[Méta-photonique diélectrique avec des résonateurs de Mie]
Les matériaux diélectriques à indice de réfraction élevé peuvent interagir de manière résonnante avec la lumière grâce à l’excitation de modes de Mie électriques et magnétiques. Cette revue présente un état de l’art du contrôle de la lumière par les résonances électriques et magnétiques de Mie dans les nanostructures diélectriques. Elle décrit tout d’abord la reproduction des conditions de Kerker pour un contrôle de la diffusion avant ou arrière de la lumière. Elle décrit ensuite l’intérêt des résonances de Mie pour (i) le contrôle de l’interaction entre la lumière et la matière dans les antennes optiques diélectriques (exaltation de champ proche, densité d’états et directivité d’émission), (ii) la génération d’états photoniques liés dans le continuum ou encore (iii) la génération de couleurs structurelles par des métasurfaces diélectriques.
All-dielectric subwavelength structures made of high-refractive-index materials combine a unique set of advantages in comparison with their plasmonic counterparts. In particular, they can interact resonantly with light through the excitation of both electric and magnetic multipolar Mie-type resonances. This review discusses novel approaches to manipulate light with Mie-resonant dielectric subwavelength structures, spanning from individual nanoparticles to metasurfaces, and covering a broad range of effects, from near-field energy enhancement to far-field beam shaping.
Publié le :
Mot clés : Nanophotonique diélectrique, Résonances de Mie, Conditions de Kerker, Etats liés dans le continuum, Métaphotonique, Métasurfaces
Nicolas Bonod 1 ; Yuri Kivshar 2, 3
@article{CRPHYS_2020__21_4-5_425_0, author = {Nicolas Bonod and Yuri Kivshar}, title = {All-dielectric {Mie-resonant} metaphotonics}, journal = {Comptes Rendus. Physique}, pages = {425--442}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.31}, language = {en}, }
Nicolas Bonod; Yuri Kivshar. All-dielectric Mie-resonant metaphotonics. Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 425-442. doi : 10.5802/crphys.31. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.31/
[1] Photonic band-gap effects and magnetic activity in dielectric composites, J. Phys.: Condens. Matter, Volume 14 (2002) no. 15, p. 4035
[2] Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles, Phys. Rev. Lett., Volume 99 (2007), 107401
[3] Optical response features of si-nanoparticle arrays, Phys. Rev. B, Volume 82 (2010), 045404
[4] Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation, Phys. Rev. B, Volume 84 (2011), 235429
[5] Strong magnetic response of submicron silicon particles in the infrared, Opt. Express, Volume 19 (2011) no. 6, pp. 4815-4826 | DOI
[6] Huygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticles, JETP Lett., Volume 94 (2011), pp. 593-598 | DOI
[7] Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles, Opt. Express, Volume 20 (2012) no. 18, pp. 20376-20386 | DOI
[8] All-dielectric optical nanoantennas, Opt. Express, Volume 20 (2012) no. 18, pp. 20599-20604 | DOI
[9] Magnetic light, Sci. Rep., Volume 2 (2012), p. 492 | DOI
[10] Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett., Volume 12 (2012) no. 7, pp. 3749-3755 | DOI
[11] Optically resonant dielectric nanostructures, Science, Volume 354 (2016) no. 6314, aag2472
[12] Functional meta-optics and nanophotonics governed by Mie resonances, ACS Photon., Volume 4 (2017), p. 2638 | DOI
[13] Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Ann. Phys., Volume 330 (1908) no. 3, pp. 377-445 | DOI | Zbl
[14] Light scattering by small particles, Structure of matter series, Wiley, 1957
[15] Resonant multiple scattering of light, Phys. Rep., Volume 270 (1996) no. 3, pp. 143-215 | DOI
[16] Optical resonators with whispering gallery modes i: basics, IEEE J. Sel. Top. Quantum Electron., Volume 12 (2006) no. 3, p. 3 | DOI
[17] Optical resonators with whispering-gallery modes-part ii: applications, IEEE J. Sel. Top. Quantum Electron., Volume 12 (2006) no. 1, pp. 15-32 | DOI
[18] Mimicking localized surface plasmons with dielectric particles, Phys. Rev. B, Volume 92 (2015) no. 24, 241412 | DOI
[19] Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses, Nat. Commun., Volume 5 (2014), p. 3402 | DOI
[20] Polarizability tensor retrieval for magnetic and plasmonic antenna design, New J. Phys., Volume 15 (2013) no. 7, 073023
[21] Optical monitoring of the magnetoelectric coupling in individual plasmonic scatterers, ACS Photon., Volume 3 (2016) no. 9, pp. 1581-1588 | DOI
[22] et al. Kerker effect in ultrahigh-field magnetic resonance imaging, Phys. Rev. X, Volume 8 (2018) no. 3, 031083
[23] Plasmon hybridizaton in nanoparticle dimers, Nano Lett., Volume 4 (2004) no. 5, pp. 899-903 | DOI
[24] Electromagnetic scattering by magnetic spheres, J. Opt. Soc. Am., Volume 73 (1983) no. 6, pp. 765-767 | DOI
[25] Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces, J. Nanophoton., Volume 5 (2011), 053512 | DOI
[26] Angle-suppressed scattering and optical forces on submicrometer dielectric particles, J. Opt. Soc. Am. A, Volume 28 (2011) no. 1, pp. 54-60 | DOI
[27] Demonstration of zero optical backscattering from single nanoparticles, Nano Lett., Volume 13 (2013) no. 4, pp. 1806-1809 | DOI
[28] Transverse scattering and generalized Kerker effects in all-dielectric mie-resonant metaoptics, Phys. Rev. Lett., Volume 122 (2019), 193905 | DOI
[29] Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials, New J. Phys., Volume 13 (2011) no. 12, 123017 | DOI
[30] et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere, Nat. Commun., Volume 3 (2012), p. 1171 | DOI
[31] Directional visible light scattering by silicon nanoparticles, Nat. Commun., Volume 4 (2013), p. 1527 | DOI
[32] et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, Volume 7 (2013) no. 9, pp. 7824-7832 | DOI
[33] Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index, ACS Photon., Volume 2 (2015) no. 7, pp. 993-999 | DOI
[34] Large-scale all-dielectric metamaterial perfect reflectors, ACS Photon., Volume 2 (2015) no. 6, pp. 692-698 | DOI
[35] Generalized kerker effects in nanophotonics and meta-optics, Opt. Express, Volume 26 (2018), pp. 13085-13105 | DOI
[36] Transparency and perfect absorption of all-dielectric resonant metasurfaces governed by the transverse kerker effect, Phys. Rev. Mater., Volume 3 (2019) no. 8, 085201
[37] Switching from visibility to invisibility via fano resonances: Theory and experiment, Sci. Rep., Volume 5 (2015), p. 8774 | DOI
[38] Mie resonance-based dielectric metamaterials, Mater. Today, Volume 12 (2009), pp. 60-69 | DOI
[39] An optical cloak made of dielectrics, Nat. Mater., Volume 8 (2009), pp. 568-571 | DOI
[40] Scattering cancellation of the magnetic dipole field from macroscopic spheres, Opt. Express, Volume 20 (2012), pp. 13896-13906 | DOI
[41] Antennas for light, Nat. Photon., Volume 5 (2011) no. 2, pp. 83-90 | DOI
[42] Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects, Phys. Rev. Lett., Volume 89 (2002) no. 20, 203002 | DOI
[43] Resonant optical antennas, Science, Volume 308 (2005) no. 5728, pp. 1607-1609 | DOI
[44] Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., Volume 96 (2006), 113002 | DOI
[45] Spectral dependence of single molecule fluorescence enhancement, Opt. Express, Volume 15 (2007) no. 21, pp. 14266-14274 | DOI
[46] Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators, Phys. Rev. Lett., Volume 100 (2008) no. 20, 203002 | DOI
[47] Shaping light beams in the nanometer scale: A Yagi–Uda nanoantenna in the optical domain, Phys. Rev. B, Volume 76 (2007), 245403
[48] Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, Volume 329 (2010) no. 5994, pp. 930-933 | DOI
[49] Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations, Nano Lett., Volume 11 (2011) no. 2, pp. 637-644 | DOI
[50] Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA, Nat. Commun., Volume 3 (2012), p. 962 | DOI
[51] Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas, Science, Volume 338 (2012) no. 6106, pp. 506-510 | DOI
[52] Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities, Nano Lett., Volume 16 (2015) no. 1, pp. 270-275 | DOI
[53] Extreme nanophotonics from ultrathin metallic gaps, Nat. Mater., Volume 18 (2019), pp. 668-678 | DOI
[54] Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere, J. Opt. Soc. Am. B, Volume 26 (2009) no. 7, pp. 1473-1478 | DOI
[55] Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission, ACS Nano, Volume 4 (2010) no. 6, pp. 3390-3396 | DOI
[56] Highly directive hybrid metal–dielectric Yagi–Uda nanoantennas, ACS Nano, Volume 12 (2018) no. 8, pp. 8616-8624 | DOI
[57] Dielectric nanoantennas to manipulate solid-state light emission, J. Appl. Phys., Volume 126 (2019) no. 9, 094104 | DOI
[58] Modifying magnetic dipole spontaneous emission with nanophotonic structures, Laser Photon. Rev., Volume 11 (2017) no. 3, 1600268
[59] Strong enhancement of magnetic dipole emission in a multilevel electronic system, Opt. Lett., Volume 35 (2010) no. 20, pp. 3318-3320 | DOI
[60] Spectral tuning by selective enhancement of electric and magnetic dipole emission, Phys. Rev. Lett., Volume 106 (2011), 193004 | DOI
[61] Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths, Phys. Rev. B, Volume 86 (2012), 125102
[62] Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances, Phys. Rev. B, Volume 85 (2012), 245432 | DOI
[63] Dielectric antennas - a suitable platform for controlling magnetic dipolar emission, Opt. Express, Volume 20 (2012) no. 13, pp. 13636-13650 | DOI
[64] et al. Enhancing magnetic light emission with all-dielectric optical nanoantennas, Nano Lett., Volume 18 (2018) no. 6, pp. 3481-3487 | DOI
[65] Manipulation of magnetic dipole emission from eu3+ with mie-resonant dielectric metasurfaces, Nano Lett., Volume 19 (2019) no. 2, pp. 1015-1022 | DOI
[66] Electric field enhancement between two si microdisks, Opt. Express, Volume 15 (2007) no. 22, pp. 14711-14716 | DOI
[67] Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas, Nano Lett., Volume 17 (2017) no. 2, pp. 1219-1225 | DOI
[68] et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules, Nano Lett., Volume 16 (2016) no. 8, pp. 5143-5151 | DOI
[69] Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photon., Volume 3 (2009) no. 11, pp. 654-657 | DOI
[70] A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol., Volume 8 (2013) no. 7, p. 512 | DOI
[71] Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers, J. Phys. Chem. C, Volume 117 (2013) no. 26, pp. 13573-13584 | DOI
[72] Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion, Nat. Commun., Volume 6 (2015), p. 7915 | DOI
[73] Purcell factor of spherical mie resonators, Phys. Rev. B, Volume 91 (2015) no. 19, 195422 | DOI
[74] Quantum dot emission driven by mie resonances in silicon nanostructures, Nano Lett., Volume 17 (2017) no. 11, pp. 6886-6892 | DOI
[75] Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic mie resonances, Phys. Rev. B, Volume 97 (2018) no. 8, 085414 | DOI
[76] Anapole-enhanced intrinsic Raman scattering from silicon nanodisks, ACS Photon., Volume 5 (2018) no. 7, pp. 2730-2736 | DOI
[77] Optical magnetism and fundamental modes of nanodiamonds, ACS Photon., Volume 4 (2017) no. 5, pp. 1153-1158 | DOI
[78] Control of spontaneous emission rate in luminescent resonant diamond particles, J. Phys.: Conf. Ser., Volume 961 (2018), 012007
[79] Purcell effect in active diamond nanoantennas, Nanoscale, Volume 10 (2018) no. 18, pp. 8721-8727 | DOI
[80] Halide-perovskite resonant nanophotonics, Adv. Opt. Mater., Volume 7 (2019) no. 1, 1800784 | DOI
[81] Active meta-optics and nanophotonics with halide perovskites, Appl. Phys. Rev., Volume 6 (2019) no. 3, 031307
[82] Light-emitting halide perovskite nanoantennas, Nano Lett., Volume 18 (2018) no. 2, pp. 1185-1190 | DOI
[83] et al. Room-temperature lasing from mie-resonant non-plasmonic nanoparticles, ACS Nano, Volume 14 (2020) no. 7, pp. 8149-8156 | DOI
[84] Bound states in the continuum, Nat. Rev. Mater., Volume 1 (2016), 16048
[85] Lasing action from photonic bound states in continuum, Nature, Volume 541 (2017), pp. 196-199 | DOI
[86] Supercavity lasing, Nature, Volume 541 (2017), pp. 165-166 | DOI
[87] Observation of trapped light within the radiation continuum, Nature, Volume 499 (2013), pp. 188-191 | DOI
[88] Embedded photonic eigenvalues in 3d nanostructures, Phys. Rev. Lett., Volume 112 (2014), 213903 | DOI
[89] Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum, Phys. Rev. Lett., Volume 121 (2018) no. 19, 193903 | DOI
[90] Photosensitive chalcogenide metasurfaces supporting bound states in the continuum, Opt. Express, Volume 27 (2019), pp. 33847-33853 | DOI
[91] Nonlinear wavefront control with all-dielectric metasurfaces, Nano Lett., Volume 18 (2018) no. 6, p. 3978 | DOI
[92] Nonlinear metasurfaces governed by bound states in the continuum, ACS Photon., Volume 6 (2019) no. 7, p. 1639 | DOI
[93] Morpho butterflies wings color modeled with lamellar grating theory, Opt. Express, Volume 9 (2001) no. 11, pp. 567-578 | DOI
[94] Photonic structures in biology, Nature, Volume 424 (2003) no. 6950, p. 852 | DOI
[95] Printing colour at the optical diffraction limit, Nat. Nanotechnol., Volume 7 (2012) no. 9, p. 557 | DOI
[96] Plasmonic colour generation, Nat. Rev. Mater., Volume 2 (2017) no. 1, 16088 | DOI
[97] Wafer scale formation of monocrystalline silicon-based mie resonators via silicon-on-insulator dewetting, ACS Nano, Volume 8 (2014) no. 11, pp. 11181-11190 | DOI
[98] Angle-independent structural colors of silicon, J. Nanophoton., Volume 8 (2014) no. 1, 083988 | DOI
[99] All-dielectric colored metasurfaces with silicon mie resonators, ACS Nano, Volume 10 (2016) no. 8, pp. 7761-7767 | DOI
[100] Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space, Nano Lett., Volume 17 (2017) no. 12, pp. 7620-7628 | DOI
[101] Silicon nanostructures for bright field full color prints, ACS Photon., Volume 4 (2017) no. 8, pp. 1913-1919 | DOI
[102] All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut, ACS Photon., Volume 4 (2017) no. 5, pp. 1076-1082 | DOI
[103] et al. All-dielectric color filters using sige-based mie resonator arrays, ACS Photon., Volume 4 (2017) no. 4, pp. 873-883 | DOI
[104] Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv., Volume 3 (2017) no. 5, e1602487
[105] All-dielectric full-color printing with tio2 metasurfaces, ACS Nano, Volume 11 (2017) no. 5, pp. 4445-4452 | DOI
[106] Grayscale transparent metasurface holograms, Optica, Volume 3 (2016) no. 12, pp. 1504-1505 | DOI
[107] et al. Metasurface orbital angular momentum holography, Nat. Commun., Volume 10 (2019) no. 1, p. 2986 | DOI
Cité par Sources :
Commentaires - Politique