Comptes Rendus
The glass transition in molecules, colloids and grains: universality and specificity
[Universalité et spécificités des transitions vitreuses moléculaire, colloïdale, et granulaire]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 25-56.

Nous passons en revue certains des résultats expérimentaux importants concernant les systèmes vitrifiables moléculaires, colloïdaux et granulaires, sans prétendre aucunement à l’exhaustivité, mais en nous concentrant principalement sur nos propres travaux et ceux de nos collaborateurs. Notre objectif est de discuter les résultats expérimentaux pour chacun de ces systèmes en montrant à la fois ce qu’ils contiennent d’universel, malgré les grandes différences des échelles d’espace et de temps entre ces trois classes de matériaux, et ce qu’il y a de spécifique. Pour ce qui est des aspects universels, nous montrons en particulier que la notion d’hétérogénéité de la dynamique, celle de longueur de corrélation croissante, voire même celle de changement de structure subtil, sont désormais bien établies dans chacune des trois catégories de systèmes vitrifiables. Ensuite, nous passons en revue certains phénomènes expérimentaux qui dépendent plus spécifiquement de la catégorie de systèmes considérée, comme la transition de Gardner, et d’autres phénomènes qui ont été étudiés davantage dans une ou deux des catégories que dans l’ensemble des classes. Enfin, nous posons quelques questions ouvertes et examinons ce qui pourrait être fait pour combler certaines lacunes entre les approches théoriques et les expériences.

We highlight certain key achievements in experimental work on molecular, colloidal and granular glassformers. This short review considers these three classes of experimental systems and focusses largely on the work of the authors and their coworkers and thus is far from exhaustive. Our goal is rather to discuss particular experimental results from these classes and to explore universality and specificity across the broad range of length– and time–scales they span. We emphasize that a variety of phenomena, not least dynamical heterogeneity, growing lengthscales and a change in structure, albeit subtle, are now well established in these three classes of glassformer. We then review some experimental measurements which depend more specifically on the class of glassformer, such as the Gardner transition and some which have been investigated more in one or two classes than in all, such as configurational entropy and evidence for a dynamical phase transition. We finally put forward some open questions and consider what could be done to fill some of the gaps between theoretical approaches and experiments.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.155
Keywords: Glasses, Correlations, Colloidal Glass Transition, Granular Glass Transition, Structural Glass Transition, Dynamical Heterogeneities
Mot clés : Verres, Corrélations, Transition vitreuse colloïdale, Transition vitreuse granulaire, Transition vitreuse dans les verres structuraux, Hétérogénéités dynamiques
Olivier Dauchot 1 ; François Ladieu 2 ; C. Patrick Royall 1

1 Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
2 SPEC, CEA, CNRS, Universit’e Paris-Saclay, CEA Saclay Bat 772, F-91191 Gif-sur-Yvette Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_25_0,
     author = {Olivier Dauchot and Fran\c{c}ois Ladieu and C. Patrick Royall},
     title = {The glass transition in molecules, colloids and grains: universality and specificity},
     journal = {Comptes Rendus. Physique},
     pages = {25--56},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.155},
     language = {en},
}
TY  - JOUR
AU  - Olivier Dauchot
AU  - François Ladieu
AU  - C. Patrick Royall
TI  - The glass transition in molecules, colloids and grains: universality and specificity
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 25
EP  - 56
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.155
LA  - en
ID  - CRPHYS_2023__24_S1_25_0
ER  - 
%0 Journal Article
%A Olivier Dauchot
%A François Ladieu
%A C. Patrick Royall
%T The glass transition in molecules, colloids and grains: universality and specificity
%J Comptes Rendus. Physique
%D 2023
%P 25-56
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.155
%G en
%F CRPHYS_2023__24_S1_25_0
Olivier Dauchot; François Ladieu; C. Patrick Royall. The glass transition in molecules, colloids and grains: universality and specificity. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 25-56. doi : 10.5802/crphys.155. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.155/

[1] Giulio Biroli; Jean-Philippe Bouchaud The RFOT Theory of Glasses: Recent Progress and Open Issues, C. R. Phys., Volume 24 (2023) no. S1, pp. 9-23 | DOI

[2] Vassiliy Lubchenko; Peter G. Wolynes Theory of Structural Glasses and Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI

[3] Giorgio Parisi; Francesco Zamponi Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys., Volume 82 (2010) no. 1, pp. 789-845 | DOI

[4] David Chandler; Juan P. Garrahan Dynamics on the way to forming glass: bubbles in space-time, Ann. Rev. Cond. Matter Phys., Volume 61 (2010), pp. 191-217 | DOI

[5] Thomas Speck Dynamic Facilitation Theory: A Statistical Mechanics Approach to Dynamic Arrest, J. Stat. Mech. Theory Exp., Volume 2019 (2019) no. 8, 084015 | DOI | MR | Zbl

[6] Gilles Tarjus; S . A. Kivelson; Z. Nussinov; P. Viot The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment, J. Phys.: Condens. Matter, Volume 17 (2005), p. R1143-R1182 | DOI

[7] L. M. C. Janssen Mode-Coupling Theory of the Glass Transition: A Primer, Frontiers in Physics, Volume 6 (2018), 97 | DOI

[8] Patrick Charbonneau; David R. Reichman Mode-coupling theory, J. Stat. Mech. Theory Exp. (2005), P05013 | DOI

[9] Ludovic Berthier; Jean-Louis Barrat Computer simulations of the glass transition and glassy materials, C. R. Phys., Volume 24 (2023) no. S1, pp. 57-72 | DOI

[10] M. D. Ediger Spatially Heterogeneous Dynamics in Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 51 (2000), pp. 99-128 | DOI

[11] M. D. Ediger Perspective on high stability vapor-deposited glasses, J. Chem. Phys., Volume 147 (2017), 210901 | DOI

[12] G. L. Hunter; Eric R. Weeks The physics of the colloidal glass transition, Rep. Prog. Phys., Volume 75 (2012), 066501 | DOI

[13] Peter J. Yunker; Ke Chen; Matthew D. Gratale; Matthew A. Lohr; Tim Stil; Arjun G. Yodh Physics in ordered and disordered colloidal matter composed of poly(N-isopropyl acrylamide) microgel particles, Rep. Prog. Phys., Volume 77 (2014), 056601 | DOI

[14] Alexei Ivlev; Harmut Löwen; Gregor E. Morfill; C. Patrick Royall Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids, World Scientific Publishing Co., Singapore Scientific, 2012 | DOI

[15] C. Patrick Royall; Francesco Turci; Soichi Tatsumi; John Russo; Joshua Robinson The race to the bottom: approaching the ideal glass?, J. Phys.: Condens. Matter, Volume 30 (2018), 363001 | DOI

[16] Olivier Dauchot Grains, Glasses and Jamming, Glasses and Grains: Poincaré Seminar 2009 (Progress in Mathematical Physics), Volume 61, Springer, 2011, pp. 137-157 | DOI

[17] Binu P. Thomas; S. Annamala Pillai; C. S. Narayanamurthy Photoelastic digital holographic polariscope, J. Mod. Opt., Volume 66 (2019), pp. 817-828 | DOI

[18] Francesco Arceri; François P. Landes; Ludovic Berthier; Giulio Biroli Glasses and aging: A Statistical Mechanics Perspective, Statistical and Nonlinear Physics (Encyclopedia of Complexity and Systems Science Series), Springer, 2022, pp. 229-296 | DOI

[19] Daniel Bonn; Morton M. Denn; Ludovic Berthier; Thibaut Divoux; Sébastien Manneville Yield Stress Materials in Soft Condensed Matter, Rev. Mod. Phys., Volume 89 (2017), 035005 | DOI

[20] Philip S. Salmon; Anita Zeidler Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach, Phys. Chem. Chem. Phys., Volume 15 (2013), pp. 15286-15308 | DOI

[21] Gregory B. McKenna; Sindee L. Simon 50th Anniversary Perspective : Challenges in the Dynamics and Kinetics of Glass-Forming Polymers, Macromolecules, Volume 50 (2017) no. 17, pp. 6333-6361 | DOI

[22] Y. Q. Cheng; E. Ma Atomic-level structure and structure‚ property relationship in metallic glasses, Prog. Mater. Sci., Volume 56 (2011), pp. 379-473 | DOI

[23] Ludovic Berthier; Giulio Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI

[24] C. Patrick Royall; Stephen R. Williams The role of local structure in dynamical arrest, Phys. Rep., Volume 560 (2015), pp. 1-75 | DOI | MR

[25] K. Chang The Nature of Glass Remains Anything but Clear, New York Times (2008) (http://www.nytimes.com/2008/07/29/science/29glass.html?pagewanted=all)

[26] Andrea Cavagna Supercooled liquids for pedestrians, Phys. Rep., Volume 476 (2009), pp. 51-124 | DOI

[27] W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., Volume 43 (1948), pp. 219-256 | DOI

[28] Gerold Adam; Julian H. Gibbs On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids, J. Chem. Phys., Volume 43 (1965) no. 1, pp. 139-146 | DOI

[29] Patrick Charbonneau; Jorge Kurchan; Giorgio Parisi; Pierfrancesco Urbani; Francesco Zamponi Fractal free energy landscapes in structural glasses, Nat. Commun., Volume 5 (2014) no. 1, pp. 1-6 | DOI

[30] Patrick Charbonneau; Jorge Kurchan; Giorgio Parisi; Pierfrancesco Urbani; Francesco Zamponi Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions, Ann. Rev. Cond. Matter Phys., Volume 8 (2017), pp. 265-288 | DOI

[31] Christos N. Likos Effective interactions in soft condensed matter physics, Phys. Rep., Volume 348 (2001), pp. 267-439 | DOI

[32] W. C. K. Poon The physics of a model colloid-polymer mixture, J. Phys.: Condens. Matter, Volume 14 (2002) no. 33, p. R859-R880 | DOI

[33] C. Patrick Royall; Stephen R. Williams; Hajime Tanaka Vitrification and gelation in sticky spheres, J. Chem. Phys., Volume 148 (2018), 044501 | DOI

[34] C. Patrick Royall; Makcolm A. Faers; Sian L. Fussell; James E. Hallett Real Space Analysis of Colloidal Gels: Triumphs, Challenges and Future Directions, J. Phys.: Condens. Matter, Volume 33 (2021), 453002 | DOI

[35] P. N. Pusey; W. van Megen Observation of a glass transition in suspensions of spherical colloidal particles, Phys. Rev. Lett., Volume 59 (1987) no. 18, pp. 2083-2086 | DOI

[36] Christian L. Klix; C. Patrick Royall; Hajime Tanaka Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions, Phys. Rev. Lett., Volume 104 (2010), 165702 | DOI

[37] M. van der Linden; D. El Masri; M. Dijkstra; A van Blaaderen Expansion of charged colloids after centrifugation: formation and crystallisation of long-range repulsive glasses†, Soft Matter, Volume 9 (2013), pp. 11618-11633 | DOI

[38] W. C. K. Poon; Eric R. Weeks; C. Patrick Royall On measuring colloidal volume fractions, Soft Matter, Volume 8 (2012), pp. 21-30 | DOI

[39] C. Patrick Royall; Wilson C. K. Poon; Eric R. Weeks In search of colloidal hard spheres, Soft Matter, Volume 9 (2013), pp. 17-27 | DOI

[40] C. P. Royall; P. Charbonneau; M. Dijkstra; J. Russo; F. Smallenburg; T. Speck; C. Valeriani Colloidal Hard Spheres: Triumphs, Challenges and Mysteries (2023) (preprint, arXiv:2305.02452, to be submitted to Reviews of Modern Physics) | DOI

[41] Andrew H. Marcus; Binhua Lin; Stuart A. Rice Self-diffusion in dilute quasi-two-dimensional hard sphere suspensions: Evanescent wave light scattering and video microscopy studies, Phys. Rev. E, Volume 53 (1996), pp. 1765-1776 | DOI

[42] Andrew H. Marcus; Jeremy Schofield; Stuart A. Rice Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids, Phys. Rev. E, Volume 60 (1999), pp. 5725-5736 | DOI

[43] B. Cui; Binhua Lin; S. A. Rice Dynamical heterogeneity in a dense quasi-two-dimensional colloidal liquid, J. Chem. Phys., Volume 114 (2001), pp. 9142-9156 | DOI

[44] Ronen Zangi; Stuart A. Rice Cooperative Dynamics in Two Dimensions, Phys. Rev. Lett., Volume 92 (2004), 035502 | DOI

[45] Zexin Zhang; Peter J. Yunker; Piotr Habdas; Arjun G. Yodh Cooperative Rearrangement Regions and Dynamical Heterogeneities in Colloidal Glasses with Attractive Versus Repulsive Interactions, Phys. Rev. Lett., Volume 107 (2011), 208303 | DOI

[46] Shreyas Gokhale; A. K. Sood; Rajesh Ganapathy Deconstructing the glass transition through critical experiments on colloids, Adv. Phys., Volume 65 (2016) no. 4, pp. 363-452 | DOI

[47] C. Patrick Royall; Francesco Turci; Thomas Speck Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics, J. Chem. Phys., Volume 153 (2020), 090901 | DOI

[48] P. Lunkenheimer; A. Loidl Dielectric spectroscopy of glass-forming materials: a-relaxation and excess wing, Chem. Phys., Volume 284 (2002), pp. 205-219 | DOI

[49] James E. Hallett; Francesco Turci; C. Patrick Royall Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations, Nat. Commun., Volume 9 (2018), 3272 | DOI

[50] C. Patrick Royall; Walter Kob Locally favoured structures and dynamic length scales in a simple glass-former, J. Stat. Mech. Theory Exp. (2017), 024001 | DOI

[51] C. Barrio; J. R. Solana Contact pair correlation functions and equation of state for additive hard disk fluid mixtures, J. Chem. Phys., Volume 115 (2001) no. 15, pp. 7123-7129 | DOI

[52] Ludovic Berthier; Thomas A. Witten Glass transition of dense fluids of hard and compressible spheres, Phys. Rev. E, Volume 80 (2009), 021502 | DOI

[53] Nicoletta Gnan; Claudio Maggi; Thomas B. Schrøder; Jeppe C. Dyre Predicting the Effective Temperature of a Glass, Phys. Rev. Lett., Volume 104 (2010), 125902 | DOI

[54] C. Patrick Royall; Alex Malins; A. J. Dunleavy; R. Pinney Strong geometric frustration in model glassformers, J. Non Cryst. Solids, Volume 407 (2015), pp. 34-43 | DOI

[55] C. A. Angell Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non Cryst. Solids, Volume 102 (1988), pp. 205-221 | DOI

[56] G. Brambilla; D. El Masri; M. Pierno; Ludovic Berthier; Luca Cipelletti; G. Petekidis; Andrew B. Schofield Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition, Phys. Rev. Lett., Volume 102 (2009), 085703 | DOI

[57] Y. S. Elmatad; David Chandler; Juan P. Garrahan Corresponding States of Structural Glass Formers, J. Phys. Chem. B, Volume 113 (2009), pp. 5563-5567 | DOI

[58] W. van Megen; T. C. Mortensen; Stephen R. Williams Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition, Phys. Rev. E, Volume 58 (1998), pp. 6073-6085 | DOI

[59] K. N. Pham; A. M. Puertas; J. Bergenholtz; S. U. Egelhaaf; A. Moussaïd; P. N. Pusey; Andrew B. Schofield; M. E. Cates; M. Fuchs; W. C. K. Poon Multiple glassy states in a simple model system, Science, Volume 296 (2002), pp. 104-106 | DOI

[60] James E. Hallett; Francesco Turci; C. Patrick Royall The devil is in the details: pentagonal bipyramids and dynamic arrest, J. Stat. Mech. Theory Exp. (2020), 014001 | DOI | MR | Zbl

[61] C. Luo; Joshua F. Robinson; C. Patrick Royall; L. M. C. Janssen Many–body correlations are non-negligible in simple glassformers (2022) (submitted)

[62] Tina Hecksher; Albena I. Nielsen; Niels Boye Olsen; Jeppe C. Dyre Little evidence for dynamic divergences in ultraviscous molecular liquids, Nature Phys., Volume 4 (2008), pp. 737-741 | DOI

[63] Aaron S. Keys; Juan P. Garrahan; David Chandler Calorimetric glass transition explained by hierarchical dynamic facilitation, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 4482-4487 | DOI

[64] Frédéric Lechenault; Olivier Dauchot; Giulio Biroli; Jean-Philippe Bouchaud Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass, Eur. Phys. Lett., Volume 83 (2008) no. 4, 46003 | DOI

[65] Olivier Dauchot; Guillaume Marty; Giulio Biroli Dynamical heterogeneity close to the jamming transition in a sheared granular material, Phys. Rev. Lett., Volume 95 (2005) no. 26, 265701 | DOI

[66] Frédéric Lechenault; Olivier Dauchot; Giulio Biroli; Jean-Philippe Bouchaud Lower bound on the four-point dynamical susceptibility: Direct experimental test on a granular packing, Eur. Phys. Lett., Volume 83 (2008) no. 4, 46002 | DOI

[67] G. Li; M. Fuchs; W. M. Du; A. Latz; N. J. Tao; J. Hernandez; W. Götze; H. Z. Cummins Light-scattering study of β-relaxation in CaKNO3 and salol near the liquid-glass transition: idealized and extended mode coupling theory analysis, J. Non Cryst. Solids, Volume 172-174 (1994), pp. 43-51 | DOI

[68] A. Aouadi; C. Dreyfus; M. Massot; R. M. Pick; T. Berger; W. Steffen; A. Patkowski; C. Alba-Simionesco Light scattering study of the liquid–glass transition of meta-toluidine, J. Chem. Phys., Volume 112 (2000) no. 22, pp. 9860-9873 | DOI

[69] N. Petzold; E. A. Rössler Light scattering study on the glass former o-terphenyl, J. Chem. Phys., Volume 133 (2010) no. 12, 124512 | DOI

[70] Adrian-Marie Philippe; Domenico Truzzolillo; Julian Galvan-Myoshi; Philippe Dieudonné-George; Véronique Trappe; Ludovic Berthier; Luca Cipelletti Glass transition of soft colloids, Phys. Rev. E, Volume 97 (2018) no. 4, 040601 | DOI

[71] Mathieu Leocmach; Hajime Tanaka A novel particle tracking method with individual particle size measurement and its application to ordering in glassy hard sphere colloids, Soft Matter, Volume 9 (2013) no. 10.1039/C2SM27107A, pp. 1447-1457 | DOI

[72] C. Patrick Royall; A. A. Louis; Hajime Tanaka Measuring colloidal interactions with confocal microscopy, J. Chem. Phys., Volume 127 (2007) no. 4, 044507 | DOI

[73] R. Pinchaipat; M. Campo; Francesco Turci; James E. Hallett; Thomas Speck; C. Patrick Royall Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space, Phys. Rev. Lett., Volume 119 (2017), 028004 | DOI

[74] Paul J. Steinhardt; David R. Nelson; Marco Ronchetti Bond-Orientational Order In Liquids And Glasses, Phys. Rev. B, Volume 28 (1983) no. 2, pp. 784-805 | DOI

[75] Alex Malins; Stephen R. Williams; Jens Eggers; C. Patrick Royall Identification of Structure in Condensed Matter with the Topological Cluster Classification, J. Chem. Phys., Volume 139 (2013), 234506 | DOI

[76] Luca Cipelletti; Eric R. Weeks Glassy dynamics and dynamical heterogeneity in colloids, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim Van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 110-151 | DOI

[77] Olivier Dauchot; Douglas J. Durian; Martin van Hecke Dynamical heterogeneities in grains and foams, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 203-228 | DOI

[78] S. W. Hell Nanoscopy with Focused Light, 2014 (Nobel Lecture)

[79] Benjamin Chu Laser Light Scattering, Basic Principles and Practice, Academic Press, Boston, 1991

[80] Luca Cipelletti; Hugo Bissig; Veronique Trappe; Pierre Ballesta; Sylvain Mazoyer Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics, J. Phys.: Condens. Matter, Volume 15 (2002) no. 1, S257 | DOI

[81] Agnès Duri; David A. Sessoms; Veronique Trappe; Luca Cipelletti Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging, Phys. Rev. Lett., Volume 102 (2009) no. 8, 085702 | DOI

[82] P. Y. Huang; S. Kurasch; J. S. Alden; A. Shekhawat; A. A. Alemi; P. L. McEuen; J. P. Sethna; U. Kaiser; D. A. Muller Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica’s Dance, Science, Volume 342 (2013), pp. 224-227 | DOI

[83] R. Richert; N. E. Israeloff; C. Alba-Simionesco; François P. Ladieu; D. L’Hôte Experimental approaches to heterogeneous dynamics, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 152-202 | DOI

[84] U. Tracht; M. Wilhelm; A. Heuer; H. Feng; K. Schmidt-Rohr; H. W. Spiess Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance, Phys. Rev. Lett., Volume 81 (1998) no. 13, pp. 2727-2730 | DOI

[85] E. Vidal Russell; N. E. Israeloff Direct observation of molecular cooperativity near the glass transition, Nature, Volume 408 (2000) no. 6813, pp. 695-698 | DOI

[86] C. Dalle-Ferrier; C. Thibierge; C. Alba-Simionesco; Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; François P. Ladieu; D. L’Hôte; Gilles Tarjus Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence, Phys. Rev. E, Volume 76 (2007) no. 4, 041510 | DOI

[87] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Walter Kob; K. Miyazaki; David R. Reichman Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics, J. Chem. Phys., Volume 126 (2007) no. 18, 184503 | DOI

[88] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Walter Kob; K. Miyazaki; David R. Reichman Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations, J. Chem. Phys., Volume 126 (2007) no. 18, 184504 | DOI

[89] Samuel Albert; T. Bauer; M. Michl; Giulio Biroli; Jean-Philippe Bouchaud; A. Loidl; P. Lunkenheimer; Roland Tourbot; C. Wiertel-Gasquet; François P. Ladieu Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers, Science, Volume 352 (2016) no. 6291, pp. 1308-1311 | DOI

[90] C. Crauste-Thibierge; C. Brun; François P. Ladieu; D. L’Hôte; Giulio Biroli; Jean-Philippe Bouchaud Evidence of Growing Spatial Correlations at the Glass Transition from Nonlinear Response Experiments, Phys. Rev. Lett., Volume 104 (2010) no. 16, 165703 | DOI

[91] P. Gadige; Samuel Albert; M. Michl; T. Bauer; P. Lunkenheimer; A. Loidl; Roland Tourbot; C. Wiertel-Gasquet; Giulio Biroli; Jean-Philippe Bouchaud; François P. Ladieu Unifying different interpretations of the nonlinear response in glass-forming liquids, Phys. Rev. E, Volume 96 (2017) no. 3, 032611 | DOI

[92] Giulio Biroli; Jean-Philippe Bouchaud; Francois Ladieu Amorphous Order and Nonlinear Susceptibilities in Glassy Materials, J. Phys. Chem. B, Volume 125 (2021) no. 28, pp. 7578-7586 | DOI

[93] T. Bauer; P. Lunkenheimer; A. Loidl Cooperativity and the Freezing of Molecular Motion at the Glass Transition, Phys. Rev. Lett., Volume 111 (2013) no. 22, 225702 | DOI

[94] R. Casalini; D. Fragiadakis; C. M. Roland Dynamic correlation length scales under isochronal conditions, J. Chem. Phys., Volume 142 (2015) no. 6, 064504 | DOI

[95] A. R. Young-Gonzales; K. Adrjanowicz; M. Paluch; R. Richert Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate, J. Chem. Phys., Volume 147 (2017) no. 22, 224501 | DOI

[96] Donna Perera; Peter Harrowell Consequences of kinetic inhomogeneities in glasses, Phys. Rev. E, Volume 54 (1996), pp. 1652-1662 | DOI

[97] Eric R. Weeks; J. C. Crocker; Andrew C. Levitt; Andrew B. Schofield; D. A. Weitz Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition, Science, Volume 287 (2000) no. 5453, pp. 627-631 | DOI

[98] Raphaël Candelier; Olivier Dauchot; Giulio Biroli Building blocks of dynamical heterogeneities in dense granular media, Phys. Rev. Lett., Volume 102 (2009) no. 8, 088001 | DOI

[99] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; D. El Masri; D. L’Hôte; François P. Ladieu; M. Pierno Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition, Science, Volume 310 (2005), pp. 1797-1800 | DOI

[100] Aaron S. Keys; Adam Ross Abate; Sharon C. Glotzer; Douglas J. Durian Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys., Volume 3 (2007) no. 4, pp. 260-264 | DOI

[101] Raphaël Candelier; Olivier Dauchot; Giulio Biroli Dynamical facilitation decreases when approaching the granular glass transition, Eur. Phys. Lett., Volume 92 (2010) no. 2, 24003 | DOI

[102] M. Michl; T. Bauer; P. Lunkenheimer; A. Loidl Nonlinear dielectric spectroscopy in a fragile plastic crystal, J. Chem. Phys., Volume 144 (2016) no. 11, p. 114506 | DOI

[103] Robert L. Leheny; Menon Narayanan; Sidney R. Nagel; David L. Price; Kentaro Suzuya; P. Thiyagarajan Structural studies of an organic liquid through the glass transition, J. Chem. Phys., Volume 105 (1996), pp. 7783-7794 | DOI

[104] Adam Ross Abate; Douglas J. Durian Approach to jamming in an air-fluidized granular bed, Phys. Rev. E, Volume 74 (2006) no. 3, 031308 | DOI

[105] F. C. Frank Supercooling of Liquids, Proc. R. Soc. Lond., Ser. A, Volume 215 (1952) no. 1120, pp. 43-46 | DOI

[106] Akihiko Hirata; Pengfei Guan; Takeshi Fujita; Yoshihiko Hirotsu; Akohisa Inoue; Alain Reza Yavari; Toshio Sakurai; Mingwei Chen Direct observation of local atomic order in a metallic glass, Nature Mater., Volume 10 (2010), pp. 28-33 | DOI

[107] Akihiko Hirata; L. J. Kang; Takeshi Fujita; B. Klumov; K. Matsue; M. Kotani; A. R. Yavari; Mingwei Chen Geometric Frustration of Icosahedron in Metallic Glasses, Science, Volume 341 (2013), pp. 376-379 | DOI

[108] A. C. Y. Liu; M. J. Neish; G. Stokol; G. A. Buckley; L. A. Smillie; M. D. de Jonge; R. T. Ott; M. J. Kramer; L. Bourgeois Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun Zr 36 Cu 64 Metallic Glass, Phys. Rev. Lett., Volume 110 (2013), 205505 | DOI

[109] David J. Wales Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, 2004

[110] Pierre-Michel Déjardin; Florian Pabst; Yann Cornaton; Andreas Helbling; Thomas Blochowicz Temperature dependence of the Kirkwood correlation factor and linear dielectric constant of simple isotropic polar fluids, Phys. Rev. E, Volume 105 (2022) no. 2, 024108 | DOI | MR

[111] Masahiro Nakanishi; Ryusuke Nozaki Systematic study of the glass transition in polyhydric alcohols, Phys. Rev. E, Volume 83 (2011) no. 5, 051503 | DOI

[112] C. Patrick Royall; Stephen R. Williams; T. Ohtsuka; Hajime Tanaka Direct observation of a local structural mechanism for dynamic arrest, Nature Mater., Volume 7 (2008), pp. 556-561 | DOI

[113] Mathieu Leocmach; Hajime Tanaka Roles of icosahedral and crystal-like order in the hard spheres glass transition, Nat. Commun., Volume 3 (2012), 974 | DOI

[114] Sebastian Golde; Thomas Palberg; Hans J. Schöpe Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions, Nature Phys., Volume 12 (2016), pp. 712-717 | DOI

[115] Peter Wochner; Christian Gutt; Tina Autenrieth; Thomas Demmer; Volodymyr Bugaev; Alejandro Díaz Ortiza; Agnès Duri; Federico Zontone; Gerhard Grübel; Helmut Dosch X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 11511-11514 | DOI

[116] Amelia C. Y. Liu; Espen J. Bojesen; Rico F. Tabor; Stephen T. Mudie; Alessio Zaccone; Peter Harrowell; Timothy C. Petersen Local symmetry predictors of mechanical stability in glasses, Sci. adv., Volume 8 (2022), eabn0681 | DOI

[117] Raphaël Candelier Dynamics and Structure close to the Glass and Jamming transitions; Experiments and Simulations, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France (2009)

[118] Keiji Watanabe; Hajime Tanaka Direct observation of medium-range crystalline order in granular liquids near the glass transition, Phys. Rev. Lett., Volume 100 (2008) no. 15, 158002 | DOI

[119] François Sausset; Gilles Tarjus Comment on “correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids”, Phys. Rev. Lett., Volume 100 (2008) no. 9, 099601 | DOI

[120] Takeshi Kawasaki; Takeaki Araki; Hajime Tanaka Kawasaki, Araki, and Tanaka Reply, Phys. Rev. Lett., Volume 100 (2008) no. 9, 099602 | DOI

[121] Elisa Tamborini; C. Patrick Royall; Pietro Cicuta Correlation between crystalline order and vitrification in colloidal monolayers, J. Phys.: Condens. Matter, Volume 27 (2015), 194124 | DOI

[122] Ian Williams; Erdal C. Oğuz; Paul Bartlett; Harmut Lowen; C. Patrick Royall Flexible confinement leads to multiple relaxation regimes in glassy colloidal liquids, J. Chem. Phys., Volume 142 (2015), 024505 | DOI

[123] Smarajit Karmakar; C. Dasgupta; S. Sastry Growing Length Scales and Their Relation to Timescales in Glass-Forming Liquids, Ann. Rev. Cond. Matter Phys., Volume 5 (2014), pp. 255-284 | DOI

[124] Jacob D. Stevenson; Peter G. Wolynes Thermodynamic−Kinetic Correlations in Supercooled Liquids: A Critical Survey of Experimental Data and Predictions of the Random First-Order Transition Theory of Glasses, J. Phys. Chem. B, Volume 109 (2005) no. 31, pp. 15093-15097 | DOI

[125] Shreyas Gokhale; K. Hima Nagamanasa; Rajesh Ganapathy; A. K. Sood Growing dynamical facilitation on approaching the random pinning colloidal glass transition, Nat. Commun., Volume 5 (2014), 4685 | DOI

[126] Lester O. Hedges; Robert L. Jack; Juan P. Garrahan; David Chandler Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers, Science, Volume 323 (2009), pp. 1309-1313 | DOI

[127] Thomas Speck; Alex Malins; C. Patrick Royall First-Order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics, Phys. Rev. Lett., Volume 109 (2012), 195703 | DOI

[128] Bérengère Abou; Rémy Colin; Vivien Lecomte; Estelle Pitard; Frédéric van Wijland Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition, J. Chem. Phys., Volume 148 (2018), 164502 | DOI

[129] Soichi Tatsumi; Shintaro Aso; Osamu Yamamuro Thermodynamic Study of Simple Molecular Glasses: Universal Features in Their Heat Capacity and the Size of the Cooperatively Rearranging Regions, Phys. Rev. Lett., Volume 109 (2012) no. 4, 045701 | DOI

[130] Ian Williams; Francesco Turci; James E. Hallett; Peter Crowther; Chiara Cammarota; Giulio Biroli; C. Patrick Royall Experimental determination of configurational entropy in a two-dimensional liquid under random pinning, J. Phys.: Condens. Matter, Volume 30 (2018), 094003 | DOI

[131] Shreyas Gokhale; K. Hima Nagamanasa; A. K. Sood; Rajesh Ganapathy Influence of an amorphous wall on the distribution of localized excitations in a colloidal glass-forming liquid, J. Stat. Mech. Theory Exp. (2016), 074013 | DOI

[132] K. H Nagamanasa; A. K. Sood; Rajesh Ganapathy Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former, Nature Phys., Volume 11 (2015), pp. 403-408 | DOI

[133] Chandan K. Mishra; Rajesh Ganapathy Shape of Dynamical Heterogeneities and Fractional Stokes–Einstein and Stokes–Einstein–Debye Relations in Quasi-Two-Dimensional Suspensions of Colloidal Ellipsoids, Phys. Rev. Lett., Volume 114 (2015), 198302 | DOI

[134] Levke Ortlieb; Tromb Ingebrigtsen; James E. Hallett; Francesco Turci; C. Patrick Royall Probing excitations and cooperatively rearranging regions in deeply supercooled liquids, Nat Commun., Volume 14 (2023), 2621 | DOI

[135] Giulio Biroli; Chiara Cammarota Fluctuations and Shape of Cooperative Rearranging Regions in Glass-Forming Liquids, Phys. Rev. X, Volume 7 (2017), 011011 | DOI

[136] Divya Ganapathi; K. Hima Nagamanasa; A. K. Sood; Rajesh Ganapathy Measurements of growing surface tension of amorphous-amorphous interfaces on approaching the colloidal glass transition, Nat. Commun., Volume 9 (2018), 397 | DOI

[137] Elisabeth Gardner Spin glasses with p-spin interactions, Nucl. Phys., B, Volume 257 (1985), pp. 747-765 | DOI | MR

[138] Jorge Kurchan; Giorgio Parisi; Pierfrancesco Urbani; Francesco Zamponi Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition, J. Phys. Chem. B, Volume 117 (2013) no. 42, pp. 12979-12994 | DOI

[139] Patrick Charbonneau; Yuliang Jin; Giorgio Parisi; Corrado Rainone; Beatriz Seoane; Francesco Zamponi Numerical detection of the Gardner transition in a mean-field glass former, Phys. Rev. E, Volume 92 (2015) no. 1, 012316 | DOI

[140] Martin van Hecke Jamming of soft particles: geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter, Volume 22 (2009) no. 3, 033101 | DOI

[141] Andrea J. Liu; Sidney R. Nagel The jamming transition and the marginally jammed solid, Ann. Rev. Cond. Matter Phys., Volume 1 (2010) no. 1, pp. 347-369 | DOI

[142] Romain Mari; Florent Krzakala; Jorge Kurchan Jamming versus glass transitions, Phys. Rev. Lett., Volume 103 (2009) no. 2, 025701 | DOI

[143] Ludovic Berthier; Thomas A. Witten Glass transition of dense fluids of hard and compressible spheres, Phys. Rev. E, Volume 80 (2009) no. 2, 021502 | DOI

[144] Zexin Zhang; Ning Xu; Daniel T. N. Chen; Peter J. Yunker; Ahmed M. Alsayed; Kevin B. Aptowicz; Piotr Habdas; Andrea J. Liu; Sidney R. Nagel; Arjun G. Yodh Thermal vestige of the zero-temperature jamming transition, Nature, Volume 459 (2009) no. 7244, pp. 230-233 | DOI

[145] C. Coulais; Robert P. Behringer; Olivier Dauchot Dynamics of the contacts reveals Widom lines for jamming, Eur. Phys. Lett., Volume 100 (2012) no. 4, 44005 | DOI

[146] C. Coulais; Robert P. Behringer; Olivier Dauchot How the ideal jamming point illuminates the world of granular media, Soft Matter, Volume 10 (2014) no. 10, pp. 1519-1536 | DOI

[147] Carolina Brito; Olivier Dauchot; Giulio Biroli; Jean-Philippe Bouchaud Elementary excitation modes in a granular glass above jamming, Soft Matter, Volume 6 (2010) no. 13, pp. 3013-3022 | DOI

[148] Ke Chen; Wouter G. Ellenbroek; Zexin Zhang; Daniel T. N. Chen; Peter J. Yunker; Silke Henkes; Carolina Brito; Olivier Dauchot; Wim Van Saarloos; Andrea J. Liu et al. Low-frequency vibrations of soft colloidal glasses, Phys. Rev. Lett., Volume 105 (2010) no. 2, 025501 | DOI

[149] Antina Ghosh; Vijayakumar K. Chikkadi; Peter Schall; Jorge Kurchan; Daniel Bonn Density of states of colloidal glasses, Phys. Rev. Lett., Volume 104 (2010) no. 24, 248305 | DOI

[150] D. Kaya; N. L. Green; C. E. Maloney; M. F Islam Normal modes and density of states of disordered colloidal solids, Science, Volume 329 (2010) no. 5992, pp. 656-658 | DOI

[151] Silke Henkes; Carolina Brito; Olivier Dauchot Extracting vibrational modes from fluctuations: a pedagogical discussion, Soft Matter, Volume 8 (2012) no. 22, pp. 6092-6109 | DOI

[152] Qinyi Liao; Ludovic Berthier Hierarchical landscape of hard disk glasses, Phys. Rev. X, Volume 9 (2019) no. 1, 011049 | DOI

[153] Camille Scalliet; Ludovic Berthier; Francesco Zamponi Nature of excitations and defects in structural glasses, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-10 | DOI

[154] A. Seguin; Olivier Dauchot Experimental Evidence of the Gardner Phase in a Granular Glass, Phys. Rev. Lett., Volume 117 (2016) no. 22, 228001 | DOI

[155] Frédéric Lechenault; Raphaël Candelier; Olivier Dauchot; Jean-Philippe Bouchaud; Giulio Biroli Super-diffusion around the rigidity transition: Lévy and the Lilliputians, Soft Matter, Volume 6 (2010) no. 13, pp. 3059-3064 | DOI

[156] Andrew P. Hammond; Eric I. Corwin Experimental observation of the marginal glass phase in a colloidal glass, Proc. Natl. Acad. Sci. USA, Volume 117 (2020) no. 11, pp. 5714-5718 | DOI

[157] K. Geirhos; P. Lunkenheimer; A. Loidl Johari–Goldstein Relaxation Far Below T g : Experimental Evidence for the Gardner Transition in Structural Glasses?, Phys. Rev. Lett., Volume 120 (2018) no. 8, 085705 | DOI

[158] Samuel Albert; Giulio Biroli; François P. Ladieu; Roland Tourbot; Pierfrancesco Urbani Searching for the Gardner Transition in Glassy Glycerol, Phys. Rev. Lett., Volume 126 (2021) no. 2, 028001 | DOI

[159] B. Ruzicka; E. Zaccarelli; L. Zulian; R. Angelini; M. Sztucki; A. Moussaïd; Tharangattu N. Narayanan; F Sciortino Observation of empty liquids and equilibrium gels in a colloidal clay, Nature Mater., Volume 10 (2011), pp. 56-60 | DOI

[160] Ludovic Berthier; Patrick Charbonneau; A. Ninarello; M. Ozawa; S. Yaida Zero–temperature glass transition in two dimensions, Nat. Commun., Volume 10 (2019), 1508 | DOI

[161] Camille Scalliet; Benjamin Guiselin; Ludovic Berthier Thirty milliseconds in the life of a supercooled liquid, Phys. Rev. X, Volume 12 (2022), 041028 | DOI

[162] Raphaël Candelier; Asaph Widmer-Cooper; Jonathan K. Kummerfeld; Olivier Dauchot; Giulio Biroli; Peter Harrowell; David R. Reichman Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid, Phys. Rev. Lett., Volume 105 (2010) no. 13, 135702 | DOI

[163] Giulio Biroli; Chiara Cammarota; Gilles Tarjus; Marco Tarzia Random-Field-like Criticality in Glass-Forming Liquids, Phys. Rev. Lett., Volume 112 (2014), 175701 | DOI

[164] R. L. McGreevy Reverse Monte Carlo modeling, J. Phys.: Condens. Matter, Volume 13 (2001), p. R877-R913 | DOI

[165] Joshua A. Dijksman; Nicolas Brodu; Robert P. Behringer Refractive index matched scanning and detection of soft particles, Rev. Sci. Instrum., Volume 88 (2017) no. 5, 051807 | DOI

[166] Giulio Biroli; Jean-Philippe Bouchaud; Andrea Cavagna; T. S. Grigera; P. Verrocchio Thermodynamic signature of growing amorphous order in glass-forming liquids, Nature Phys., Volume 4 (2008) no. 10, pp. 771-775 | DOI

[167] Chiara Cammarota; Giulio Biroli Ideal glass transitions by random pinning, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 23, pp. 8850-8855 | DOI

[168] K. Hima Nagamanasa; Shreyas Gokhale; A. K. Sood; Rajesh Ganapathy Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former, Nature Phys., Volume 11 (2015) no. 5, pp. 403-408 | DOI

[169] Rajsekhar Das; Bhanu Prasad Bhowmik; Anand B. Puthirath; Tharangattu N. Narayanan; Smarajit Karmakar Soft-Pinning: Experimental Validation of Static Correlations in Supercooled Molecular Glass-forming Liquids (2021) (preprint, arXiv:2106.06325) | DOI

[170] Genki Kikumoto; Naohiro Torii; Koji Fukao; C. Patrick Royall; Haruhiko Yao; Yasuo Saruyama; Soichi Tatsumi Towards the ideal glass transition by pinning in a dimer-polymer mixture (2021) (preprint, arXiv:2003.06089) | DOI

[171] Yi Jin; Aixi Zhang; Sarah A. Wolf; Shivajee Govinda; Alex R. Moore; Mikhail Zhernenkov; Guillaume Freychet; Ahmad A. Shamsabadia; Zahra Fakhraai Glasses denser than the supercooled liquid, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2100738118 | DOI

[172] W. T. M. Irvine; M. J. Bowick; P. M. Chaikin Fractionalization of interstitials in curved colloidal crystals, Nature Mater., Volume 11 (2012), pp. 948-951 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Organic Glass-Forming Liquids and the Concept of Fragility

Christiane Alba-Simionesco

C. R. Phys (2023)


The RFOT Theory of Glasses: Recent Progress and Open Issues

Giulio Biroli; Jean-Philippe Bouchaud

C. R. Phys (2023)


Computer simulations of the glass transition and glassy materials

Jean-Louis Barrat; Ludovic Berthier

C. R. Phys (2023)