; E. Kessler; M. Krumrey; U. Kuetgens; N. Kuramoto; G. Mana; P. Manson; E. Massa; S. Mizushima; A. Nicolaus; A. Picard; A. Pramann; O. Rienitz; D. Schiel; S. Valkiers; A. Waseda Determination of the avogadro constant by counting the atoms in a 28Si crystal, Phys. Rev. Lett., Volume 106 (2011) no. 3 | DOI

[23] Consultative Committee for Mass and Related Quantities (CCM), Mise en Pratique of the Definition of the Kilogram, 2014 http://www.bipm.org/cc/CCM/Allowed/15/02A_MeP_kg_141022_v-9.0_clean.pdf (Tech. rep., CCM)

[24] P. Cladé; F. Biraben; L. Julien; F. Nez; S. Guellati-Khelifa Precise determination of the ratio h/mu: a way to link microscopic mass to the new kilogram, Metrologia, Volume 53 (2016) no. 5, p. A75 http://stacks.iop.org/0026-1394/53/i=5/a=A75

[25] K. Fujii; H. Bettin; P. Becker; E. Massa; O. Rienitz; A. Pramann; A. Nicolaus; N. Kuramoto; I. Busch; M. Borys Realization of the kilogram by the XRCD method, Metrologia, Volume 53 (2016) no. 5, p. A19 http://stacks.iop.org/0026-1394/53/i=5/a=A19

[26] C.J. Bordé Atomic interferometry with internal state labelling, Phys. Lett. A, Volume 140 (1989) no. 1–2, pp. 10-12 http://www.sciencedirect.com/science/article/pii/0375960189905379 | DOI

[27] M.B. Dahan; E. Peik; J. Reichel; Y. Castin; C. Salomon Bloch oscillations of atoms in an optical potential, Phys. Rev. Lett., Volume 76 (1996), p. 4508 | DOI

[28] E. Peik; M.B. Dahan; I. Bouchoule; Y. Castin; C. Salomon Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams, Phys. Rev. A, Volume 55 (1997), p. 2989 | DOI

[29] S.R. Wilkinson; C.F. Bharucha; K.W. Madison; Q. Niu; M.G. Raizen Observation of atomic Wannier–Stark ladders in an accelerating optical potential, Phys. Rev. Lett., Volume 76 (1996), pp. 4512-4515 http://link.aps.org/doi/10.1103/PhysRevLett.76.4512 | DOI

[30] R. Battesti; P. Cladé; S. Guellati-Khélifa; C. Schwob; B. Grémaud; F. Nez; L. Julien; F. Biraben Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/mRb, Phys. Rev. Lett., Volume 92 (2004)

[31] P. Cladé; M. Andia; S. Guellati-Khélifa Improving efficiency of bloch oscillations in the tight-binding limit, Phys. Rev. A, Volume 95 (2017) https://link.aps.org/doi/10.1103/PhysRevA.95.063604 | DOI

[32] P. Storey; C. Cohen-Tannoudji The feynman path integral approach to atomic interferometry. A tutorial, J. Phys. II France, Volume 4 (1994) no. 11, pp. 1999-2027 | DOI

[33] C.J. Bordé Theoretical tools for atom optics and interferometry, C. R. Physique, Volume 2 (2001) no. 3, pp. 509-530 http://www.sciencedirect.com/science/article/pii/S1296214701011866 | DOI

[34] S. Kleinert; E. Kajari; A. Roura; W.P. Schleich Representation-free description of light-pulse atom interferometry including non-inertial effects, Phys. Rep., Volume 605 (2015), pp. 1-50 http://www.sciencedirect.com/science/article/pii/S0370157315003968 | DOI

[35] X. Baillard; A. Gauguet; S. Bize; P. Lemonde; P. Laurent; A. Clairon; P. Rosenbusch Interference-filter-stabilized external-cavity diode lasers, Opt. Commun., Volume 266 (2006) no. 2, pp. 609-613 http://www.sciencedirect.com/science/article/pii/S0030401806004561 | DOI

[36] M. Andia Bloch Oscillations of Ultra-Cold Atoms: Application to High-Precision Measurements, Université Pierre-et-Marie-Curie, Paris-6, 2015 https://tel.archives-ouvertes.fr/tel-01232238 (PhD Thesis)

[37] M. Andia; É. Wodey; F. Biraben; P. Cladé; S. Guellati-Khélifa Bloch oscillations in an optical lattice generated by a laser source based on a fiber amplifier: decoherence effects due to amplified spontaneous emission, J. Opt. Soc. Am. B, Volume 32 (2015) no. 6, pp. 1038-1042 http://josab.osa.org/abstract.cfm?URI=josab-32-6-1038 | DOI

[38] D. Touahri; O. Acef; A. Clairon; J.-J. Zondy; R. Felder; L. Hilico; B. de Beauvoir; F. Biraben; F. Nez Frequency measurement of the 5S1/2(F=3)5D5/2(F=5) two-photon transition in rubidium, Opt. Commun., Volume 133 (1997), pp. 471-478 | DOI

[39] S. Merlet; J.L. Gouët; Q. Bodart; A. Clairon; A. Landragin; F.P.D. Santos; P. Rouchon Operating an atom interferometer beyond its linear range, Metrologia, Volume 46 (2009) no. 1, p. 87 http://stacks.iop.org/0026-1394/46/i=1/a=011

[40] J.B. Fixler; G.T. Foster; J.M. McGuirk; M.A. Kasevich Atom interferometer measurement of the newtonian constant of gravity, Science, Volume 315 (2007), p. 74 | DOI

[41] J.H. Denschlag; J.E. Simsarian; H. Häffner; C. McKenzie; A. Browaeys; D. Cho; K. Helmerson; S.L. Rolston; W.D. Phillips A bose-einstein condensate in an optical lattice, J. Phys. B, At. Mol. Phys., Volume 35 (2002), pp. 3095-3110 | DOI

[42] P. Cladé; S. Guellati-Khélifa; F. Nez; F. Biraben Large momentum beam splitter using bloch oscillations, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240402 | DOI

[43] H. Müller; S. wey Chiow; S. Herrmann; S. Chu Atom interferometers with scalable enclosed area, Phys. Rev. Lett., Volume 102 (2009) no. 24 http://link.aps.org/abstract/PRL/v102/e240403 | DOI

[44] B. Estey; C. Yu; H. Müller; P.-C. Kuan; S.-Y. Lan High-resolution atom interferometers with suppressed diffraction phases, Phys. Rev. Lett., Volume 115 (2015) http://link.aps.org/doi/10.1103/PhysRevLett.115.083002 | DOI

[45] S-w. Chiow; T. Kovachy; H.-C. Chien; M.A. Kasevich 102ħk large area atom interferometers, Phys. Rev. Lett., Volume 107 (2011) http://link.aps.org/doi/10.1103/PhysRevLett.107.130403 | DOI

[46] P. Cladé; E. de Mirandes; M. Cadoret; S. Guellati-Khélifa; C. Schwob; F. Nez; L. Julien; F. Biraben Precise measurement of h/mRb using bloch oscillations in a vertical optical lattice: determination of the fine-structure constant, Phys. Rev. A, Volume 74 (2006) no. 5 http://link.aps.org/abstract/PRA/v74/e052109 | DOI

[47] P. Clade; M. Cadoret; E. De Mirandes; S. Guellati-Khelifa; C. Schwob; F. Nez; L. Julien; F. Biraben Bloch oscillations of ultracold atoms: a tool for metrological measurements, September 07–09, 2005, Dijon, France (J. Phys. IV), Volume vol. 135 (2006), pp. 3-7 | DOI

[48] S.M. Barnett Resolution of the Abraham–Minkowski dilemma, Phys. Rev. Lett., Volume 104 (2010) http://link.aps.org/doi/10.1103/PhysRevLett.104.070401 | DOI

[49] R. Jannin; P. Cladé; S. Guellati-Khélifa Phase shift due to atom–atom interactions in a light-pulse atom interferometer, Phys. Rev. A, Volume 92 (2015) http://link.aps.org/doi/10.1103/PhysRevA.92.013616 | DOI

[50] S. Bade; L. Djadaojee; M. Andia; P. Cladé; S. Guellati-Khelifa Observation of extra photon recoil in a distorted optical field, Phys. Rev. Lett., Volume 121 (2018) https://link.aps.org/doi/10.1103/PhysRevLett.121.073603 | DOI

[51] G. Audi; M. Wang; A. Wapstra; F. Kondev; M. MacCormick; X. Xu; B. Pfeiffer The ame2012 atomic mass evaluation, Chin. Phys. C, Volume 36 (2012) no. 12, p. 1287 http://stacks.iop.org/1674-1137/36/i=12/a=002

[52] S. Sturm; F. Köhler; J. Zatorski; A. Wagner; Z. Harman; G. Werth; W. Quint; C.H. Keitel; K. Blaum High-precision measurement of the atomic mass of the electron, Nature, Volume 506 (2012), p. 467

[53] G.W. Bennett; B. Bousquet; H.N. Brown; G. Bunce; R.M. Carey; P. Cushman; G.T. Danby; P.T. Debevec; M. Deile; H. Deng; S.K. Dhawan; V.P. Druzhinin; L. Duong; F.J.M. Farley; G.V. Fedotovich; F.E. Gray; D. Grigoriev; M. Grosse-Perdekamp; A. Grossmann; M.F. Hare; D.W. Hertzog; X. Huang; V.W. Hughes; M. Iwasaki; K. Jungmann; D. Kawall; B.I. Khazin; F. Krienen; I. Kronkvist; A. Lam; R. Larsen; Y.Y. Lee; I. Logashenko; R. McNabb; W. Meng; J.P. Miller; W.M. Morse; D. Nikas; C.J.G. Onderwater; Y. Orlov; C.S. Özben; J.M. Paley; Q. Peng; C.C. Polly; J. Pretz; R. Prigl; G. zu Putlitz; T. Qian; S.I. Redin; O. Rind; B.L. Roberts; N. Ryskulov; Y.K. Semertzidis; P. Shagin; Y.M. Shatunov; E.P. Sichtermann; E. Solodov; M. Sossong; L.R. Sulak; A. Trofimov; P. von Walter; A. Yamamoto Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett., Volume 92 (2004) https://link.aps.org/doi/10.1103/PhysRevLett.92.161802 | DOI

[54] R. Pohl; A. Antognini; F. Nez; F.D. Amaro; F. Biraben; J.M.R. Cardoso; D.S. Covita; A. Dax; S. Dhawan; L.M.P. Fernandes; A. Giesen; T. Graf; T.W. Hänsch; P. Indelicato; L. Julien; C.-Y. Kao; P. Knowles; E.-O. Le Bigot; Y.-W. Liu; J.A.M. Lopes; L. Ludhova; C.M.B. Monteiro; F. Mulhauser; T. Nebel; P. Rabinowitz; J.M.F. dos Santos; L.A. Schaller; K. Schuhmann; C. Schwob; D. Taqqu; J.F.C.A. Veloso; F. Kottmann The size of the proton, Nature, Volume 466 (2010), p. 213 | DOI

Cité par Sources :

Commentaires - Politique