Stellar occultations and transits occur when a planetary body passes in front of a star (including our Sun). For objects with an atmosphere, refraction plays an essential role to explain the drops of flux and the aureoles observed during these events. This can be used to derived key parameters of the atmospheres, such as their density, pressure and temperature profiles, as well as the presence of atmospheric gravity waves and zonal winds. Here we derive from basic principles the equations that rule the ray propagation in planetary atmospheres, and we show how they can be used to derive the physical parameters of these atmospheres.
Les occultations stellaires et les transits se produisent lorsqu’un corps planétaire passe devant une étoile (y compris notre Soleil). Pour les objets avec une atmosphère, le rôle de la réfraction est essentiel pour expliquer les chutes de flux et les auréoles observées lors de ces événements. Ces derniers peuvent être utilisés pour déduire des paramètres clés des atmosphères, comme leurs profils de densité, de pression et de température, ainsi que la présence d’ondes de gravité ou de vents zonaux. À partir des principes fondamentaux, nous déduisons les équations qui régissent la propagation des rayons dans les atmosphères planétaires, et nous montrons comment elles peuvent être utilisées pour déduire les paramètres physiques de ces atmosphères.
@article{CRPHYS_2022__23_S1_213_0, author = {Bruno Sicardy}, title = {Study of atmospheres in the solar system, from stellar occultation or planetary transit}, journal = {Comptes Rendus. Physique}, pages = {213--241}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, number = {S1}, year = {2022}, doi = {10.5802/crphys.109}, language = {en}, }
Bruno Sicardy. Study of atmospheres in the solar system, from stellar occultation or planetary transit. Comptes Rendus. Physique, Volume 23 (2022) no. S1, pp. 213-241. doi : 10.5802/crphys.109. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.109/
[1] QED. The strange theory of light and matter, Princeton University Press, Princeton, 1985
[2] General Principles of Geometric Optics, Handbook of Optics, volume I. Fundamentals, Techniques, and Design (Michael Bass et al., eds.), McGraw-Hill, New York, 1995, p. 1.3-1.109
[3] Über die Erscheinungen, welche bei einer Sternbedeckung durch einen Planeten auftreten, Astron. Nachr., Volume 164 (1903) no. 1, pp. 5-10 | DOI
[4] Le rôle des Atmosphères dans les Occultations par les Planètes, Journal des Observateurs, Volume 12 (1929) no. 1, pp. 1-10
[5] A photometric observation of the occultation of ARIETIS by Jupiter, Astron. J., Volume 58 (1953) no. 1208, pp. 108-112 | DOI
[6] Results of the Occultation of Regulus by Venus, July 7, 1959, Nature, Volume 188 (1960) no. 4744, pp. 28-33 | DOI
[7] Jupiter Occultation of Beta Scorpii: Are the Flashes Time-symmetric?, Nature, Volume 240 (1972) no. 5380, pp. 344-345 | DOI
[8] The beta Scorpii occultation by Jupiter. II. The temperature and density profiles of the Jupiter upper atmosphere, Astron. Astrophys., Volume 29 (1973), pp. 135-149
[9] On the reduction of occultation light curves, Icarus, Volume 20 (1973) no. 3, pp. 322-345 | DOI
[10] The Neutral Atmosphere of Venus as Studied with the Mariner V Radio Occultation Experiments, Astron. J., Volume 76 (1971) no. 2, pp. 123-140 | DOI
[11] Ueber die Concentration von Wärme- und Lichstrahlen und die Gränzen ihrer Wirkung, Annalen der Physik und Chemie, Volume 197 (1864) no. 1, pp. 1-44 | DOI
[12] Occultation of epsilon Geminorum by Mars. II. The structure and extinction of the Martian upper atmosphere, Astrophys. J., Volume 217 (1977), pp. 661-679 | DOI
[13] The upper atmosphere of Uranus: A critical test of isotropic turbulence models, Icarus, Volume 51 (1982) no. 3, pp. 491-508 | DOI
[14] The 1985 stellar occultation by Pluto, Mon. Not. R. Astron. Soc., Volume 276 (1995) no. 2, pp. 571-578 | DOI
[15] Occultation evidence for an atmosphere on Pluto, Nature, Volume 336 (1988), pp. 452-454 | DOI
[16] Pluto’s atmosphere, Icarus, Volume 77 (1989) no. 1, pp. 148-170 | DOI
[17] et al. The recent expansion of Pluto’s atmosphere, Nature, Volume 424 (2003), pp. 165-168 | DOI
[18] et al. Large changes in Pluto’s atmosphere as revealed by recent stellar occultations, Nature, Volume 424 (2003), pp. 168-170 | DOI
[19] et al. Pluto’s Atmosphere in Plateau Phase Since 2015 from a Stellar Occultation at Devasthal, Astrophys. J., Lett., Volume 923 (2021) no. 2, L31 | DOI
[20] Thermal tides on Pluto, Icarus, Volume 208 (2010) no. 1, pp. 402-411 | DOI
[21] Seasonal variations in Pluto’s atmospheric tides, Icarus, Volume 246 (2015), pp. 247-267 | DOI
[22] et al. Neptune’s upper stratosphere, 1983-1990: ground-based stellar occultation observations III. Temperature profiles, Astron. Astrophys., Volume 288 (1994), pp. 985-1011
[23] et al. The occultation of 28 SGR by Titan, Astron. Astrophys., Volume 269 (1993), pp. 541-563
[24] et al. The two Titan stellar occultations of 14 November 2003, J. Geophys. Res. (Planets), Volume 111 (2006) no. E11, E11S91 | DOI
[25] et al. Constraints on the structure and seasonal variations of Triton’s atmosphere from the 5 October 2017 stellar occultation and previous observations (2022) (https://arxiv.org/abs/2201.10450)
[26] Titan solar occultation observed by Cassini/VIMS: Gas absorption and constraints on aerosol composition, Icarus, Volume 201 (2009) no. 1, pp. 198-216 | DOI
[27] Occultation determination of Neptune’s oblateness and stratospheric methane mixing ratio, Nature, Volume 324 (1986) no. 6094, pp. 227-231 | DOI
[28] Standard Mathematical Tables, CRC Press, 1976
[29] Sunlight refraction in the mesosphere of Venus during the transit on June 8th, 2004, Icarus, Volume 218 (2012) no. 1, pp. 207-219 | DOI
[30] Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit, IAU Colloq. 196: Transits of Venus: New Views of the Solar System and Galaxy (D. W. Kurtz, ed.), Cambridge University Press (2005), pp. 209-219 | DOI
[31] Eclipse phenomena in astronomy, Springer, New York, 1969 | DOI
[32] High-resolution Satellite Imaging of the 2004 Transit of Venus and Asymmetries in the Cytherean Atmosphere, Astron. J., Volume 141 (2011) no. 4, 112 | DOI
[33] Lomonosov, the discovery of Venus’s atmosphere, and the eighteenth-century transits of Venus, Journal of Astronomical History and Heritage, Volume 15 (2012) no. 1, pp. 3-14
[34] The Lomonossov art: refraction and scattering in Venus atmosphere during solar transits, C. R. Phys., Volume 23 (2022) no. S1, pp. 243-268 | DOI
[35] Theory of Extrasolar Giant Planet Transits, Astrophys. J., Volume 560 (2001) no. 1, pp. 413-419 (astro-ph/0101024) | DOI
[36] Aphroditographische Fragmente zur genauern Kenntniss des Planeten Venus, C. G. Fleckeisen, Helmstedt, 1796 | DOI
[37] The Atmosphere of Venus, Astrophys. J., Volume 9 (1899), pp. 284-299 | DOI
Cited by Sources:
The Lomonossov arc: refraction and scattering in Venus atmosphere during solar transits
Serge Koutchmy
C. R. Phys (2022)
Characterization and modelling of exoplanetary atmospheres
Benjamin Charnay; Pierre Drossart
C. R. Phys (2023)