Comptes Rendus
Persistent currents in a strongly interacting multicomponent Bose gas on a ring
Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 87-99.

We consider a two-component Bose–Bose mixture at infinitely strong repulsive interactions in a tightly confining, one-dimensional ring trap and subjected to an artificial gauge field. By employing the Bethe Ansatz exact solution for the many-body wavefunction, we obtain the ground state energy and the persistent currents up to four particles. For each value of the applied flux, we then determine the symmetry of the state under particles exchange. We find that the ground-state energy and the persistent currents display a reduced periodicity with respect to the case of non-interacting particles, corresponding to reaching states with fractional angular momentum per particle. We relate this effect to the change of symmetry of the ground state under the effect of the artificial gauge field. Our results generalize the ones previously reported for fermionic mixtures with both attractive and repulsive interactions and highlight the role of symmetry in this effect.

Nous considérons un mélange de bosons à deux composantes en interaction répulsive infiniment forte dans un piège en anneau unidimensionnel à fort confinement et soumis à un champ de jauge artificiel. En utilisant la forme exacte de la fonction d’onde à N corps donnée par l’ansatz de Bethe, nous obtenons l’énergie de l’état fondamental et la valeur des courants persistants jusqu’à quatre particules. Ensuite, en fonction du flux appliqué, nous déterminons quelle est la symétrie de l’état sous l’échange de particules. Nous constatons que l’énergie de l’état fondamental et les courants persistants présentent une périodicité réduite par rapport au cas sans interaction, ce qui correspond à l’obtention d’états avec un moment cinétique fractionnaire par particule. Nous relions cet effet au changement de symétrie de l’état fondamental sous l’effet du champ de jauge artificiel. Nos résultats généralisent ceux précédemment rapportés pour les mélanges fermioniques avec des interactions attractives ou répulsives et mettent en évidence le rôle de la symétrie dans cet effet.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.157
Keywords: Ultracold atoms, quantum gases, one-dimensional systems, strong interactions, artificial gauge fields, ring trap, exact many-body solution
Mot clés : Atomes froids, gaz quantiques, systèmes unidimensionnels, interactions fortes, champs de jauge artificiels, piège en anneau, solution exacte à $N$ corps

Giovanni Pecci 1; Gianni Aupetit-Diallo 2; Mathias Albert 2, 3; Patrizia Vignolo 2, 3; Anna Minguzzi 1

1 Université Grenoble-Alpes, CNRS, LPMMC, 38000 Grenoble, France
2 Université Côte d’Azur, CNRS, Institut de Physique de Nice, 06560 Valbonne, France
3 Institut universitaire de France (IUF)
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S3_87_0,
     author = {Giovanni Pecci and Gianni Aupetit-Diallo and Mathias Albert and Patrizia Vignolo and Anna Minguzzi},
     title = {Persistent currents in a strongly interacting multicomponent {Bose} gas on a ring},
     journal = {Comptes Rendus. Physique},
     pages = {87--99},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S3},
     year = {2023},
     doi = {10.5802/crphys.157},
     language = {en},
}
TY  - JOUR
AU  - Giovanni Pecci
AU  - Gianni Aupetit-Diallo
AU  - Mathias Albert
AU  - Patrizia Vignolo
AU  - Anna Minguzzi
TI  - Persistent currents in a strongly interacting multicomponent Bose gas on a ring
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 87
EP  - 99
VL  - 24
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.157
LA  - en
ID  - CRPHYS_2023__24_S3_87_0
ER  - 
%0 Journal Article
%A Giovanni Pecci
%A Gianni Aupetit-Diallo
%A Mathias Albert
%A Patrizia Vignolo
%A Anna Minguzzi
%T Persistent currents in a strongly interacting multicomponent Bose gas on a ring
%J Comptes Rendus. Physique
%D 2023
%P 87-99
%V 24
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.157
%G en
%F CRPHYS_2023__24_S3_87_0
Giovanni Pecci; Gianni Aupetit-Diallo; Mathias Albert; Patrizia Vignolo; Anna Minguzzi. Persistent currents in a strongly interacting multicomponent Bose gas on a ring. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 87-99. doi : 10.5802/crphys.157. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.157/

[1] Immanuel Bloch; Jean Dalibard; Wilhelm Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. 3, pp. 885-964 | DOI

[2] Christian Gross; Immanuel Bloch Quantum simulations with ultracold atoms in optical lattices, Science, Volume 357 (2017) no. 6355, pp. 995-1001 | DOI

[3] M. Lewenstein; A. Sanpera; V. Ahufinger Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems, OUP Oxford, 2012 | DOI

[4] Cheng Chin; Rudolf Grimm; Paul Julienne; Eite Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010) no. 2, pp. 1225-1286 | DOI

[5] F. Serwane; G. Zürn; T. Lompe; T. B. Ottenstein; A. N. Wenz; S. Jochim Deterministic Preparation of a Tunable Few-Fermion System, Science, Volume 332 (2011) no. 6027, pp. 336-338 | DOI

[6] Belén Paredes; Artur Widera; Valentin Murg; Olaf Mandel; Simon Fölling; Ignacio Cirac; Gora V. Shlyapnikov; Theodor W. Hänsch; Immanuel Bloch Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature, Volume 429 (2004) no. 6989, pp. 277-281 | DOI

[7] Toshiya Kinoshita; Trevor Wenger; David S. Weiss Observation of a One-Dimensional Tonks-Girardeau Gas, Science, Volume 305 (2004) no. 5687, pp. 1125-1128 | DOI

[8] Toshiya Kinoshita; Trevor Wenger; David S. Weiss A quantum Newton’s cradle, Nature, Volume 440 (2006) no. 7086, pp. 900-903 | DOI

[9] S. I. Mistakidis; A. G. Volosniev; R. E. Barfknecht; T. Fogarty; Th. Busch; A. Foerster; P. Schmelcher; N. T. Zinner Cold atoms in low dimensions – a laboratory for quantum dynamics (2022) (preprint, arXiv:2202.11071) | DOI

[10] Elliott H. Lieb; Werner Liniger Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State, Phys. Rev., Volume 130 (1963) no. 4, pp. 1605-1616 | DOI | MR | Zbl

[11] C. N. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction, Phys. Rev. Lett., Volume 19 (1967) no. 23, pp. 1312-1315 | DOI | MR | Zbl

[12] Michel Gaudin The Bethe Wavefunction, Cambridge University Press, 2014 | DOI

[13] Bill Sutherland Further Results for the Many-Body Problem in One Dimension, Phys. Rev. Lett., Volume 20 (1968) no. 3, pp. 98-100 | DOI

[14] Bill Sutherland Model for a multicomponent quantum system, Phys. Rev. B, Volume 12 (1975) no. 9, pp. 3795-3805 | DOI

[15] Bill Sutherland Beautiful models: 70 years of exactly solved quantum many-body problems, World Scientific, 2004 | DOI

[16] N. Oelkers; M. T. Batchelor; M. Bortz; X.-W. Guan Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions, J. Phys. A, Math. Gen., Volume 39 (2006) no. 5, pp. 1073-1098 | DOI | MR | Zbl

[17] A. Minguzzi; P. Vignolo Strongly interacting trapped one-dimensional quantum gases: Exact solution, AVS Quantum Sci., Volume 4 (2022) no. 2, 027102 | DOI

[18] A. G. Volosniev; D. V. Fedorov; A. S. Jensen; M. Valiente; N. T. Zinner Strongly interacting confined quantum systems in one dimension, Nat. Commun., Volume 5 (2014) no. 1, 5300 | DOI

[19] F. Deuretzbacher; D. Becker; J. Bjerlin; S. M. Reimann; L. Santos Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases, Phys. Rev. A, Volume 90 (2014) no. 1, 013611 | DOI

[20] L. Amico; M. Boshier; G. Birkl; A. Minguzzi; C. Miniatura; L.-C. Kwek; D. Aghamalyan; V. Ahufinger; D. Anderson; N. Andrei et al. Roadmap on Atomtronics: State of the art and perspective, AVS Quantum Sci., Volume 3 (2021) no. 3, 039201 | DOI

[21] Jean Dalibard Introduction to the physics of artificial gauge fields, Lecture notes of the International School of Physics “Enrico Fermi” on Quantum Matter at Ultralow Temperatures (Varenna 7 - 15 July 2014) (M. Inguscio; W. Ketterle; S. Stringari et al., eds.), IOS Press, 2016, pp. 1-61 | DOI

[22] Jean Dalibard; Fabrice Gerbier; Gediminas Juzelinas; Patrik Öhberg Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1523-1543 | DOI

[23] N. Goldman; G. Juzeliūnas; P. Öhberg; I. B. Spielman Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys., Volume 77 (2014) no. 12, 126401 | DOI

[24] K. C. Wright; R. B. Blakestad; C. J. Lobb; W. D. Phillips; G. K. Campbell Driving Phase Slips in a Superfluid Atom Circuit with a Rotating Weak Link, Phys. Rev. Lett., Volume 110 (2013) no. 2, 025302 | DOI

[25] Avinash Kumar; Romain Dubessy; Thomas Badr; Camilla De Rossi; Mathieu de Goër de Herve; Laurent Longchambon; Hélène Perrin Producing superfluid circulation states using phase imprinting, Phys. Rev. A, Volume 97 (2018) no. 4, 043615 | DOI

[26] A. A. Zvyagin; I. V. Krive Persistent currents in one-dimensional systems of strongly correlated electrons, Low Temperature Physics, Volume 21 (1995), pp. 533-555

[27] S. Viefers; P. Koskinen; P. Singha Deo; M. Manninen Quantum rings for beginners: energy spectra and persistent currents, Physica E Low Dimens. Syst. Nanostruct., Volume 21 (2004) no. 1, pp. 1-35 | DOI

[28] Luigi Amico; Dana Anderson; Malcolm Boshier; Jean-Philippe Brantut; Leong-Chuan Kwek; Anna Minguzzi; Wolf von Klitzing Colloquium: Atomtronic circuits: from many-body physics to quantum technologies, Rev. Mod. Phys., Volume 94 (2022), 041001 | DOI

[29] Luigi Amico; Andreas Osterloh; Francesco Cataliotti Quantum Many Particle Systems in Ring-Shaped Optical Lattices, Phys. Rev. Lett., Volume 95 (2005) no. 6, 063201 | DOI

[30] Andrea Richaud; Matteo Ferraretto; Massimo Capone Interaction-resistant metals in multicomponent Fermi systems, Phys. Rev. B, Volume 103 (2021) no. 20, 205132 | DOI

[31] S. Eckel; F. Jendrzejewski; A. Kumar; C. J. Lobb; G. K. Campbell Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link, Phys. Rev. X, Volume 4 (2014) no. 3, 031052 | DOI

[32] L. Corman; L. Chomaz; T. Bienaimé; R. Desbuquois; C. Weitenberg; S. Nascimbène; J. Dalibard; J. Beugnon Quench-Induced Supercurrents in an Annular Bose Gas, Phys. Rev. Lett., Volume 113 (2014) no. 13, 135302 | DOI

[33] R. Mathew; A. Kumar; S. Eckel; F. Jendrzejewski; G. K. Campbell; Mark Edwards; E. Tiesinga Self-heterodyne detection of the in situ phase of an atomic superconducting quantum interference device, Phys. Rev. A, Volume 92 (2015) no. 3, 033602 | DOI

[34] Yanping Cai; Daniel G. Allman; Parth Sabharwal; Kevin C. Wright Persistent Currents in Rings of Ultracold Fermionic Atoms, Phys. Rev. Lett., Volume 128 (2022) no. 15, 150401 | DOI

[35] G. Del Pace; K. Xhani; A. Muzi Falconi; M. Fedrizzi; N. Grani; D. Hernandez Rajkov; M. Inguscio; F. Scazza; W. J. Kwon; G. Roati Imprinting persistent currents in tunable fermionic rings, Phys. Rev. X, Volume 12 (2022) no. 4, 041037 | DOI

[36] Wayne J. Chetcuti; Andreas Osterloh; Luigi Amico; Juan Polo Interference dynamics of matter-waves of SU(N) fermions (2022) (preprint, arXiv:2206.02807) | DOI

[37] N. Byers; C. N. Yang Theoretical Considerations Concerning Quantized Magnetic Flux in Superconducting Cylinders, Phys. Rev. Lett., Volume 7 (1961) no. 2, pp. 46-49 | DOI

[38] A. J. Leggett Some Considerations Related to the Quantization of Charge in Mesoscopic Systems, Granular Nanoelectronics (C. W. J. Beenakker et al., eds.) (NATO Science Series B: Physics), Volume 251, Plenum Press, New York, 1991, pp. 343-358 | DOI

[39] P. Naldesi; J. Polo; V. Dunjko; H. Perrin; M. Olshanii; L. Amico; A. Minguzzi Enhancing sensitivity to rotations with quantum solitonic currents, SciPost Phys., Volume 12 (2022), 138 | DOI

[40] Xavier Waintal; Geneviève Fleury; Kyryl Kazymyrenko; Manuel Houzet; Peter Schmitteckert; Dietmar Weinmann Persistent Currents in One Dimension: The Counterpart of Leggett’s Theorem, Phys. Rev. Lett., Volume 101 (2008) no. 10, 106804 | DOI

[41] Giovanni Pecci; Piero Naldesi; Luigi Amico; Anna Minguzzi Probing the BCS-BEC crossover with persistent currents, Phys. Rev. Res., Volume 3 (2021) no. 3, L032064 | DOI

[42] Naichang Yu; Michael Fowler Persistent current of a Hubbard ring threaded with a magnetic flux, Phys. Rev. B, Volume 45 (1992) no. 20, pp. 11795-11804 | DOI

[43] Wayne J. Chetcuti; Tobias Haug; Leong-Chuan Kwek; Luigi Amico Persistent current of SU(N) fermions, SciPost Phys., Volume 12 (2022), 033 | DOI | MR

[44] Y.-Q Li; S.-J. Gu; Z.-J. Ying; U. Eckern Exact results of the ground state and excitation properties of a two-component interacting Bose system, Eur. Phys. Lett., Volume 61 (2003) no. 3, pp. 368-374 | DOI

[45] Adilet Imambekov; Eugene Demler Exactly solvable case of a one-dimensional Bose–Fermi mixture, Phys. Rev. A, Volume 73 (2006) no. 2, 021602 | DOI

[46] Adilet Imambekov; Eugene Demler Applications of exact solution for strongly interacting one-dimensional Bose-–Fermi mixture: Low-temperature correlation functions, density profiles, and collective modes, Ann. Phys., Volume 321 (2006) no. 10, pp. 2390-2437 | DOI | MR | Zbl

[47] Fabian H. L. Essler; Holger Frahm; Frank Göhmann; Andreas Klümper; Vladimir E. Korepin The One-Dimensional Hubbard Model, Cambridge University Press, 2005 | DOI

[48] Masao Ogata; Hiroyuki Shiba Bethe-ansatz wave function, momentum distribution, and spin correlation in the one-dimensional strongly correlated Hubbard model, Phys. Rev. B, Volume 41 (1990) no. 4, pp. 2326-2338 | DOI

[49] Hans Bethe Zur theorie der metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys., Volume 71 (1931) no. 3, pp. 205-226 | Zbl

[50] Fabio Franchini et al. An introduction to integrable techniques for one-dimensional quantum systems, Springer, 2017 | MR

[51] M. Girardeau Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension, J. Math. Phys., Volume 1 (1960) no. 6, pp. 516-523 | DOI | MR | Zbl

[52] Jean Decamp; Pacome Armagnat; Bess Fang; Mathias Albert; Anna Minguzzi; Patrizia Vignolo Exact density profiles and symmetry classification for strongly interacting multi-component Fermi gases in tight waveguides, New J. Phys., Volume 18 (2016) no. 5, 055011 | DOI

[53] N. Andrei; K. Furuya; J. H. Lowenstein Solution of the Kondo problem, Rev. Mod. Phys., Volume 55 (1983) no. 2, pp. 331-402 | DOI | MR

[54] M. Manninen; S. Viefers; S. M. Reimann Quantum rings for beginners II: Bosons versus fermions, Physica E Low Dimens. Syst. Nanostruct., Volume 46 (2012), pp. 119-132 | DOI

[55] F. Bloch Superfluidity in a Ring, Phys. Rev. A, Volume 7 (1973) no. 6, pp. 2187-2191 | DOI

[56] Rafael I. Nepomechie; Chunguang Wang Algebraic Bethe ansatz for singular solutions, J. Phys. A, Math. Theor., Volume 46 (2013) no. 32, 325002 | DOI | MR | Zbl

[57] Anatol N. Kirillov; Reiho Sakamoto Singular solutions to the Bethe ansatz equations and rigged configurations, J. Phys. A, Math. Theor., Volume 47 (2014) no. 20, 205207 | DOI | MR | Zbl

[58] Jean Decamp; Johannes Jünemann; Mathias Albert; Matteo Rizzi; Anna Minguzzi; Patrizia Vignolo High-momentum tails as magnetic-structure probes for strongly correlated SU(κ) fermionic mixtures in one-dimensional traps, Phys. Rev. A, Volume 94 (2016) no. 5, 053614 | DOI

Cited by Sources:

Comments - Policy