We highlight certain key achievements in experimental work on molecular, colloidal and granular glassformers. This short review considers these three classes of experimental systems and focusses largely on the work of the authors and their coworkers and thus is far from exhaustive. Our goal is rather to discuss particular experimental results from these classes and to explore universality and specificity across the broad range of length– and time–scales they span. We emphasize that a variety of phenomena, not least dynamical heterogeneity, growing lengthscales and a change in structure, albeit subtle, are now well established in these three classes of glassformer. We then review some experimental measurements which depend more specifically on the class of glassformer, such as the Gardner transition and some which have been investigated more in one or two classes than in all, such as configurational entropy and evidence for a dynamical phase transition. We finally put forward some open questions and consider what could be done to fill some of the gaps between theoretical approaches and experiments.
Nous passons en revue certains des résultats expérimentaux importants concernant les systèmes vitrifiables moléculaires, colloïdaux et granulaires, sans prétendre aucunement à l’exhaustivité, mais en nous concentrant principalement sur nos propres travaux et ceux de nos collaborateurs. Notre objectif est de discuter les résultats expérimentaux pour chacun de ces systèmes en montrant à la fois ce qu’ils contiennent d’universel, malgré les grandes différences des échelles d’espace et de temps entre ces trois classes de matériaux, et ce qu’il y a de spécifique. Pour ce qui est des aspects universels, nous montrons en particulier que la notion d’hétérogénéité de la dynamique, celle de longueur de corrélation croissante, voire même celle de changement de structure subtil, sont désormais bien établies dans chacune des trois catégories de systèmes vitrifiables. Ensuite, nous passons en revue certains phénomènes expérimentaux qui dépendent plus spécifiquement de la catégorie de systèmes considérée, comme la transition de Gardner, et d’autres phénomènes qui ont été étudiés davantage dans une ou deux des catégories que dans l’ensemble des classes. Enfin, nous posons quelques questions ouvertes et examinons ce qui pourrait être fait pour combler certaines lacunes entre les approches théoriques et les expériences.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Verres, Corrélations, Transition vitreuse colloïdale, Transition vitreuse granulaire, Transition vitreuse dans les verres structuraux, Hétérogénéités dynamiques
Olivier Dauchot 1; François Ladieu 2; C. Patrick Royall 1

@article{CRPHYS_2023__24_S1_25_0, author = {Olivier Dauchot and Fran\c{c}ois Ladieu and C. Patrick Royall}, title = {The glass transition in molecules, colloids and grains: universality and specificity}, journal = {Comptes Rendus. Physique}, pages = {25--56}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.155}, language = {en}, }
TY - JOUR AU - Olivier Dauchot AU - François Ladieu AU - C. Patrick Royall TI - The glass transition in molecules, colloids and grains: universality and specificity JO - Comptes Rendus. Physique PY - 2023 SP - 25 EP - 56 VL - 24 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.155 LA - en ID - CRPHYS_2023__24_S1_25_0 ER -
%0 Journal Article %A Olivier Dauchot %A François Ladieu %A C. Patrick Royall %T The glass transition in molecules, colloids and grains: universality and specificity %J Comptes Rendus. Physique %D 2023 %P 25-56 %V 24 %N S1 %I Académie des sciences, Paris %R 10.5802/crphys.155 %G en %F CRPHYS_2023__24_S1_25_0
Olivier Dauchot; François Ladieu; C. Patrick Royall. The glass transition in molecules, colloids and grains: universality and specificity. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 25-56. doi : 10.5802/crphys.155. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.155/
[1] The RFOT Theory of Glasses: Recent Progress and Open Issues, C. R. Phys., Volume 24 (2023) no. S1, pp. 9-23 | DOI
[2] Theory of Structural Glasses and Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI
[3] Mean-field theory of hard sphere glasses and jamming, Rev. Mod. Phys., Volume 82 (2010) no. 1, pp. 789-845 | DOI
[4] Dynamics on the way to forming glass: bubbles in space-time, Ann. Rev. Cond. Matter Phys., Volume 61 (2010), pp. 191-217 | DOI
[5] Dynamic Facilitation Theory: A Statistical Mechanics Approach to Dynamic Arrest, J. Stat. Mech. Theory Exp., Volume 2019 (2019) no. 8, 084015 | DOI | MR | Zbl
[6] The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment, J. Phys.: Condens. Matter, Volume 17 (2005), p. R1143-R1182 | DOI
[7] Mode-Coupling Theory of the Glass Transition: A Primer, Frontiers in Physics, Volume 6 (2018), 97 | DOI
[8] Mode-coupling theory, J. Stat. Mech. Theory Exp. (2005), P05013 | DOI
[9] Computer simulations of the glass transition and glassy materials, C. R. Phys., Volume 24 (2023) no. S1, pp. 57-72 | DOI
[10] Spatially Heterogeneous Dynamics in Supercooled Liquids, Annu. Rev. Phys. Chem., Volume 51 (2000), pp. 99-128 | DOI
[11] Perspective on high stability vapor-deposited glasses, J. Chem. Phys., Volume 147 (2017), 210901 | DOI
[12] The physics of the colloidal glass transition, Rep. Prog. Phys., Volume 75 (2012), 066501 | DOI
[13] Physics in ordered and disordered colloidal matter composed of poly(N-isopropyl acrylamide) microgel particles, Rep. Prog. Phys., Volume 77 (2014), 056601 | DOI
[14] Complex Plasmas and Colloidal Dispersions: Particle-resolved Studies of Classical Liquids and Solids, World Scientific Publishing Co., Singapore Scientific, 2012 | DOI
[15] The race to the bottom: approaching the ideal glass?, J. Phys.: Condens. Matter, Volume 30 (2018), 363001 | DOI
[16] Grains, Glasses and Jamming, Glasses and Grains: Poincaré Seminar 2009 (Progress in Mathematical Physics), Volume 61, Springer, 2011, pp. 137-157 | DOI
[17] Photoelastic digital holographic polariscope, J. Mod. Opt., Volume 66 (2019), pp. 817-828 | DOI
[18] Glasses and aging: A Statistical Mechanics Perspective, Statistical and Nonlinear Physics (Encyclopedia of Complexity and Systems Science Series), Springer, 2022, pp. 229-296 | DOI
[19] Yield Stress Materials in Soft Condensed Matter, Rev. Mod. Phys., Volume 89 (2017), 035005 | DOI
[20] Identifying and characterising the different structural length scales in liquids and glasses: an experimental approach, Phys. Chem. Chem. Phys., Volume 15 (2013), pp. 15286-15308 | DOI
[21] 50th Anniversary Perspective : Challenges in the Dynamics and Kinetics of Glass-Forming Polymers, Macromolecules, Volume 50 (2017) no. 17, pp. 6333-6361 | DOI
[22] Atomic-level structure and structure‚ property relationship in metallic glasses, Prog. Mater. Sci., Volume 56 (2011), pp. 379-473 | DOI
[23] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011), pp. 587-645 | DOI
[24] The role of local structure in dynamical arrest, Phys. Rep., Volume 560 (2015), pp. 1-75 | DOI | MR
[25] The Nature of Glass Remains Anything but Clear, New York Times (2008) (http://www.nytimes.com/2008/07/29/science/29glass.html?pagewanted=all)
[26] Supercooled liquids for pedestrians, Phys. Rep., Volume 476 (2009), pp. 51-124 | DOI
[27] The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures, Chem. Rev., Volume 43 (1948), pp. 219-256 | DOI
[28] On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids, J. Chem. Phys., Volume 43 (1965) no. 1, pp. 139-146 | DOI
[29] Fractal free energy landscapes in structural glasses, Nat. Commun., Volume 5 (2014) no. 1, pp. 1-6 | DOI
[30] Glass and Jamming Transitions: From Exact Results to Finite-Dimensional Descriptions, Ann. Rev. Cond. Matter Phys., Volume 8 (2017), pp. 265-288 | DOI
[31] Effective interactions in soft condensed matter physics, Phys. Rep., Volume 348 (2001), pp. 267-439 | DOI
[32] The physics of a model colloid-polymer mixture, J. Phys.: Condens. Matter, Volume 14 (2002) no. 33, p. R859-R880 | DOI
[33] Vitrification and gelation in sticky spheres, J. Chem. Phys., Volume 148 (2018), 044501 | DOI
[34] Real Space Analysis of Colloidal Gels: Triumphs, Challenges and Future Directions, J. Phys.: Condens. Matter, Volume 33 (2021), 453002 | DOI
[35] Observation of a glass transition in suspensions of spherical colloidal particles, Phys. Rev. Lett., Volume 59 (1987) no. 18, pp. 2083-2086 | DOI
[36] Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions, Phys. Rev. Lett., Volume 104 (2010), 165702 | DOI
[37] Expansion of charged colloids after centrifugation: formation and crystallisation of long-range repulsive glasses†, Soft Matter, Volume 9 (2013), pp. 11618-11633 | DOI
[38] On measuring colloidal volume fractions, Soft Matter, Volume 8 (2012), pp. 21-30 | DOI
[39] In search of colloidal hard spheres, Soft Matter, Volume 9 (2013), pp. 17-27 | DOI
[40] Colloidal Hard Spheres: Triumphs, Challenges and Mysteries (2023) (preprint, arXiv:2305.02452, to be submitted to Reviews of Modern Physics) | DOI
[41] Self-diffusion in dilute quasi-two-dimensional hard sphere suspensions: Evanescent wave light scattering and video microscopy studies, Phys. Rev. E, Volume 53 (1996), pp. 1765-1776 | DOI
[42] Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids, Phys. Rev. E, Volume 60 (1999), pp. 5725-5736 | DOI
[43] Dynamical heterogeneity in a dense quasi-two-dimensional colloidal liquid, J. Chem. Phys., Volume 114 (2001), pp. 9142-9156 | DOI
[44] Cooperative Dynamics in Two Dimensions, Phys. Rev. Lett., Volume 92 (2004), 035502 | DOI
[45] Cooperative Rearrangement Regions and Dynamical Heterogeneities in Colloidal Glasses with Attractive Versus Repulsive Interactions, Phys. Rev. Lett., Volume 107 (2011), 208303 | DOI
[46] Deconstructing the glass transition through critical experiments on colloids, Adv. Phys., Volume 65 (2016) no. 4, pp. 363-452 | DOI
[47] Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics, J. Chem. Phys., Volume 153 (2020), 090901 | DOI
[48] Dielectric spectroscopy of glass-forming materials: a-relaxation and excess wing, Chem. Phys., Volume 284 (2002), pp. 205-219 | DOI
[49] Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations, Nat. Commun., Volume 9 (2018), 3272 | DOI
[50] Locally favoured structures and dynamic length scales in a simple glass-former, J. Stat. Mech. Theory Exp. (2017), 024001 | DOI
[51] Contact pair correlation functions and equation of state for additive hard disk fluid mixtures, J. Chem. Phys., Volume 115 (2001) no. 15, pp. 7123-7129 | DOI
[52] Glass transition of dense fluids of hard and compressible spheres, Phys. Rev. E, Volume 80 (2009), 021502 | DOI
[53] Predicting the Effective Temperature of a Glass, Phys. Rev. Lett., Volume 104 (2010), 125902 | DOI
[54] Strong geometric frustration in model glassformers, J. Non Cryst. Solids, Volume 407 (2015), pp. 34-43 | DOI
[55] Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit, J. Non Cryst. Solids, Volume 102 (1988), pp. 205-221 | DOI
[56] Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition, Phys. Rev. Lett., Volume 102 (2009), 085703 | DOI
[57] Corresponding States of Structural Glass Formers, J. Phys. Chem. B, Volume 113 (2009), pp. 5563-5567 | DOI
[58] Measurement of the self-intermediate scattering function of suspensions of hard spherical particles near the glass transition, Phys. Rev. E, Volume 58 (1998), pp. 6073-6085 | DOI
[59] Multiple glassy states in a simple model system, Science, Volume 296 (2002), pp. 104-106 | DOI
[60] The devil is in the details: pentagonal bipyramids and dynamic arrest, J. Stat. Mech. Theory Exp. (2020), 014001 | DOI | MR | Zbl
[61] Many–body correlations are non-negligible in simple glassformers (2022) (submitted)
[62] Little evidence for dynamic divergences in ultraviscous molecular liquids, Nature Phys., Volume 4 (2008), pp. 737-741 | DOI
[63] Calorimetric glass transition explained by hierarchical dynamic facilitation, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 4482-4487 | DOI
[64] Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass, Eur. Phys. Lett., Volume 83 (2008) no. 4, 46003 | DOI
[65] Dynamical heterogeneity close to the jamming transition in a sheared granular material, Phys. Rev. Lett., Volume 95 (2005) no. 26, 265701 | DOI
[66] Lower bound on the four-point dynamical susceptibility: Direct experimental test on a granular packing, Eur. Phys. Lett., Volume 83 (2008) no. 4, 46002 | DOI
[67] Light-scattering study of -relaxation in CaKNO3 and salol near the liquid-glass transition: idealized and extended mode coupling theory analysis, J. Non Cryst. Solids, Volume 172-174 (1994), pp. 43-51 | DOI
[68] Light scattering study of the liquid–glass transition of meta-toluidine, J. Chem. Phys., Volume 112 (2000) no. 22, pp. 9860-9873 | DOI
[69] Light scattering study on the glass former o-terphenyl, J. Chem. Phys., Volume 133 (2010) no. 12, 124512 | DOI
[70] Glass transition of soft colloids, Phys. Rev. E, Volume 97 (2018) no. 4, 040601 | DOI
[71] A novel particle tracking method with individual particle size measurement and its application to ordering in glassy hard sphere colloids, Soft Matter, Volume 9 (2013) no. 10.1039/C2SM27107A, pp. 1447-1457 | DOI
[72] Measuring colloidal interactions with confocal microscopy, J. Chem. Phys., Volume 127 (2007) no. 4, 044507 | DOI
[73] Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space, Phys. Rev. Lett., Volume 119 (2017), 028004 | DOI
[74] Bond-Orientational Order In Liquids And Glasses, Phys. Rev. B, Volume 28 (1983) no. 2, pp. 784-805 | DOI
[75] Identification of Structure in Condensed Matter with the Topological Cluster Classification, J. Chem. Phys., Volume 139 (2013), 234506 | DOI
[76] Glassy dynamics and dynamical heterogeneity in colloids, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim Van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 110-151 | DOI
[77] Dynamical heterogeneities in grains and foams, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 203-228 | DOI
[78] Nanoscopy with Focused Light, 2014 (Nobel Lecture)
[79] Laser Light Scattering, Basic Principles and Practice, Academic Press, Boston, 1991
[80] Time-resolved correlation: a new tool for studying temporally heterogeneous dynamics, J. Phys.: Condens. Matter, Volume 15 (2002) no. 1, S257 | DOI
[81] Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging, Phys. Rev. Lett., Volume 102 (2009) no. 8, 085702 | DOI
[82] Imaging Atomic Rearrangements in Two-Dimensional Silica Glass: Watching Silica’s Dance, Science, Volume 342 (2013), pp. 224-227 | DOI
[83] Experimental approaches to heterogeneous dynamics, Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Luca Cipelletti; Wim van Saarloos, eds.) (International Series of Monographs on Physics), Oxford University Press, 2011, pp. 152-202 | DOI
[84] Length Scale of Dynamic Heterogeneities at the Glass Transition Determined by Multidimensional Nuclear Magnetic Resonance, Phys. Rev. Lett., Volume 81 (1998) no. 13, pp. 2727-2730 | DOI
[85] Direct observation of molecular cooperativity near the glass transition, Nature, Volume 408 (2000) no. 6813, pp. 695-698 | DOI
[86] Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence, Phys. Rev. E, Volume 76 (2007) no. 4, 041510 | DOI
[87] Spontaneous and induced dynamic fluctuations in glass formers. I. General results and dependence on ensemble and dynamics, J. Chem. Phys., Volume 126 (2007) no. 18, 184503 | DOI
[88] Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations, J. Chem. Phys., Volume 126 (2007) no. 18, 184504 | DOI
[89] Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers, Science, Volume 352 (2016) no. 6291, pp. 1308-1311 | DOI
[90] Evidence of Growing Spatial Correlations at the Glass Transition from Nonlinear Response Experiments, Phys. Rev. Lett., Volume 104 (2010) no. 16, 165703 | DOI
[91] Unifying different interpretations of the nonlinear response in glass-forming liquids, Phys. Rev. E, Volume 96 (2017) no. 3, 032611 | DOI
[92] Amorphous Order and Nonlinear Susceptibilities in Glassy Materials, J. Phys. Chem. B, Volume 125 (2021) no. 28, pp. 7578-7586 | DOI
[93] Cooperativity and the Freezing of Molecular Motion at the Glass Transition, Phys. Rev. Lett., Volume 111 (2013) no. 22, 225702 | DOI
[94] Dynamic correlation length scales under isochronal conditions, J. Chem. Phys., Volume 142 (2015) no. 6, 064504 | DOI
[95] Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate, J. Chem. Phys., Volume 147 (2017) no. 22, 224501 | DOI
[96] Consequences of kinetic inhomogeneities in glasses, Phys. Rev. E, Volume 54 (1996), pp. 1652-1662 | DOI
[97] Three-Dimensional Direct Imaging of Structural Relaxation Near the Colloidal Glass Transition, Science, Volume 287 (2000) no. 5453, pp. 627-631 | DOI
[98] Building blocks of dynamical heterogeneities in dense granular media, Phys. Rev. Lett., Volume 102 (2009) no. 8, 088001 | DOI
[99] Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition, Science, Volume 310 (2005), pp. 1797-1800 | DOI
[100] Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material, Nat. Phys., Volume 3 (2007) no. 4, pp. 260-264 | DOI
[101] Dynamical facilitation decreases when approaching the granular glass transition, Eur. Phys. Lett., Volume 92 (2010) no. 2, 24003 | DOI
[102] Nonlinear dielectric spectroscopy in a fragile plastic crystal, J. Chem. Phys., Volume 144 (2016) no. 11, p. 114506 | DOI
[103] Structural studies of an organic liquid through the glass transition, J. Chem. Phys., Volume 105 (1996), pp. 7783-7794 | DOI
[104] Approach to jamming in an air-fluidized granular bed, Phys. Rev. E, Volume 74 (2006) no. 3, 031308 | DOI
[105] Supercooling of Liquids, Proc. R. Soc. Lond., Ser. A, Volume 215 (1952) no. 1120, pp. 43-46 | DOI
[106] Direct observation of local atomic order in a metallic glass, Nature Mater., Volume 10 (2010), pp. 28-33 | DOI
[107] Geometric Frustration of Icosahedron in Metallic Glasses, Science, Volume 341 (2013), pp. 376-379 | DOI
[108] Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun ZrCu Metallic Glass, Phys. Rev. Lett., Volume 110 (2013), 205505 | DOI
[109] Energy Landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge University Press, 2004
[110] Temperature dependence of the Kirkwood correlation factor and linear dielectric constant of simple isotropic polar fluids, Phys. Rev. E, Volume 105 (2022) no. 2, 024108 | DOI | MR
[111] Systematic study of the glass transition in polyhydric alcohols, Phys. Rev. E, Volume 83 (2011) no. 5, 051503 | DOI
[112] Direct observation of a local structural mechanism for dynamic arrest, Nature Mater., Volume 7 (2008), pp. 556-561 | DOI
[113] Roles of icosahedral and crystal-like order in the hard spheres glass transition, Nat. Commun., Volume 3 (2012), 974 | DOI
[114] Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions, Nature Phys., Volume 12 (2016), pp. 712-717 | DOI
[115] X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 11511-11514 | DOI
[116] Local symmetry predictors of mechanical stability in glasses, Sci. adv., Volume 8 (2022), eabn0681 | DOI
[117] Dynamics and Structure close to the Glass and Jamming transitions; Experiments and Simulations, Ph. D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France (2009)
[118] Direct observation of medium-range crystalline order in granular liquids near the glass transition, Phys. Rev. Lett., Volume 100 (2008) no. 15, 158002 | DOI
[119] Comment on “correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids”, Phys. Rev. Lett., Volume 100 (2008) no. 9, 099601 | DOI
[120] Kawasaki, Araki, and Tanaka Reply, Phys. Rev. Lett., Volume 100 (2008) no. 9, 099602 | DOI
[121] Correlation between crystalline order and vitrification in colloidal monolayers, J. Phys.: Condens. Matter, Volume 27 (2015), 194124 | DOI
[122] Flexible confinement leads to multiple relaxation regimes in glassy colloidal liquids, J. Chem. Phys., Volume 142 (2015), 024505 | DOI
[123] Growing Length Scales and Their Relation to Timescales in Glass-Forming Liquids, Ann. Rev. Cond. Matter Phys., Volume 5 (2014), pp. 255-284 | DOI
[124] Thermodynamic−Kinetic Correlations in Supercooled Liquids: A Critical Survey of Experimental Data and Predictions of the Random First-Order Transition Theory of Glasses, J. Phys. Chem. B, Volume 109 (2005) no. 31, pp. 15093-15097 | DOI
[125] Growing dynamical facilitation on approaching the random pinning colloidal glass transition, Nat. Commun., Volume 5 (2014), 4685 | DOI
[126] Dynamic Order-Disorder in Atomistic Models of Structural Glass Formers, Science, Volume 323 (2009), pp. 1309-1313 | DOI
[127] First-Order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics, Phys. Rev. Lett., Volume 109 (2012), 195703 | DOI
[128] Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition, J. Chem. Phys., Volume 148 (2018), 164502 | DOI
[129] Thermodynamic Study of Simple Molecular Glasses: Universal Features in Their Heat Capacity and the Size of the Cooperatively Rearranging Regions, Phys. Rev. Lett., Volume 109 (2012) no. 4, 045701 | DOI
[130] Experimental determination of configurational entropy in a two-dimensional liquid under random pinning, J. Phys.: Condens. Matter, Volume 30 (2018), 094003 | DOI
[131] Influence of an amorphous wall on the distribution of localized excitations in a colloidal glass-forming liquid, J. Stat. Mech. Theory Exp. (2016), 074013 | DOI
[132] Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former, Nature Phys., Volume 11 (2015), pp. 403-408 | DOI
[133] Shape of Dynamical Heterogeneities and Fractional Stokes–Einstein and Stokes–Einstein–Debye Relations in Quasi-Two-Dimensional Suspensions of Colloidal Ellipsoids, Phys. Rev. Lett., Volume 114 (2015), 198302 | DOI
[134] Probing excitations and cooperatively rearranging regions in deeply supercooled liquids, Nat Commun., Volume 14 (2023), 2621 | DOI
[135] Fluctuations and Shape of Cooperative Rearranging Regions in Glass-Forming Liquids, Phys. Rev. X, Volume 7 (2017), 011011 | DOI
[136] Measurements of growing surface tension of amorphous-amorphous interfaces on approaching the colloidal glass transition, Nat. Commun., Volume 9 (2018), 397 | DOI
[137] Spin glasses with p-spin interactions, Nucl. Phys., B, Volume 257 (1985), pp. 747-765 | DOI | MR
[138] Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition, J. Phys. Chem. B, Volume 117 (2013) no. 42, pp. 12979-12994 | DOI
[139] Numerical detection of the Gardner transition in a mean-field glass former, Phys. Rev. E, Volume 92 (2015) no. 1, 012316 | DOI
[140] Jamming of soft particles: geometry, mechanics, scaling and isostaticity, J. Phys.: Condens. Matter, Volume 22 (2009) no. 3, 033101 | DOI
[141] The jamming transition and the marginally jammed solid, Ann. Rev. Cond. Matter Phys., Volume 1 (2010) no. 1, pp. 347-369 | DOI
[142] Jamming versus glass transitions, Phys. Rev. Lett., Volume 103 (2009) no. 2, 025701 | DOI
[143] Glass transition of dense fluids of hard and compressible spheres, Phys. Rev. E, Volume 80 (2009) no. 2, 021502 | DOI
[144] Thermal vestige of the zero-temperature jamming transition, Nature, Volume 459 (2009) no. 7244, pp. 230-233 | DOI
[145] Dynamics of the contacts reveals Widom lines for jamming, Eur. Phys. Lett., Volume 100 (2012) no. 4, 44005 | DOI
[146] How the ideal jamming point illuminates the world of granular media, Soft Matter, Volume 10 (2014) no. 10, pp. 1519-1536 | DOI
[147] Elementary excitation modes in a granular glass above jamming, Soft Matter, Volume 6 (2010) no. 13, pp. 3013-3022 | DOI
[148] et al. Low-frequency vibrations of soft colloidal glasses, Phys. Rev. Lett., Volume 105 (2010) no. 2, 025501 | DOI
[149] Density of states of colloidal glasses, Phys. Rev. Lett., Volume 104 (2010) no. 24, 248305 | DOI
[150] Normal modes and density of states of disordered colloidal solids, Science, Volume 329 (2010) no. 5992, pp. 656-658 | DOI
[151] Extracting vibrational modes from fluctuations: a pedagogical discussion, Soft Matter, Volume 8 (2012) no. 22, pp. 6092-6109 | DOI
[152] Hierarchical landscape of hard disk glasses, Phys. Rev. X, Volume 9 (2019) no. 1, 011049 | DOI
[153] Nature of excitations and defects in structural glasses, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-10 | DOI
[154] Experimental Evidence of the Gardner Phase in a Granular Glass, Phys. Rev. Lett., Volume 117 (2016) no. 22, 228001 | DOI
[155] Super-diffusion around the rigidity transition: Lévy and the Lilliputians, Soft Matter, Volume 6 (2010) no. 13, pp. 3059-3064 | DOI
[156] Experimental observation of the marginal glass phase in a colloidal glass, Proc. Natl. Acad. Sci. USA, Volume 117 (2020) no. 11, pp. 5714-5718 | DOI
[157] Johari–Goldstein Relaxation Far Below T g : Experimental Evidence for the Gardner Transition in Structural Glasses?, Phys. Rev. Lett., Volume 120 (2018) no. 8, 085705 | DOI
[158] Searching for the Gardner Transition in Glassy Glycerol, Phys. Rev. Lett., Volume 126 (2021) no. 2, 028001 | DOI
[159] Observation of empty liquids and equilibrium gels in a colloidal clay, Nature Mater., Volume 10 (2011), pp. 56-60 | DOI
[160] Zero–temperature glass transition in two dimensions, Nat. Commun., Volume 10 (2019), 1508 | DOI
[161] Thirty milliseconds in the life of a supercooled liquid, Phys. Rev. X, Volume 12 (2022), 041028 | DOI
[162] Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid, Phys. Rev. Lett., Volume 105 (2010) no. 13, 135702 | DOI
[163] Random-Field-like Criticality in Glass-Forming Liquids, Phys. Rev. Lett., Volume 112 (2014), 175701 | DOI
[164] Reverse Monte Carlo modeling, J. Phys.: Condens. Matter, Volume 13 (2001), p. R877-R913 | DOI
[165] Refractive index matched scanning and detection of soft particles, Rev. Sci. Instrum., Volume 88 (2017) no. 5, 051807 | DOI
[166] Thermodynamic signature of growing amorphous order in glass-forming liquids, Nature Phys., Volume 4 (2008) no. 10, pp. 771-775 | DOI
[167] Ideal glass transitions by random pinning, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 23, pp. 8850-8855 | DOI
[168] Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former, Nature Phys., Volume 11 (2015) no. 5, pp. 403-408 | DOI
[169] Soft-Pinning: Experimental Validation of Static Correlations in Supercooled Molecular Glass-forming Liquids (2021) (preprint, arXiv:2106.06325) | DOI
[170] Towards the ideal glass transition by pinning in a dimer-polymer mixture (2021) (preprint, arXiv:2003.06089) | DOI
[171] Glasses denser than the supercooled liquid, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2100738118 | DOI
[172] Fractionalization of interstitials in curved colloidal crystals, Nature Mater., Volume 11 (2012), pp. 948-951 | DOI
Cited by Sources:
Comments - Policy