Metamaterials and metasurfaces are artificial composite media engineered to exhibit extraordinary properties of wave propagation. In bulk (3D) metamaterials, such extreme properties may result from non-conventional values of effective homogeneous optical parameters such as the electric permittivity and the magnetic permeability. These features generally originate in the collective response of the constitutive structural elements, which have to be of sub-wavelength dimensions to satisfy the requirement of optical homogeneity, and which have to be highly polarizable to provide efficient optical functions. For visible light applications, sub-wavelength dimensions imply structuration at the nanoscale whereas high polarizability can be achieved by optical resonators such as plasmonic or Mie resonators. Metasurfaces, on the other hand, are 2D equivalent of metamaterials, designed to control the phase, amplitude and possibly polarization of incident EM waves with subwavelength thickness, using interfacial discontinuities effects. This review shows how the bottom-up approach based on nano-chemistry and the self-assembly methods of colloidal physical-chemistry can be used to produce nano-sized tunable magneto-electric resonators which can subsequently be assembled in bulk nanostructured metamaterials as well as in optically thin metasurfaces. Focusing mainly on work carried out at the University of Bordeaux over the past decade, we review some of the optical properties observed in visible light from the fabricated systems. Specific optical experiments and numerical simulations are of crucial importance for the design of the most efficient structures and the extraction of the effective optical parameters.
Les métamatériaux et les métasurfaces sont des milieux composites conçus pour posséder des propriétés optiques extraordinaires. Dans le cas des métamatériaux tridimensionnels, les propriétés nouvelles peuvent résulter de valeurs non conventionnelles des paramètres optiques effectifs tels que la permittivité diélectrique et la perméabilité magnétique. Elles proviennent en général de la réponse collective d’inclusions fortement polarisables de dimensions sub-longueur d’onde afin d’assurer une réponse optique homogène. Dans le spectre de la lumière visible, cette contrainte implique une structuration des matériaux à l’échelle nanométrique. Une forte polarisabilité peut être assurée par des résonances optiques plasmoniques ou de Mie. Les métasurfaces sont les équivalents bidimensionnels des métamatériaux conçus pour contrôler la phase, l’amplitude et si possible la polarisation des ondes transmises ou réfléchies. Cette revue, centrée essentiellement sur les travaux réalisés depuis une décennie à l’Université de Bordeaux, montre comment l’approche dite “bottom-up” fondée sur la nano-chimie et les méthodes d’auto-assemblage de la physico-chimie colloïdale permet de produire des résonateurs magnéto-électriques accordables de dimensions nanométriques et de les assembler pour former des métamatériaux ou des métasurfaces résonants. En parallèle, le développement de simulations numériques et leur association à des mesures optiques spécifiques sont des éléments cruciaux pour la conception des nanostructures les plus efficaces ainsi que l’extraction de leurs paramètres optiques effectifs.
Published online:
Mots-clés : Métamatériaux, Métasurfaces, Auto-assemblage, Colloïdes, Méthode ascendante, Résonances optiques
Alexandre Baron 1; Ashod Aradian 1; Virginie Ponsinet 1; Philippe Barois 1
@article{CRPHYS_2020__21_4-5_443_0, author = {Alexandre Baron and Ashod Aradian and Virginie Ponsinet and Philippe Barois}, title = {Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies}, journal = {Comptes Rendus. Physique}, pages = {443--465}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.21}, language = {en}, }
TY - JOUR AU - Alexandre Baron AU - Ashod Aradian AU - Virginie Ponsinet AU - Philippe Barois TI - Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies JO - Comptes Rendus. Physique PY - 2020 SP - 443 EP - 465 VL - 21 IS - 4-5 PB - Académie des sciences, Paris DO - 10.5802/crphys.21 LA - en ID - CRPHYS_2020__21_4-5_443_0 ER -
%0 Journal Article %A Alexandre Baron %A Ashod Aradian %A Virginie Ponsinet %A Philippe Barois %T Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies %J Comptes Rendus. Physique %D 2020 %P 443-465 %V 21 %N 4-5 %I Académie des sciences, Paris %R 10.5802/crphys.21 %G en %F CRPHYS_2020__21_4-5_443_0
Alexandre Baron; Ashod Aradian; Virginie Ponsinet; Philippe Barois. Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies. Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 443-465. doi : 10.5802/crphys.21. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.21/
[1] Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities, Phys.-Usp., Volume 10 (1968) no. 4, pp. 504-509
[2] Historical notes on metamaterials, Theory and Phenomena of Metamaterials (F. Capolino, ed.), Volume 1, CRC Press, 2009
[3] Introduction, history, and selected topics in fundamental theories of metamaterials, Metamaterials (N. Engheta; R. Ziolkowski, eds.), IEEE Press, 2006 | DOI
[4] Negative-refractive-index transmission-line metamaterials, Negative-Refracton Metamaterials (G. V. Eleftheriades; K. G. Balmain, eds.), Wiley and Sons, 2005 | DOI
[5] Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat. Photon., Volume 5 (2011) no. 9, p. 523 | DOI
[6] Self-assembly and nanochemistry techniques for the fabrication of metamaterials, Theory and Phenomena of Metamaterials (F. Capolino, ed.), Volume 2, CRC Press, 2009
[7] Self-assembled optical metamaterials, Opt. Laser Technol., Volume 82 (2016), pp. 94-100 | DOI
[8] Self-assembled nanostructured metamaterials, Europhys. Lett., Volume 119 (2017) no. 1, 14004 | DOI
[9] An Introduction to Interfaces and Colloids: The Bridge to Nanoscience, World Scientific, 2010
[10] Colloid Science: Principles, Methods and Applications, Wiley and Sons, 2010
[11] Les nanosciences, Nanomateriaux et nanochimie, Volume 2, Belin, 2006
[12] Nanomaterials and Nanochemistry, Springer, 2007 | DOI
[13] et al. Bulk optical metamaterials assembled by microfluidic evaporation, Opt. Mater. Express, Volume 3 (2013) no. 11, pp. 1792-1797 | DOI
[14] et al. Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies, Mater. Horiz., Volume 3 (2016) no. 6, pp. 596-601 | DOI
[15] Light scattering and surface plasmons on small spherical particles, Light: Sci. Appl., Volume 3 (2014) no. 6, e179–e179
[16] Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics, Chem. Soc. Rev., Volume 45 (2016) no. 20, pp. 5672-5716 | DOI
[17] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, p. 3966 | DOI
[18] Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl
[19] Transforming light, Science, Volume 322 (2008) no. 5900, pp. 384-386 | DOI
[20] Electrodynamics of Continuous Media, Vol. 8, Elsevier, 2013
[21] et al. Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., Volume 47 (1999) no. 11, pp. 2075-2084 | DOI
[22] Experimental verification of a negative index of refraction, Science, Volume 292 (2001) no. 5514, pp. 77-79 | DOI
[23] Negative effective permeability and left-handed materials at optical frequencies, Opt. Express, Volume 14 (2006) no. 4, pp. 1557-1567 | DOI
[24] The quest for magnetic plasmons at optical frequencies, Opt. Express, Volume 17 (2009) no. 7, pp. 5723-5730 | DOI
[25] Model of isotropic resonant magnetism in the visible range based on core-shell clusters, Phys. Rev. B, Volume 79 (2009) no. 4, 045111 | DOI
[26] Optical properties of isotropic chiral media, Pure Appl. Opt.: J. Eur. Opt. Soc. A, Volume 5 (1996) no. 4, p. 417 | DOI
[27] DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, Volume 483 (2012) no. 7389, p. 311 | DOI
[28] Assemblies of metal nanoparticles and self-assembled peptide fibrils—formation of double helical and single-chain arrays of metal nanoparticles, Adv. Mater., Volume 15 (2003) no. 11, pp. 902-906 | DOI
[29] et al. Goldhelix: gold nanoparticles forming 3d helical superstructures with controlled morphology and strong chiroptical property, ACS Nano, Volume 11 (2017) no. 4, pp. 3806-3818 | DOI
[30] Collective electric and magnetic plasmonic resonances in spherical nanoclusters, Opt. Express, Volume 19 (2011) no. 3, pp. 2754-2772 | DOI
[31] Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev., Volume 111 (2011) no. 6, pp. 3888-3912 | DOI
[32] All-dielectric metamaterials, Nat. Nanotechnol., Volume 11 (2016) no. 1, p. 23 | DOI
[33] An optical cloak made of dielectrics, Nat. Mater., Volume 8 (2009) no. 7, p. 568 | DOI
[34] Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, Science, Volume 352 (2016) no. 6290, pp. 1190-1194 | DOI
[35] Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett., Volume 12 (2012) no. 7, pp. 3749-3755 | DOI
[36] Colloidal moderate-refractive-index CuO nanospheres as visible-region nanoantennas with electromagnetic resonance and directional light-scattering properties, Adv. Mater., Volume 27 (2015) no. 45, pp. 7432-7439 | DOI
[37] Isotropic Huygens dipoles and multipoles with colloidal particles, Phys. Rev. B, Volume 96 (2017) no. 18, 180201 | DOI
[38] Second-harmonic enhancement with Mie resonances in perovskite nanoparticles, ACS Photon., Volume 4 (2016) no. 1, pp. 76-84 | DOI
[39] Plasmon assisted thermal modulation in nanoparticles, Opt. Express, Volume 21 (2013) no. 10, pp. 12145-12158 | DOI
[40] Surface plasmon-polariton amplifiers and lasers, Nat. Photon., Volume 6 (2011), pp. 16-24 | DOI
[41] Active nanoplasmonic metamaterials, Nat. Mater., Volume 11 (2012), pp. 573-584 | DOI
[42] Active plasmonics: current status, Laser Photon. Rev., Volume 4 (2010) no. 4, pp. 562-567 | DOI
[43] The effect of gain and absorption on surface plasmons in metal nanoparticles, Appl. Phys. B, Volume 86 (2007) no. 3, pp. 455-460 | DOI
[44] Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate optical losses, ACS Nano, Volume 5 (2011) no. 7, pp. 5823-5829 | DOI
[45] Gain functionalized core–shell nanoparticles: the way to selectively compensate absorptive losses, J. Mater. Chem., Volume 2 (2012), pp. 8846-8852 | DOI
[46] Applications of nanolasers, Nat. Nanotechnol., Volume 14 (2019), pp. 12-22
[47] Nanolasers enabled by metallic nanoparticles: from spasers to random lasers, Laser Photon. Rev., Volume 11 (2017) no. 6, 1700212 | DOI
[48] Demonstration of a spaser-based nanolaser, Nature, Volume 460 (2009), pp. 1110-1112 | DOI
[49] Wavelength-tunable spasing in the visible, Nano Lett., Volume 13 (2013) no. 9, pp. 4106-4112 | DOI
[50] Optical response of a metallic nanoparticle immersed in a medium with optical gain, Phys. Rev. B, Volume 85 (2012) no. 11, 115429 | DOI
[51] Cooperative plasmon-mediated effects and loss compensation by gain dyes near a metal nanoparticle, J. Opt. Soc. Am. B, Volume 32 (2015) no. 02, pp. 188-193 | DOI
[52] Multipolar, time-dynamical model for the loss compensation and lasing of a spherical plasmonic nanoparticle spaser immersed in an active gain medium, Sci. Rep., Volume 6 (2016), p. 33018 | DOI
[53]
to be published (2019)[54] Effective medium description of plasmonic couplings in disordered polymer and gold nanoparticle composites, Thin Solid Films, Volume 603 (2016), pp. 452-464 | DOI
[55] Bottom-up fabrication and optical characterization of dense films of meta-atoms made of core–shell plasmonic nanoparticles, Langmuir, Volume 29 (2013) no. 5, pp. 1551-1561 | DOI
[56] et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection, Nat. Mater., Volume 12 (2013) no. 4, p. 304 | DOI
[57] Plasmonic metamaterials for ultra-sensitive sensing: topological darkness, Rend. Lincei, Volume 26 (2015) no. 2, pp. 175-182 | DOI
[58] Ligand-free synthesis of gold nanoparticles incorporated within cylindrical block copolymer films, J. Mater. Chem. C, Volume 6 (2018) no. 30, pp. 8194-8204 | DOI
[59] Plasmonic optical interferences for phase-monitored nanoscale sensing in low-loss three-dimensional metamaterials, ACS Photon., Volume 2 (2015) no. 10, pp. 1443-1450 | DOI
[60] Phase jumps and interferometric surface plasmon resonance imaging, Appl. Phys. Lett., Volume 75 (1999) no. 25, pp. 3917-3919 | DOI
[61] Surface plasmon resonance: instrumental resolution using photo diode arrays, Meas. Sci. Technol., Volume 11 (2000) no. 11, p. 1630 | DOI
[62] et al. Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light, Phys. Rev. B, Volume 92 (2015) no. 22, 220414 | DOI
[63] et al. Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles, ACS Nano, Volume 7 (2013) no. 8, pp. 6465-6477 | DOI
[64] Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels, Opt. Express, Volume 23 (2015) no. 2, pp. 1265-1275 | DOI
[65] Direct retrieval method of the effective permittivity and permeability of bulk semi-infinite metamaterials by variable-angle spectroscopic ellipsometry, OSA Contin., Volume 2 (2019) no. 5, pp. 1762-1772 | DOI
[66] Hyperbolic-by-design self-assembled metamaterial based on block copolymers lamellar phases, Opt. Laser Technol., Volume 88 (2017), pp. 85-95 | DOI
[67] Hyperbolic metamaterials and their applications, Prog. Quantum Electron., Volume 40 (2015), pp. 1-40 | DOI
[68] Hyperbolic metamaterials, Nat. Photon., Volume 7 (2013) no. 12, p. 948 | DOI
[69] Applications of hyperbolic metamaterial substrates, Adv. OptoElectron., Volume 2012 (2012), 452502
[70] Hyperbolic metamaterials: novel physics and applications, Solid-State Electron., Volume 136 (2017), pp. 102-112 | DOI
[71] Optical negative refraction in bulk metamaterials of nanowires, Science, Volume 321 (2008) no. 5891, p. 930-930 | DOI
[72] Ultrahigh-density nanowire lattices and circuits, Science, Volume 300 (2003) no. 5616, pp. 112-115 | DOI
[73] Micelles, Membranes, Microemulsions, and Monolayers, Springer Science & Business Media, 2012
[74] The Physics of Liquid Crystals, Vol. 83, Oxford University Press, 1995
[75] Block copolymers: past successes and future challenges, Macromol. Chem. Phys., Volume 204 (2003) no. 2, pp. 265-273 | DOI
[76] Optical negative refraction in ferrofluids with magnetocontrollability, Phys. Rev. Lett., Volume 104 (2010) no. 3, 034501
[77] Self-assembled tunable photonic hyper-crystals, Sci. Rep., Volume 4 (2014), p. 5706 | DOI
[78] Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes, Nano Lett., Volume 19 (2019) no. 5, pp. 3131-3137 | DOI
[79] The Physics of Block Copolymers, Vol. 19, Oxford University Press, Oxford, 1998
[80] Metasurfaces: from microwaves to visible, Phys. Rep., Volume 634 (2016), pp. 1-72 | DOI | MR
[81] Periodic arrays of diamond-shaped silver nanoparticles: from scalable fabrication by template-assisted solid-state dewetting to tunable optical properties, Adv. Funct. Mater. (2019), 1901119
[82] Integration of colloidal nanocrystals into lithographically patterned devices, Nano Lett., Volume 4 (2004) no. 6, pp. 1093-1098 | DOI
[83] Oriented assembly of gold nanorods on the single-particle level, Adv. Funct. Mater., Volume 22 (2012) no. 4, pp. 702-708 | DOI
[84] Gold nanoparticle arrays assembled on the reconstructed surface of block copolymer thin films, RSC Adv., Volume 3 (2013) no. 43, pp. 20464-20470 | DOI
[85] Metallic nanodot patterns with unique symmetries templated from ABC triblock terpolymer networks, Macromol. Rapid Commun., Volume 39 (2018) no. 7, 1700754 | DOI
[86] High refractive index in low metal content nanoplasmonic surfaces from self-assembled block copolymer thin films, Nanoscale Adv., Volume 1 (2019) no. 2, pp. 849-857 | DOI
[87] Assembly of aligned linear metallic patterns on silicon, Nat. Nanotechnol., Volume 2 (2007) no. 8, p. 500 | DOI
[88] Nanoscopic patterned materials with tunable dimensions via atomic layer deposition on block copolymers, Adv. Mater., Volume 22 (2010) no. 45, pp. 5129-5133 | DOI
[89] Density multiplication and improved lithography by directed block copolymer assembly, Science, Volume 321 (2008) no. 5891, pp. 936-939 | DOI
[90] Strategies for inorganic incorporation using neat block copolymer thin films for etch mask function and nanotechnological application, Adv. Mater., Volume 28 (2016) no. 27, pp. 5586-5618 | DOI
[91] Optical properties of thin films up to second order in the thickness, Thin Solid Films, Volume 258 (1995) no. 1–2, pp. 213-223 | DOI
[92] Formation and optical response of self-assembled gold nanoparticle lattices on oxidized silicon synthesized using block copolymers, J. Vac. Sci. Technol. B, Volume 38 (2020) no. 1, 013601 | DOI
[93] Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission, Nat. Nanotechnol., Volume 10 (2015) no. 11, p. 937 | DOI
[94] Electromagnetic scattering by magnetic spheres, JOSA, Volume 73 (1983) no. 6, pp. 765-767 | DOI
[95] Traité de la lumière, Gauthier-Villars, 1920, 174 pages
[96] High-efficiency dielectric Huygens’ surfaces, Adv. Opt. Mater., Volume 3 (2015) no. 6, pp. 813-820 | DOI
[97] Isotropic Huygens sources made of clusters of nanoparticles for metasurfaces applications, J. Phys.: Conf. Ser., Volume 1092 (2018), 012022
[98] Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht, Ann. Phys., Volume 185 (1860) no. 2, pp. 275-301 | DOI
[99] Controlled-reflectance surfaces with film-coupled colloidal nanoantennas, Nature, Volume 492 (2012) no. 7427, p. 86 | DOI
[100] Theory of patch-antenna metamaterial perfect absorbers, Phys. Rev. A, Volume 93 (2016) no. 6, 063849
[101] Effective-medium description of a metasurface composed of a periodic array of nanoantennas coupled to a metallic film, Phys. Rev. A, Volume 95 (2017) no. 3, 033822 | DOI
[102] Large-area metasurface perfect absorbers from visible to near-infrared, Adv. Mater., Volume 27 (2015) no. 48, pp. 8028-8034 | DOI
[103] Complete multipolar description of reflection and transmission across a metasurface for perfect absorption of light, Opt. Exp., Volume 27 (2019), pp. 26317-26330 | DOI
[104] Full light absorption in single arrays of spherical nanoparticles, ACS Photon., Volume 2 (2015) no. 5, pp. 653-660 | DOI
[105] Silicon-based dielectric metamaterials: focus on the current synthetic challenges, Angew. Chem., Volume 57 (2018), pp. 4478-4498 | DOI
[106] Crystal Optics with Spatial Dispersion, and Excitons, Springer-Verlag, Berlin, Heidelberg GmbH, 1984 | DOI
Cited by Sources:
Comments - Policy