Comptes Rendus
Computer simulations of the glass transition and glassy materials
Comptes Rendus. Physique, Online first (2023), pp. 1-16.

We provide an overview of the different types of computational techniques developed over the years to study supercooled liquids, glassy materials and the physics of the glass transition. We organise these numerical strategies into four broad families. For each of them, we describe the general ideas without discussing any technical details. We summarise the type of questions which can be addressed by any given approach and outline the main results which have been obtained. Finally we describe two important directions for future computational studies of glassy systems.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.129
Mots clés : glass transition, computer simulation, amorphous solids, supercooled liquids, Monte Carlo methods
Jean-Louis Barrat 1 ; Ludovic Berthier 2, 3

1 Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
2 Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
3 Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_A4_0,
     author = {Jean-Louis Barrat and Ludovic Berthier},
     title = {Computer simulations of the glass transition and glassy materials},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.129},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Jean-Louis Barrat
AU  - Ludovic Berthier
TI  - Computer simulations of the glass transition and glassy materials
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.129
LA  - en
ID  - CRPHYS_2023__24_S1_A4_0
ER  - 
%0 Journal Article
%A Jean-Louis Barrat
%A Ludovic Berthier
%T Computer simulations of the glass transition and glassy materials
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.129
%G en
%F CRPHYS_2023__24_S1_A4_0
Jean-Louis Barrat; Ludovic Berthier. Computer simulations of the glass transition and glassy materials. Comptes Rendus. Physique, Online first (2023), pp. 1-16. doi : 10.5802/crphys.129.

[1] Giovanni Ciccotti; Daan Frenkel; Ian R. Mc Donald Simulation of liquids and solids, North-Holland, 1987

[2] Aneesur Rahman Correlations in the motion of atoms in liquid argon, Phys. Rev., Volume 136 (1964) no. 2A, p. A405-A411 | DOI

[3] Jean-Pierre Hansen; Loup Verlet Phase transitions of the Lennard-Jones system, Phys. Rev., Volume 184 (1969) no. 1, p. 151 | DOI

[4] Ludovic Berthier; Giulio Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI

[5] John Desmond Bernal; J. Mason Packing of spheres: co-ordination of randomly packed spheres, Nature, Volume 188 (1960) no. 4754, pp. 910-911 | DOI

[6] John Desmond Bernal The Bakerian lecture, 1962. The structure of liquids, Proc. R. Soc. Lond., Ser. A, Volume 280 (1964) no. 1382, pp. 299-322

[7] R. J. Bell; P. Dean Properties of vitreous silica: Analysis of random network models, Nature, Volume 212 (1966) no. 5068, pp. 1354-1356 | DOI

[8] D. E. Polk Structural model for amorphous silicon and germanium, J. Non Cryst. Solids, Volume 5 (1971) no. 5, pp. 365-376 | DOI

[9] J. Andrew Barker; M. R. Hoare; J. L. Finney Relaxation of the Bernal model, Nature, Volume 257 (1975) no. 5522, pp. 120-122 | DOI

[10] Martin Goldstein Viscous liquids and the glass transition: a potential energy barrier picture, J. Chem. Phys., Volume 51 (1969) no. 9, pp. 3728-3739 | DOI

[11] Frank H. Stillinger; Thomas A. Weber Hidden structure in liquids, Phys. Rev. A, Volume 25 (1982) no. 2, pp. 978-989 | DOI

[12] Frank H. Stillinger Energy landscapes, inherent structures, and condensed-matter phenomena, Princeton University Press, 2015 | DOI

[13] A. C. Wright; M. F. Thorpe Eighty years of random networks, Phys. Status Solidi B Basic Res., Volume 250 (2013) no. 5, pp. 931-936 | DOI

[14] William Houlder Zachariasen The atomic arrangement in glass, J. Am. Chem. Soc., Volume 54 (1932) no. 10, pp. 3841-3851 | DOI

[15] F. Wooten; K. Winer; D. Weaire Computer generation of structural models of amorphous Si and Ge, Phys. Rev. Lett., Volume 54 (1985) no. 13, pp. 1392-1395 | DOI

[16] Gerard T. Barkema; Normand Mousseau High-quality continuous random networks, Phys. Rev. B, Volume 62 (2000) no. 8, pp. 4985-4990 | DOI

[17] P. N. Keating Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure, Phys. Rev., Volume 145 (1966) no. 2, pp. 637-645 | DOI

[18] Frank H. Stillinger; Thomas A. Weber Computer simulation of local order in condensed phases of silicon, Phys. Rev. B, Volume 31 (1985) no. 8, pp. 5262-5271 | DOI

[19] Andrea J. Liu; Sidney R. Nagel Jamming is not just cool any more, Nature, Volume 396 (1998) no. 6706, pp. 21-22 | DOI

[20] Andrea J. Liu; Sidney R. Nagel Jamming and rheology: constrained dynamics on microscopic and macroscopic scales, CRC Press, 2001 | DOI

[21] Corey S. O’Hern; Stephen A. Langer; Andrea J. Liu; Sidney R. Nagel Random packings of frictionless particles, Phys. Rev. Lett., Volume 88 (2002) no. 7, 075507 | DOI

[22] Andrea J. Liu; Sidney R. Nagel The jamming transition and the marginally jammed solid, Ann. Rev. Cond. Matter Phys., Volume 1 (2010) no. 1, pp. 347-369 | DOI

[23] Giorgio Parisi; Pierfrancesco Urbani; Francesco Zamponi Theory of simple glasses: exact solutions in infinite dimensions, Cambridge University Press, 2020 | DOI

[24] Douglas J. Durian Foam mechanics at the bubble scale, Phys. Rev. Lett., Volume 75 (1995) no. 26, pp. 4780-4783 | DOI

[25] Ludovic Berthier; Thomas A. Witten Glass transition of dense fluids of hard and compressible spheres, Phys. Rev. E, Volume 80 (2009) no. 2, 021502 | DOI

[26] Corey S. O’Hern; Leonardo E. Silbert; Andrea J. Liu; Sidney R. Nagel Jamming at zero temperature and zero applied stress: The epitome of disorder, Phys. Rev. E, Volume 68 (2003) no. 1, 011306 | DOI

[27] Matthieu Wyart; Leonardo E. Silbert; Sidney R. Nagel; Thomas A. Witten Effects of compression on the vibrational modes of marginally jammed solids, Phys. Rev. E, Volume 72 (2005) no. 5, 051306 | DOI

[28] Peter Olsson; Stephen Teitel Critical scaling of shear viscosity at the jamming transition, Phys. Rev. Lett., Volume 99 (2007) no. 17, 178001 | DOI

[29] Atsushi Ikeda; Ludovic Berthier; Peter Sollich Unified study of glass and jamming rheology in soft particle systems, Phys. Rev. Lett., Volume 109 (2012) no. 1, 018301 | DOI

[30] Steven Brawer Relaxation in viscous liquids and glasses, American Ceramic Society, 1985

[31] W. Gotze; L. Sjogren Relaxation processes in supercooled liquids, Rep. Prog. Phys., Volume 55 (1992) no. 3, pp. 241-376 | DOI

[32] Jeffrey R. Fox; Hans C. Andersen Molecular dynamics simulations of a supercooled monatomic liquid and glass, J. Phys. Chem., Volume 88 (1984) no. 18, pp. 4019-4027 | DOI

[33] J. J. Ullo; Sidney Yip Dynamical Transition in a Dense Fluid Approaching Structural Arrest, Phys. Rev. Lett., Volume 54 (1985) no. 14, pp. 1509-1512 | DOI

[34] Raymond D. Mountain; D. Thirumalai Molecular-dynamics study of glassy and supercooled states of a binary mixture of soft spheres, Phys. Rev. A, Volume 36 (1987) no. 7, pp. 3300-3311 | DOI

[35] B. Bernu; Jean-Pierre Hansen; Y. Hiwatari; G. Pastore Soft-sphere model for the glass transition in binary alloys: Pair structure and self-diffusion, Phys. Rev. A, Volume 36 (1987), pp. 4891-4903 | DOI

[36] Jean-Noël Roux; Jean-Louis Barrat; Jean-Pierre Hansen Dynamical diagnostics for the glass transition in soft-sphere alloys, J. Phys.: Condens. Matter, Volume 1 (1989) no. 39, pp. 7171-7186 | DOI

[37] Jean-Louis Barrat; J.-N. Roux; Jean-Pierre Hansen Diffusion, viscosity and structural slowing down in soft sphere alloys near the kinetic glass transition, Chem. Phys., Volume 149 (1990) no. 1-2, pp. 197-208 | DOI

[38] Jean-Louis Barrat; Michael L. Klein Molecular dynamics simulations of supercooled liquids near the glass transition, Annu. Rev. Phys. Chem., Volume 42 (1991) no. 1, pp. 23-53 | DOI

[39] Walter Kob; Hans C. Andersen Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function, Phys. Rev. E, Volume 51 (1995) no. 5, pp. 4626-4641 | DOI

[40] Walter Kob; Hans C. Andersen Testing mode-coupling theory for a supercooled binary Lennard–Jones mixture. II. Intermediate scattering function and dynamic susceptibility, Phys. Rev. E, Volume 52 (1995) no. 4, pp. 4134-4153 | DOI

[41] Andrea Cavagna Supercooled liquids for pedestrians, Phys. Rep., Volume 476 (2009) no. 4-6, pp. 51-124 | DOI

[42] Leendert Cornelis Elisa Struik Physical aging in amorphous polymers and other materials, Ph. D. Thesis (1977)

[43] Walter Kob; F. Sciortino; P. Tartaglia Aging as dynamics in configuration space, Eur. Phys. Lett., Volume 49 (2000) no. 5, pp. 590-596 | DOI

[44] Theodore R. Kirkpatrick; Devarajan Thirumalai p-spin-interaction spin-glass models: Connections with the structural glass problem, Phys. Rev. B, Volume 36 (1987) no. 10, p. 5388 | DOI

[45] Leticia F. Cugliandolo; Jorge Kurchan Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model, Phys. Rev. Lett., Volume 71 (1993) no. 1, pp. 173-176 | DOI

[46] Leticia F. Cugliandolo; Jorge Kurchan; Luca Peliti Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics, Phys. Rev. E, Volume 55 (1997) no. 4, pp. 3898-3914 | DOI

[47] Ludovic Berthier; Jean-Louis Barrat; Jorge Kurchan A two-time-scale, two-temperature scenario for nonlinear rheology, Phys. Rev. E, Volume 61 (2000) no. 5, pp. 5464-5472 | DOI

[48] Ludovic Berthier; Jean-Louis Barrat Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals, Phys. Rev. Lett., Volume 89 (2002) no. 9, 095702 | DOI

[49] Ian K. Ono; Corey S. O’Hern; Douglas J. Durian; Stephen A. Langer; Andrea J. Liu; Sidney R. Nagel Effective Temperatures of a Driven System Near Jamming, Phys. Rev. Lett., Volume 89 (2002) no. 9, 095703 | DOI

[50] Jianhua Zhang; Wen Zheng; Shiyun Zhang; Ding Xu; Yunhuan Nie; Zhehua Jiang; Ning Xu Unifying fluctuation-dissipation temperatures of slow-evolving nonequilibrium systems from the perspective of inherent structures, Sci. adv., Volume 7 (2021) no. 31, eabg6766 | DOI

[51] Mark D. Ediger Spatially heterogeneous dynamics in supercooled liquids, Annu. Rev. Phys. Chem., Volume 51 (2000) no. 1, pp. 99-128 | DOI

[52] Cristina Toninelli; Matthieu Wyart; Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud Dynamical susceptibility of glass formers: Contrasting the predictions of theoretical scenarios, Phys. Rev. E, Volume 71 (2005) no. 4, 041505 | DOI

[53] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim van Saarloos Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, International Series of Monographs on Physics, 150, Oxford University Press, 2011 | DOI

[54] Gilles Tarjus An overview of the theories of the glass transition, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (International Series of Monographs on Physics), Volume 150, Oxford University Press, 2011, pp. 39-62 | DOI

[55] M. M. Hurley; Peter Harrowell Kinetic structure of a two-dimensional liquid, Phys. Rev. E, Volume 52 (1995) no. 2, pp. 1694-1698 | DOI

[56] Walter Kob; Claudio Donati; Steven J. Plimpton; Peter H. Poole; Sharon C. Glotzer Dynamical Heterogeneities in a Supercooled Lennard–Jones Liquid, Phys. Rev. Lett., Volume 79 (1997) no. 15, pp. 2827-2830 | DOI

[57] Claudio Donati; Jack F. Douglas; Walter Kob; Steven J. Plimpton; Peter H. Poole; Sharon C. Glotzer Stringlike Cooperative Motion in a Supercooled Liquid, Phys. Rev. Lett., Volume 80 (1998) no. 11, pp. 2338-2341 | DOI

[58] Marcus T. Cicerone; Mark D. Ediger Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl, J. Chem. Phys., Volume 103 (1995) no. 13, pp. 5684-5692 | DOI

[59] R. Böhmer; G. Hinze; G. Diezemann; B. Geil; H. Sillescu Dynamic heterogeneity in supercooled ortho-terphenyl studied by multidimensional deuteron NMR, Eur. Phys. Lett., Volume 36 (1996) no. 1, pp. 55-60 | DOI

[60] N Lačević; Francis W Starr; TB Schrøder; Sharon C. Glotzer Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function, J. Chem. Phys., Volume 119 (2003) no. 14, pp. 7372-7387 | DOI

[61] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; L. Cipelletti; D. El Masri; D. L’Hôte; F. Ladieu; M. Pierno Direct Experimental Evidence of a Growing Length Scale Accompanying he Glass Transition, Science, Volume 310 (2005) no. 5755, pp. 1797-1800 | DOI

[62] Baoshuang Shang; Jörg Rottler; Pengfei Guan; Jean-Louis Barrat Local versus Global Stretched Mechanical Response in a Supercooled Liquid near the Glass Transition, Phys. Rev. Lett., Volume 122 (2019) no. 10, 105501 | DOI

[63] Ludovic Berthier Self-Induced Heterogeneity in Deeply Supercooled Liquids, Phys. Rev. Lett., Volume 127 (2021) no. 8, 088002 | DOI

[64] Lester O. Hedges; Robert L. Jack; Juan P. Garrahan; David Chandler Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers, Science, Volume 323 (2009) no. 5919, pp. 1309-1313 | DOI

[65] Thomas Speck; David Chandler Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers, J. Chem. Phys., Volume 136 (2012) no. 18, 184509 | DOI

[66] Juan P. Garrahan; Robert L. Jack; Vivien Lecomte; Estelle Pitard; Kristina van Duijvendijk; Frédéric van Wijland Dynamical first-order phase transition in kinetically constrained models of glasses, Phys. Rev. Lett., Volume 98 (2007) no. 19, 195702 | DOI

[67] Rahul N. Chacko; François P. Landes; Giulio Biroli; Olivier Dauchot; Andrea J. Liu; David R. Reichman Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode Coupling Temperature, Phys. Rev. Lett., Volume 127 (2021) no. 4, 048002 | DOI

[68] Benjamin Guiselin; Camille Scalliet; Ludovic Berthier Microscopic origin of excess wings in relaxation spectra of supercooled liquids, Nat. Phys., Volume 18 (2022), pp. 468-472 | DOI

[69] A. B. Bortz; M. H. Kalos; J. L. Lebowitz A new algorithm for Monte Carlo simulation of Ising spin systems, J. Comput. Phys., Volume 17 (1975) no. 1, pp. 10-18 | DOI

[70] Abhijit Chatterjee; Dionisios G. Vlachos An overview of spatial microscopic and accelerated kinetic Monte Carlo methods, J. Computer-Aided Mater. Des., Volume 14 (2007) no. 2, pp. 253-308 | DOI

[71] L. Angelani; Giorgio Parisi; G. Ruocco Potential energy landscape of simple structural glasses, J. Phys. IV France, Volume 8 (1998) no. PR6, p. Pr6-63–Pr6-67 | DOI

[72] Frank H. Stillinger Exponential multiplicity of inherent structures, Phys. Rev. E, Volume 59 (1999) no. 1, pp. 48-51 | DOI

[73] Gerard T. Barkema; Normand Mousseau Event-Based Relaxation of Continuous Disordered Systems, Phys. Rev. Lett., Volume 77 (1996) no. 21, pp. 4358-4361 | DOI

[74] Mickaël Trochet; Alecsandre Sauvé-Lacoursière; Normand Mousseau Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems, J. Chem. Phys., Volume 147 (2017) no. 15, 152712 | DOI

[75] Amruthesh Thirumalaiswamy; Robert A. Riggleman; John C. Crocker Exploring canyons in glassy energy landscapes using metadynamics (2022) (https://arxiv.org/abs/2204.00587) | DOI

[76] Akihiro Kushima; Xi Lin; Ju Li; Jacob Eapen; John C. Mauro; Xiaofeng Qian; Phong Diep; Sidney Yip Computing the viscosity of supercooled liquids, J. Chem. Phys., Volume 130 (2009) no. 22, 224504 | DOI

[77] Enzo Marinari; Giorgio Parisi Simulated tempering: a new Monte Carlo scheme, Eur. Phys. Lett., Volume 19 (1992) no. 6, p. 451 | DOI

[78] Koji Hukushima; Koji Nemoto Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Japan, Volume 65 (1996) no. 6, pp. 1604-1608 | DOI

[79] David J. Earl; Michael W. Deem Parallel tempering: Theory, applications, and new perspectives, Phys. Chem. Chem. Phys., Volume 7 (2005) no. 23, pp. 3910-3916 | DOI

[80] Ryoichi Yamamoto; Walter Kob Replica-exchange molecular dynamics simulation for supercooled liquids, Phys. Rev. E, Volume 61 (2000) no. 5, pp. 5473-5476 | DOI

[81] Elijah Flenner; Grzegorz Szamel Hybrid Monte Carlo simulation of a glass-forming binary mixture, Phys. Rev. E, Volume 73 (2006) no. 6, 061505 | DOI

[82] Glen M Hocky; Ludovic Berthier; David R. Reichman Equilibrium ultrastable glasses produced by random pinning, J. Chem. Phys., Volume 141 (2014) no. 22, 224503 | DOI

[83] Walter Kob; Ludovic Berthier Probing a liquid to glass transition in equilibrium, Phys. Rev. Lett., Volume 110 (2013) no. 24, 245702 | DOI

[84] Chiara Cammarota; Giulio Biroli Ideal glass transitions by random pinning, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 23, pp. 8850-8855 | DOI

[85] Ludovic Berthier; Walter Kob Static point-to-set correlations in glass-forming liquids, Phys. Rev. E, Volume 85 (2012) no. 1, 011102 | DOI

[86] Peter Scheidler; Walter Kob; Kurt Binder; Giorgio Parisi Growing length scales in a supercooled liquid close to an interface, Philos. Mag., B, Volume 82 (2002) no. 3, pp. 283-290 | DOI

[87] Walter Kob; Sándalo Roldán-Vargas; Ludovic Berthier Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids, Nat. Phys., Volume 8 (2012) no. 2, pp. 164-167 | DOI

[88] Andrea Cavagna; Tomás S. Grigera; Paolo Verrocchio Mosaic multistate scenario versus one-state description of supercooled liquids, Phys. Rev. Lett., Volume 98 (2007) no. 18, 187801 | DOI

[89] Giulio Biroli; Jean-Philippe Bouchaud; Andrea Cavagna; Tomás S. Grigera; Paolo Verrocchio Thermodynamic signature of growing amorphous order in glass-forming liquids, Nat. Phys., Volume 4 (2008) no. 10, pp. 771-775 | DOI

[90] Andrea Montanari; Guilhem Semerjian Rigorous inequalities between length and time scales in glassy systems, J. Stat. Phys., Volume 125 (2006) no. 1, pp. 23-54 | DOI | MR | Zbl

[91] Jean-Philippe Bouchaud; Giulio Biroli On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses, J. Chem. Phys., Volume 121 (2004) no. 15, pp. 7347-7354 | DOI

[92] Ludovic Berthier; Patrick Charbonneau; Sho Yaida Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids, J. Chem. Phys., Volume 144 (2016) no. 2, 024501 | DOI

[93] Sho Yaida; Ludovic Berthier; Patrick Charbonneau; Gilles Tarjus Point-to-set lengths, local structure, and glassiness, Phys. Rev. E, Volume 94 (2016) no. 3, 032605 | DOI

[94] Misaki Ozawa; Atsushi Ikeda; Kunimasa Miyazaki; Walter Kob Ideal glass states are not purely vibrational: Insight from randomly pinned glasses, Phys. Rev. Lett., Volume 121 (2018) no. 20, 205501 | DOI

[95] Nicholas Metropolis; Arianna W. Rosenbluth; Marshall N. Rosenbluth; Augusta H. Teller; Edward Teller Equation of state calculations by fast computing machines, J. Chem. Phys., Volume 21 (1953) no. 6, pp. 1087-1092 | DOI | Zbl

[96] Ludovic Berthier; Walter Kob The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture, J. Phys.: Condens. Matter, Volume 19 (2007) no. 20, 205130 | DOI

[97] Ludovic Berthier Efficient measurement of linear susceptibilities in molecular simulations: Application to aging supercooled liquids, Phys. Rev. Lett., Volume 98 (2007) no. 22, 220601 | DOI

[98] Ludovic Berthier Revisiting the slow dynamics of a silica melt using Monte Carlo simulations, Phys. Rev. E, Volume 76 (2007) no. 1, 011507 | DOI

[99] Ulli Wolff Collective Monte Carlo updating for spin systems, Phys. Rev. Lett., Volume 62 (1989) no. 4, pp. 361-364 | DOI

[100] Masaharu Isobe; Aaron S. Keys; David Chandler; Juan P. Garrahan Applicability of dynamic facilitation theory to binary hard disk systems, Phys. Rev. Lett., Volume 117 (2016) no. 14, 145701 | DOI

[101] Ludger Santen; Werner Krauth Absence of thermodynamic phase transition in a model glass former, Nature, Volume 405 (2000) no. 6786, pp. 550-551 | DOI

[102] Tomás S. Grigera; Giorgio Parisi Fast Monte Carlo algorithm for supercooled soft spheres, Phys. Rev. E, Volume 63 (2001) no. 4, 045102 | DOI

[103] L. A. Fernández; Víctor Martín-Mayor; Paolo Verrocchio Critical behavior of the specific heat in glass formers, Phys. Rev. E, Volume 73 (2006) no. 2, 020501 | DOI

[104] Yisroel Brumer; David R. Reichman Numerical investigation of the entropy crisis in model glass formers, J. Phys. Chem. B, Volume 108 (2004) no. 21, pp. 6832-6837 | DOI

[105] Ludovic Berthier; Daniele Coslovich; Andrea Ninarello; Misaki Ozawa Equilibrium sampling of hard spheres up to the jamming density and beyond, Phys. Rev. Lett., Volume 116 (2016) no. 23, 238002 | DOI | MR

[106] Andrea Ninarello; Ludovic Berthier; Daniele Coslovich Models and algorithms for the next generation of glass transition studies, Phys. Rev. X, Volume 7 (2017) no. 2, 021039 | DOI

[107] Stephen F. Swallen; Kenneth L. Kearns; Marie K. Mapes; Yong Seol Kim; Robert J. McMahon; Mark D. Ediger; Tian Wu; Lian Yu; Sushil Satija Organic glasses with exceptional thermodynamic and kinetic stability, Science, Volume 315 (2007) no. 5810, pp. 353-356 | DOI

[108] Mark D. Ediger Perspective: Highly stable vapor-deposited glasses, J. Chem. Phys., Volume 147 (2017) no. 21, 210901 | DOI

[109] Lijin Wang; Andrea Ninarello; Pengfei Guan; Ludovic Berthier; Grzegorz Szamel; Elijah Flenner Low-frequency vibrational modes of stable glasses, Nat. Commun., Volume 10 (2019) no. 1, 26 | DOI

[110] Daniele Coslovich; Misaki Ozawa; Ludovic Berthier Local order and crystallization of dense polydisperse hard spheres, J. Phys.: Condens. Matter, Volume 30 (2018) no. 14, 144004 | DOI

[111] Daniele Coslovich; Andrea Ninarello; Ludovic Berthier A localization transition underlies the mode-coupling crossover of glasses, SciPost Phys., Volume 7 (2019) no. 6, 077 | DOI | MR

[112] Ludovic Berthier; Patrick Charbonneau; Daniele Coslovich; Andrea Ninarello; Misaki Ozawa; Sho Yaida Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 43, pp. 11356-11361 | DOI

[113] Ludovic Berthier; Patrick Charbonneau; Andrea Ninarello; Misaki Ozawa; Sho Yaida Zero-temperature glass transition in two dimensions, Nat. Commun., Volume 10 (2019) no. 1, 1508, p. 7 | DOI

[114] Misaki Ozawa; Ludovic Berthier; Giulio Biroli; Alberto Rosso; Gilles Tarjus Random critical point separates brittle and ductile yielding transitions in amorphous materials, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 26, pp. 6656-6661 | DOI

[115] Wei-Ting Yeh; Misaki Ozawa; Kunimasa Miyazaki; Takeshi Kawasaki; Ludovic Berthier Glass stability changes the nature of yielding under oscillatory shear, Phys. Rev. Lett., Volume 124 (2020) no. 22, 225502 | DOI

[116] Lijin Wang; Ludovic Berthier; Elijah Flenner; Pengfei Guan; Grzegorz Szamel Sound attenuation in stable glasses, Soft Matter, Volume 15 (2019) no. 35, pp. 7018-7025 | DOI

[117] Misaki Ozawa; Camille Scalliet; Andrea Ninarello; Ludovic Berthier Does the Adam–Gibbs relation hold in simulated supercooled liquids?, J. Chem. Phys., Volume 151 (2019) no. 8, 084504 | DOI

[118] Benjamin Guiselin; Ludovic Berthier; Gilles Tarjus Random-field Ising model criticality in a glass-forming liquid, Phys. Rev. E, Volume 102 (2020) no. 4, 042129 | DOI | MR

[119] Benjamin Guiselin; Ludovic Berthier; Gilles Tarjus Statistical mechanics of coupled supercooled liquids in finite dimensions, SciPost Phys., Volume 12 (2022) no. 3, 091 | DOI | MR

[120] Benjamin Guiselin; Gilles Tarjus; Ludovic Berthier Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope, J. Chem. Phys., Volume 156 (2022) no. 19, 194503 | DOI

[121] Ludovic Berthier; Patrick Charbonneau; Yuliang Jin; Giorgio Parisi; Beatriz Seoane; Francesco Zamponi Growing timescales and lengthscales characterizing vibrations of amorphous solids, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 30, pp. 8397-8401 | DOI

[122] Camille Scalliet; Ludovic Berthier; Francesco Zamponi Nature of excitations and defects in structural glasses, Nat. Commun., Volume 10 (2019) no. 1, 5102 | DOI

[123] Camille Scalliet; Ludovic Berthier; Francesco Zamponi Absence of marginal stability in a structural glass, Phys. Rev. Lett., Volume 119 (2017) no. 20, 205501 | DOI

[124] Dmytro Khomenko; Camille Scalliet; Ludovic Berthier; David R. Reichman; Francesco Zamponi Depletion of two-level systems in ultrastable computer-generated glasses, Phys. Rev. Lett., Volume 124 (2020) no. 22, 225901 | DOI

[125] Yoshihiko Nishikawa; Misaki Ozawa; Atsushi Ikeda; Pinaki Chaudhuri; Ludovic Berthier Relaxation dynamics in the energy landscape of glass-forming liquids, Phys. Rev. X, Volume 12 (2022) no. 2, 021001 | DOI

[126] Geert Kapteijns; Wencheng Ji; Carolina Brito; Matthieu Wyart; Edan Lerner Fast generation of ultrastable computer glasses by minimization of an augmented potential energy, Phys. Rev. E, Volume 99 (2019) no. 1, 012106 | DOI

[127] Varda F. Hagh; Sidney R. Nagel; Andrea J. Liu; M. Lisa Manning; Eric I. Corwin Transient learning degrees of freedom for introducing function in materials, Proc. Natl. Acad. Sci. USA, Volume 119 (2022) no. 19, e2117622119 | DOI | MR

[128] Ludovic Berthier; Patrick Charbonneau; Elijah Flenner; Francesco Zamponi Origin of ultrastability in vapor-deposited glasses, Phys. Rev. Lett., Volume 119 (2017) no. 18, 188002 | DOI

[129] Elijah Flenner; Ludovic Berthier; Patrick Charbonneau; Christopher J. Fullerton Front-Mediated Melting of Isotropic Ultrastable Glasses, Phys. Rev. Lett., Volume 123 (2019) no. 17, 175501 | DOI

[130] Ludovic Berthier; Mark D. Ediger How to “measure” a structural relaxation time that is too long to be measured?, J. Chem. Phys., Volume 153 (2020) no. 4, 044501 | DOI

[131] Kurt Lejaeghere; Gustav Bihlmayer; Torbjörn Björkman; Peter Blaha; Stefan Blügel; Volker Blum; Damien Caliste; Ivano E. Castelli; Stewart J. Clark; Andrea Dal Corso et al. Reproducibility in density functional theory calculations of solids, Science, Volume 351 (2016) no. 6280, aad3000 | DOI

[132] Kenneth Chang The nature of glass remains anything but clear, New York Times (2008) (https://www.nytimes.com/2008/07/29/science/29glass.html)

[133] Nicholas Bailey; Trond Ingebrigtsen; Jesper Schmidt Hansen; Arno Veldhorst; Lasse Bøhling; Claire Lemarchand; Andreas Olsen; Andreas Bacher; Lorenzo Costigliola; Ulf Pedersen et al. RUMD: A general purpose molecular dynamics package optimized to utilize GPU hardware down to a few thousand particles, SciPost Phys., Volume 3 (2017) no. 6, 038 | DOI

[134] Daniele Coslovich; Misaki Ozawa; Walter Kob Dynamic and thermodynamic crossover scenarios in the Kob-Andersen mixture: Insights from multi-CPU and multi-GPU simulations, Eur. Phys. J. E, Volume 41 (2018) no. 5, 62 | DOI

[135] Samuel S. Schoenholz; Ekin Dogus Cubuk; Daniel M. Sussman; Efthimios Kaxiras; Andrea J. Liu A structural approach to relaxation in glassy liquids, Nat. Phys., Volume 12 (2016) no. 5, pp. 469-471 | DOI

[136] Victor Bapst; Thomas Keck; A Grabska-Barwińska; Craig Donner; Ekin Dogus Cubuk; Samuel S. Schoenholz; Annette Obika; Alexander WR Nelson; Trevor Back; Demis Hassabis et al. Unveiling the predictive power of static structure in glassy systems, Nat. Phys., Volume 16 (2020) no. 4, pp. 448-454 | DOI

[137] Rinske M. Alkemade; Emanuele Boattini; Laura Filion; Frank Smallenburg Comparing machine learning techniques for predicting glassy dynamics, J. Chem. Phys., Volume 156 (2022) no. 20, 204503 | DOI

[138] Han Liu; Zhangji Zhao; Qi Zhou; Ruoxia Chen; Kai Yang; Zhe Wang; Longwen Tang; Mathieu Bauchy Challenges and opportunities in atomistic simulations of glasses: a review, Comptes Rendus. Géoscience, Volume 354 (2022) no. S1, pp. 35-77 | DOI

[139] Ludovic Berthier; Mark D. Ediger Facets of glass physics, Phys. Today, Volume 69 (2016), p. 40 | DOI

[140] Gary L. Hunter; Eric R. Weeks The physics of the colloidal glass transition, Rep. Prog. Phys., Volume 75 (2012) no. 6 | DOI

[141] G. Marty; Olivier Dauchot Subdiffusion and cage effect in a sheared granular material, Phys. Rev. Lett., Volume 94 (2005) no. 1, 015701 | DOI

[142] Aaron S. Keys; Adam R Abate; Sharon C. Glotzer; Douglas J. Durian Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys., Volume 3 (2007) no. 4, pp. 260-264 | DOI

[143] Ludovic Berthier; Elijah Flenner; Grzegorz Szamel Glassy dynamics in dense systems of active particles, J. Chem. Phys., Volume 150 (2019) no. 20, 200901 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The glass transition in molecules, colloids and grains: universality and specificity

Olivier Dauchot; François Ladieu; C. Patrick Royall

C. R. Phys (2023)


The RFOT Theory of Glasses: Recent Progress and Open Issues

Giulio Biroli; Jean-Philippe Bouchaud

C. R. Phys (2023)


Coarse-graining amorphous plasticity: impact of rejuvenation and disorder

Botond Tyukodi; Armand Barbot; Reinaldo García-García; ...

C. R. Phys (2023)