[Transition superfluide dans des gaz de fermions dipolaires désordonnés quasi bidimensionnels]
Nous étudions l’effet d’un désordre faible sur les propriétés superfluides des gaz de fermions dipolaires quasi bidimensionnels à deux composantes. L’amplitude de l’interaction dipôle-dipôle dépend de la quantité de mouvement, ce qui viole le théorème d’Anderson selon lequel un désordre faible n’a pratiquement aucun effet sur la température de transition superfluide dans le régime d’interaction faible. Nous trouvons que, pour les fermions dipolaires, la température de transition dans ce régime peut être fortement augmentée par le désordre comme dans le cas purement bidimensionnel. Cependant, l’effet se réduit si l’interaction entre les deux composantes fermioniques augmente, et dans le régime d’interaction forte, la température de transition superfluide en présence d’un désordre faible devient très proche de celle en l’absence de désordre.
We investigate the effect of weak disorder on the superfluid properties of two-component quasi-two-dimensional dipolar Fermi gases. The dipole-dipole interaction amplitude is momentum dependent, which violates the Anderson theorem claiming that the weak disorder has practically no influence on the superfluid transition temperature in the weakly interacting regime. We find that for dipolar fermions the transition temperature in this regime can be strongly increased by the disorder like in the purely two-dimensional case. However, the effect becomes smaller with increasing the intercomponent fermion-fermion interaction, and in the strongly interacting regime the superfluid transition temperature in the weak disorder becomes very close to that in the absence of disorder.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : Systèmes de fermions, effets du désordre, transition de phase superfluide, théorie BCS et ses développements, gaz ultrafroids
Victoria Y. Pinchenkova 1, 2 ; Sergey I. Matveenko 3, 1 ; Vladimir I. Yudson 4, 1 ; Georgy V. Shlyapnikov 1, 2, 5, 6
@article{CRPHYS_2023__24_S3_101_0, author = {Victoria Y. Pinchenkova and Sergey I. Matveenko and Vladimir I. Yudson and Georgy V. Shlyapnikov}, title = {Superfluid transition in quasi-two-dimensional disordered dipolar {Fermi} gases}, journal = {Comptes Rendus. Physique}, pages = {101--111}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.158}, language = {en}, }
TY - JOUR AU - Victoria Y. Pinchenkova AU - Sergey I. Matveenko AU - Vladimir I. Yudson AU - Georgy V. Shlyapnikov TI - Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases JO - Comptes Rendus. Physique PY - 2023 SP - 101 EP - 111 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.158 LA - en ID - CRPHYS_2023__24_S3_101_0 ER -
%0 Journal Article %A Victoria Y. Pinchenkova %A Sergey I. Matveenko %A Vladimir I. Yudson %A Georgy V. Shlyapnikov %T Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases %J Comptes Rendus. Physique %D 2023 %P 101-111 %V 24 %N S3 %I Académie des sciences, Paris %R 10.5802/crphys.158 %G en %F CRPHYS_2023__24_S3_101_0
Victoria Y. Pinchenkova; Sergey I. Matveenko; Vladimir I. Yudson; Georgy V. Shlyapnikov. Superfluid transition in quasi-two-dimensional disordered dipolar Fermi gases. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 101-111. doi : 10.5802/crphys.158. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.158/
[1] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964 | DOI
[2] Theory of ultracold atomic Fermi gases, Rev. Mod. Phys., Volume 80 (2008), pp. 1215-1274 | DOI
[3] Disordered quantum gases under control, Nat. Phys., Volume 6 (2010) no. 2, pp. 87-95 | DOI
[4] Quantum simulation of the Hubbard model with ultracold fermions in optical lattices, C. R. Physique, Volume 19 (2018) no. 6, pp. 365-393 | DOI
[5] Multifractally-enhanced superconductivity in thin films, Ann. Phys., Volume 435 (2021), 168499 | DOI | MR | Zbl
[6] Theory of dirty superconductors, J. Phys. Chem. Solids, Volume 11 (1959) no. 1-2, pp. 26-30 | DOI | Zbl
[7] On the theory of superconducting alloys. I. The electrodynamics of alloys at absolute zero, Sov. Phys., JETP, Volume 8 (1959), pp. 1090-1098 [russian version published in J. Exptl. Theoret. Phys. (U.S.S.R.), 35 (1958), p. 1558-1571] | MR
[8] Fluctuating shift in the transition temperature of thin superconducting films, Sov. Phys., JETP, Volume 37 (1973), pp. 366-368 [russian version published in Zh. Eksp. Teor. Fiz., textbf64, no 2 (1973), p. 719]
[9] Localization effects in two-dimensional superconductors, J. Phys. Soc. Japan, Volume 51 (1982) no. 5, pp. 1380-1385 | DOI
[10] Anderson localization and superconducting transition temperature in two-dimensional systems, Solid State Commun., Volume 41 (1982) no. 9, pp. 643-648 | DOI
[11] Disordered electronic systems, Rev. Mod. Phys., Volume 57 (1985) no. 2, pp. 287-337 | DOI
[12] Superconducting transition temperature in amorphous films, JETP Lett., Volume 45 (1987), pp. 37-40 [russian version published in Pis’ma Zh. Eksp. Teor. Fiz. 45 (1987), p. 46-49]
[13] Suppression of superconductivity in homogeneously disordered systems, Physica B Condens. Matter, Volume 197 (1994) no. 1-4, pp. 636-648 | DOI
[14] Superconductivity and localization, Phys. Rep., Volume 282 (1997) no. 5-6, pp. 225-348 | DOI | MR
[15] Systematic investigation of the effects of disorder at the lowest order throughout the BCS-BEC crossover, Phys. Rev. B, Volume 88 (2013), 174504 | DOI
[16] Fractal superconductivity near localization threshold, Ann. Phys., Volume 325 (2010) no. 7, pp. 1390-1478 | DOI | Zbl
[17] Enhancement of the critical temperature of superconductors by Anderson localization, Phys. Rev. Lett., Volume 108 (2012), 017002 | DOI
[18] et al. Superfluid transition in disordered dipolar Fermi gases, Phys. Rev. A, Volume 102 (2020), 053319 | DOI | MR
[19] et al. Observation of the Berezinskii-Kosterlitz-Thouless phase transition in an ultracold Fermi gas, Phys. Rev. Lett., Volume 115 (2015), 010401 | DOI
[20] Cooper pairing in spin-polarized Fermi systems, J. Phys. Colloques, Volume 41 (1980), p. C7-19–C7-26 | DOI
[21] Diatomic molecules and cooper pairs, Modern Trends in the Theory of Condensed Matter (A. Pekalski; J. Przystawa, eds.) (Lecture Notes in Physics), Volume 115, Springer, 1980, pp. 13-27 | DOI
[22] Fermi liquid theory of dilute submonolayer He on thin He II film: Dimer bound state and cooper pairs, Prog. Theor. Phys., Volume 69 (1983) no. 6, pp. 1794-1797 | DOI
[23] et al. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases, Phys. Rev. A, Volume 93 (2016), 023602 | DOI
[24] et al. Observing the Influence of Reduced Dimensionality on Fermionic Superfluids, Phys. Rev. Lett., Volume 129 (2022) no. 8, 083601 | DOI
[25] Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. II. Quantum systems, Sov. Phys., JETP, Volume 34 (1972), pp. 610-616 [russian version published in Zh. Eksp. Teor. Fiz., 61 (1971), p. 1144-1156]
[26] Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C, Solid State Phys., Volume 6 (1973), pp. 1181-1203 | DOI
[27] On the energy spectrum of superconductors, Sov. Phys., JETP, Volume 7 (1958), pp. 505-508 [russian version published in J. Exptl. Theoret. Phys. (U.S.S.R.), 34, no 3 (1958), p. 735] | Zbl
[28] Quantum Mechanics, Butterworth-Heinemann, Oxford, 1999
[29] Universal jump in the superfluid density of two-dimensional superfluids, Phys. Rev. Lett., Volume 39 (1977) no. 19, pp. 1201-1205 | DOI
[30] Introduction to many-body physics, Cambridge University Press, 2015 | DOI | MR
[31] Ground-state pressure of quasi-2D Fermi and Bose gases, Phys. Rev. Lett., Volume 112 (2014), 045301 | DOI
[32] Quantum degenerate dipolar Fermi gas, Phys. Rev. Lett., Volume 108 (2012), 215301 | DOI
[33] et al. Observation of Fermi surface deformation in a dipolar quantum gas, Science, Volume 345 (2014) no. 6203, pp. 1484-1487 | DOI
[34] et al. Realization of a strongly interacting Fermi gas of dipolar atoms, Phys. Rev. Lett., Volume 121 (2018), 093602 | DOI
Cité par Sources :
Commentaires - Politique