Comptes Rendus
The RFOT Theory of Glasses: Recent Progress and Open Issues
[La théorie RFOT des verres : progrès récents et problèmes ouverts]
Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 9-23.

La théorie RFOT des verres a été initiée par les travaux de Kirkpatrick, Thirumalai & Wolynes. Elle s’appuie sur des méthodes récentes de la théorie des systèmes désordonnés. La théorie RFOT décrit remarquablement bien toute la phénoménologie des liquides surfondus. Cependant, aucun résultat expérimental n’a encore confirmé la théorie de manière directe et indiscutable. Dans ce bref article de revue, nous discutons les travaux récents qui sont en accord avec tous les aspects thermodynamiques de la théorie, mais aussi ceux pour lesquels l’extension dynamique de celle-ci semble en difficulté, en particulier concernant les effets de facilitation. Nous proposons des voies de résolution possibles, ainsi que certains problèmes ouverts.

The Random First Order Transition (RFOT) theory started with the pioneering work of Kirkpatrick, Thirumalai and Wolynes. It leverages methods and advances of the theory of disordered systems. It fares remarkably well at reproducing the salient experimental facts of super-cooled liquids. Yet, direct and indisputable experimental validations are missing. In this short survey, we will review recent investigations that broadly support all static aspects of RFOT, but also those for which the standard dynamical extension of the theory appears to be struggling, in particular in relation with facilitation effects. We discuss possible solutions and open issues.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.136
Keywords: Theory of glasses, Cooperative Dynamics, Random First Order Transition, Non-linear susceptibility, Activated processes, Super-cooled liquids, glass transitions
Mot clés : Théorie des verres, Dynamique coopérative, Transition du premier ordre aléatoire, Susceptibilité non-lineaire, Processus activés, Liquides confondus, transition vitreuse
Giulio Biroli 1 ; Jean-Philippe Bouchaud 2

1 Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
2 CFM, 23 rue de l’Université, F-75007 Paris, France, & Académie des Sciences, Quai de Conti, F-75006 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S1_9_0,
     author = {Giulio Biroli and Jean-Philippe Bouchaud},
     title = {The {RFOT} {Theory} of {Glasses:} {Recent} {Progress} and {Open} {Issues}},
     journal = {Comptes Rendus. Physique},
     pages = {9--23},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S1},
     year = {2023},
     doi = {10.5802/crphys.136},
     language = {en},
}
TY  - JOUR
AU  - Giulio Biroli
AU  - Jean-Philippe Bouchaud
TI  - The RFOT Theory of Glasses: Recent Progress and Open Issues
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 9
EP  - 23
VL  - 24
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.136
LA  - en
ID  - CRPHYS_2023__24_S1_9_0
ER  - 
%0 Journal Article
%A Giulio Biroli
%A Jean-Philippe Bouchaud
%T The RFOT Theory of Glasses: Recent Progress and Open Issues
%J Comptes Rendus. Physique
%D 2023
%P 9-23
%V 24
%N S1
%I Académie des sciences, Paris
%R 10.5802/crphys.136
%G en
%F CRPHYS_2023__24_S1_9_0
Giulio Biroli; Jean-Philippe Bouchaud. The RFOT Theory of Glasses: Recent Progress and Open Issues. Comptes Rendus. Physique, Volume 24 (2023) no. S1, pp. 9-23. doi : 10.5802/crphys.136. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.136/

[1] Ludovic Berthier; Giulio Biroli Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI

[2] Hajime Yoshino Replica theory of the rigidity of structural glasses, J. Chem. Phys., Volume 136 (2012) no. 21, 214108 | DOI

[3] T. R. Kirkpatrick; D. Thirumalai p-spin-interaction spin-glass models: Connections with the structural glass problem, Phys. Rev. B, Volume 36 (1987) no. 10, pp. 5388-5397 | DOI

[4] T. R. Kirkpatrick; D. Thirumalai Comparison between dynamical theories and metastable states in regular and glassy mean-field spin models with underlying first-order-like phase transitions, Phys. Rev. A, Volume 37 (1988) no. 11, pp. 4439-4448 | DOI

[5] T. R. Kirkpatrick; D. Thirumalai; P. G. Wolynes Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A, Volume 40 (1989) no. 2, pp. 1045-1054 | DOI

[6] Maxim Dzero; Jörg Schmalian; P. G. Wolynes Glassiness in Uniformly Frustrated Systems, Structural glasses and super-cooled Liquids: theory, experiment, and applications (P. G. Wolynes; V. Lubchenko, eds.), John Wiley & Sons, 2012, pp. 193-222 | DOI

[7] Giulio Biroli; Jean-Philippe Bouchaud The random first-order transition theory of glasses: A critical assessment, Structural glasses and super-cooled liquids: theory, experiment, and applications (Peter G. Wolynes; Vassiliy Lubchenko, eds.), John Wiley & Sons, 2012, pp. 31-113 | DOI

[8] Jean-Philippe Bouchaud; Giulio Biroli On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses, J. Chem. Phys., Volume 121 (2004) no. 15, pp. 7347-7354 | DOI

[9] A. Montanari; G. Semerjian Rigorous inequalities between length and time scales in glassy systems, J. Stat. Phys., Volume 125 (2006) no. 1, pp. 23-54 | DOI | MR | Zbl

[10] G. Biroli; Jean-Philippe Bouchaud; Andrea Cavagna; T. S. Grigera; Paolo Verrocchio Thermodynamic signature of growing amorphous order in glass-forming liquids, Nature Phys., Volume 4 (2008) no. 10, pp. 771-775 | DOI

[11] Peter G. Wolynes; Vassily Lubchenko Structural glasses and super-cooled liquids: Theory, experiment, and applications, John Wiley & Sons, 2012 | DOI

[12] Silvio Franz; Giorgio Parisi Recipes for metastable states in spin glasses, J. Phys. I, Volume 5 (1995) no. 11, pp. 1401-1415 | DOI

[13] Maxim Dzero; Jörg Schmalian; Peter G. Wolynes Activated events in glasses: The structure of entropic droplets, Phys. Rev. B, Volume 72 (2005) no. 10, 100201, 4 pages | DOI

[14] Silvio Franz First steps of a nucleation theory in disordered systems, J. Stat. Mech. Theory Exp., Volume 2005 (2005) no. 04, P04001 | DOI

[15] Ludovic Berthier et al. Configurational entropy measurements in extremely super-cooled liquids that break the glass ceiling, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 43, pp. 11356-11361 | DOI

[16] Ludovic Berthier; Misaki Ozawa; Camille Scalliet Configurational entropy of glass-forming liquids, J. Chem. Phys., Volume 150 (2019) no. 16, 160902 | DOI

[17] Jacob D. Stevenson; Aleksandra M. Walczak; Randall W. Hall; Peter G. Wolynes Constructing explicit magnetic analogies for the dynamics of glass forming liquids, J. Chem. Phys., Volume 129 (2008) no. 19, 194505 | DOI

[18] Silvio Franz; Giorgio Parisi; F. Ricci-Tersenghi; T. Rizzo Field theory of fluctuations in glasses, Eur. Phys. J. E, Volume 34 (2011) no. 9, 102, p. 17 | DOI

[19] Giulio Biroli; Chiara Cammarota; Gilles Tarjus; Marco Tarzia Random-field Ising-like effective theory of the glass transition. I. Mean-field models, Phys. Rev. B, Volume 98 (2018) no. 17, 174205, 25 pages | DOI

[20] Giulio Biroli; Chiara Cammarota; Gilles Tarjus; Marco Tarzia Random field Ising-like effective theory of the glass transition. II. Finite-dimensional models, Phys. Rev. B, Volume 98 (2018) no. 17, 174206, 29 pages | DOI

[21] Benjamin Guiselin; Ludovic Berthier; Gilles Tarjus Statistical mechanics of coupled super-cooled liquids in finite dimensions, SciPost Phys., Volume 12 (2022) no. 3, 091 | DOI

[22] Jeppe C. Dyre; Tage Christensen; Niels Boye Olsen Elastic models for the non-Arrhenius viscosity of glass-forming liquids, Journal of non-crystalline solids, Volume 352 (2006) no. 42-49, pp. 4635-4642 | DOI

[23] Matthieu Wyart; Michael E. Cates Does a growing static length scale control the glass transition?, Phys. Rev. Lett., Volume 119 (2017) no. 19, 195501, 5 pages | DOI

[24] F. Ritort; P. Sollich Glassy dynamics of kinetically constrained models, Adv. Phys., Volume 52 (2003) no. 4, pp. 219-342 | DOI

[25] David Chandler; Juan P. Garrahan Dynamics on the Way to Forming Glass: Bubbles in Space-Time, Annu. Rev. Phys. Chem., Volume 61 (2010) no. 1, pp. 191-217 | DOI

[26] Aaron S. Keys; Lester O. Hedges; Juan P. Garrahan; Sharon C. Glotzer; David Chandler Excitations are localized and relaxation is hierarchical in glass-forming liquids, Phys. Rev. X, Volume 1 (2011) no. 2, 021013, 15 pages | DOI

[27] Giulio Biroli; Jean-Philippe Bouchaud; François Ladieu Amorphous Order and Nonlinear Susceptibilities in Glassy Materials, J. Phys. Chem. B, Volume 125 (2021) no. 28, pp. 7578-7586 | DOI

[28] Giorgio Parisi; Pierfrancesco Urbani; Francesco Zamponi Theory of simple glasses: exact solutions in infinite dimensions, Cambridge University Press, 2020

[29] M. Cardenas; Silvio Franz; G. Parisi Constrained Boltzmann–Gibbs measures and effective potential for glasses in hypernetted chain approximation and numerical simulations, J. Chem. Phys., Volume 110 (1999) no. 3, pp. 1726-1734 | DOI

[30] Chiara Cammarota; Andrea Cavagna; I. Giardina; Giacomo Gradenigo; Tomás S. Grigera; G. Parisi; P. Verrocchio Phase-separation perspective on dynamic heterogeneities in glass-forming liquids, Phys. Rev. Lett., Volume 105 (2010) no. 5, 055703, 4 pages | DOI

[31] G. Parisi; B. Seoane Liquid-glass transition in equilibrium, Phys. Rev. E, Volume 89 (2014) no. 2, 022309, 5 pages | DOI

[32] Chiara Cammarota; Giulio Biroli Ideal glass transitions by random pinning, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 23, pp. 8850-8855 | DOI

[33] Walter Kob; Ludovic Berthier Probing a liquid to glass transition in equilibrium, Phys. Rev. Lett., Volume 110 (2013) no. 24, 245702, 5 pages | DOI

[34] Mizaki Ozawa; Walter Kob; Atsushi Ikeda; Kunimasa Miyazaki Equilibrium phase diagram of a randomly pinned glass-former, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 22, pp. 6914-6919 | DOI

[35] S. Gokhale; K. Hima Nagamanasa; R. Ganapathy; A. K. Sood Growing dynamical facilitation on approaching the random pinning colloidal glass transition, Nat. Commun., Volume 5 (2014) no. 1, 4685, 7 pages | DOI

[36] Andrea Cavagna; Tomás S. Grigera; Paolo Verrocchio Mosaic multistate scenario versus one-state description of super-cooled liquids, Phys. Rev. Lett., Volume 98 (2007) no. 18, 187801, 4 pages | DOI

[37] Andrea Ninarello; Ludovic Berthier; Daniele Coslovich Models and algorithms for the next generation of glass transition studies, Phys. Rev. X, Volume 7 (2017) no. 2, 021039, 22 pages | DOI

[38] Ludovic Berthier; Patrick Charbonneau; Daniele Coslovich; Andrea Ninarello; Misaki Ozawa; Sho Yaida Configurational entropy measurements in extremely super-cooled liquids that break the glass ceiling, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 43, pp. 11356-11361 | DOI

[39] Ludovic Berthier; Patrick Charbonneau; Andrea Ninarello; Misaki Ozawa; Sho Yaida Zero-temperature glass transition in two dimensions, Nat. Commun., Volume 10 (2019) no. 1, 1508, 7 pages | DOI

[40] Benjamin Guiselin; Gilles Tarjus; Ludovic Berthier Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope, J. Chem. Phys., Volume 156 (2022) no. 19, 194503 | DOI

[41] Rajsekhar Das; Saurish Chakrabarty; Smarajit Karmakar Pinning susceptibility: a novel method to study growth of amorphous order in glass-forming liquids, Soft Matter, Volume 13 (2017) no. 38, pp. 6929-6937 | DOI

[42] Rajsekhar Das; Bhanu P. Bhowmik; Anand B. Puthirath; Tharangattu N. Narayanan; Smarajit Karmakar Soft-Pinning: Experimental Validation of Static Correlations in super-cooled Molecular Glass-forming Liquids (2021) (https://arxiv.org/abs/2106.06325)

[43] Jean-Philippe Bouchaud; Giulio Biroli Nonlinear susceptibility in glassy systems: A probe for cooperative dynamical length scales, Phys. Rev. B, Volume 72 (2005) no. 6, 064204, 11 pages | DOI

[44] S. Albert; Th. Bauer; M. Michl; Giulio Biroli; Jean-Philippe Bouchaud; A. Loidl; P. Lunkenheimer; R. Tourbot; C. Wiertel-Gasquet; François Ladieu Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers, Science, Volume 352 (2016) no. 6291, pp. 1308-1311 | DOI

[45] Thomas Speck Dynamic facilitation theory: a statistical mechanics approach to dynamic arrest, J. Stat. Mech., Volume 2019 (2019), 084015 | DOI | MR | Zbl

[46] Chiara Cammarota; Andrea Cavagna; Giacomo Gradenigo; Tomás S. Grigera; Paolo Verrocchio Numerical determination of the exponents controlling the relationship between time, length, and temperature in glass-forming liquids, J. Chem. Phys., Volume 131 (2009), 194901 | DOI

[47] Misaki Ozawa; Camille Scalliet; Andrea Ninarello; Ludovic Berthier Does the Adam–Gibbs relation hold in simulated super-cooled liquids?, J. Chem. Phys., Volume 151 (2019) no. 8, 084504 | DOI

[48] Ludovic Berthier Self-induced heterogeneity in deeply super-cooled liquids, Phys. Rev. Lett., Volume 127 (2021) no. 8, 088002, 6 pages | DOI

[49] Ludovic Berthier; Giulio Biroli; Jean-Philippe Bouchaud; Gilles Tarjus Can the glass transition be explained without a growing static length scale?, J. Chem. Phys., Volume 150 (2019) no. 9, 094501 | DOI

[50] R. Candelier; A. Widmer-Cooper; J. K. Kummerfeld; Olivier Dauchot; G. Biroli; P. Harrowell; David R. Reichman Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid, Phys. Rev. Lett., Volume 105 (2010) no. 13, 135702, 4 pages | DOI

[51] Rahul Chacko; Fraçois Landes; Giulio Biroli; Olivier Dauchot; Andrea J. Liu; David R. Reichman Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode Coupling Temperature, Phys. Rev. Lett., Volume 127 (2021) no. 4, 048002, 6 pages | DOI

[52] Camille Scalliet; Benjamin Guiselin; Ludovic Berthier Thirty milliseconds in the life of a super-cooled liquid (2022) (https://arxiv.org/abs/2207.00491)

[53] Daniele Coslovich; Andrea Ninarello; Ludovic Berthier A localization transition underlies the mode-coupling crossover of glasses, SciPost Phys., Volume 7 (2019) no. 6, 077 | DOI | MR

[54] H. Ikeda; Francesco Zamponi; Atsushi Ikeda Mean field theory of the swap Monte Carlo algorithm, J. Chem. Phys., Volume 147 (2017) no. 23, 234506 | DOI

[55] Carolina Brito; Edan Lerner; Matthieu Wyart Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles, Phys. Rev. X, Volume 8 (2018) no. 3, 031050, 13 pages | DOI

[56] Grzegorz Szamel Theory for the dynamics of glassy mixtures with particle size swaps, Phys. Rev. E, Volume 98 (2018) no. 5, 050601, 5 pages | DOI

[57] Xiaoyu Xia; Peter G. Wolynes Microscopic theory of heterogeneity and nonexponential relaxations in super-cooled liquids, Phys. Rev. Lett., Volume 86 (2001) no. 24, pp. 5526-5529 | DOI

[58] Apiwat Wisitsorasak; Peter G. Wolynes Dynamical heterogeneity of the glassy state, J. Phys. Chem. B, Volume 118 (2014) no. 28, pp. 7835-7847 | DOI

[59] Benjamin Guiselin; Camille Scalliet; Ludovic Berthier Microscopic origin of excess wings in relaxation spectra of supercooled liquids, Nat. Phys., Volume 18 (2022) no. 4, pp. 468-472 | DOI

[60] Giulio Biroli; Chiara Cammarota Fluctuations and shape of cooperative rearranging regions in glass-forming liquids, Phys. Rev. X, Volume 7 (2017) no. 1, 011011, 10 pages | DOI

[61] Th. Bauer; P. Lunkenheimer; S. Kastner; A. Loidl Nonlinear dielectric response at the excess wing of glass-forming liquids, Phys. Rev. Lett., Volume 110 (2013), 107603, 5 pages | DOI

[62] H. Cárdenas; F. Frahsa; S. Fritschi; A. Nicolas; S. Papenkort; T. Voigtmann; Matthias Fuchs Nonlinear mechanical response of super-cooled melts under applied forces, Eur. Phys. J. Spec. Top., Volume 226 (2017) no. 14, pp. 3039-3060 | DOI

[63] Rabea Seyboldt; Dimitri Merger; Fabian Coupette; Miriam Siebenbürger; Matthias Ballauff; Manfred Wilhelm; Matthias Fuchs Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition, Soft Matter, Volume 12 (2016) no. 43, pp. 8825-8832 | DOI

[64] Gustavo E. Gimenes; Elisabeth Bouchaud Flow and fracture near the sol-gel transition of silica nanoparticle suspensions, Soft Matter, Volume 14 (2018) no. 39, pp. 8036-8043 | DOI

[65] D. Bonamy; Elisabeth Bouchaud Failure of heterogeneous materials: A dynamic phase transition?, Phys. Rep., Volume 498 (2011) no. 1, pp. 1-44 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The glass transition in molecules, colloids and grains: universality and specificity

Olivier Dauchot; François Ladieu; C. Patrick Royall

C. R. Phys (2023)


Computer simulations of the glass transition and glassy materials

Jean-Louis Barrat; Ludovic Berthier

C. R. Phys (2023)


Organic Glass-Forming Liquids and the Concept of Fragility

Christiane Alba-Simionesco

C. R. Phys (2023)