Comptes Rendus
All-dielectric Mie-resonant metaphotonics
[Méta-photonique diélectrique avec des résonateurs de Mie]
Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 425-442.

Les matériaux diélectriques à indice de réfraction élevé peuvent interagir de manière résonnante avec la lumière grâce à l’excitation de modes de Mie électriques et magnétiques. Cette revue présente un état de l’art du contrôle de la lumière par les résonances électriques et magnétiques de Mie dans les nanostructures diélectriques. Elle décrit tout d’abord la reproduction des conditions de Kerker pour un contrôle de la diffusion avant ou arrière de la lumière. Elle décrit ensuite l’intérêt des résonances de Mie pour (i) le contrôle de l’interaction entre la lumière et la matière dans les antennes optiques diélectriques (exaltation de champ proche, densité d’états et directivité d’émission), (ii) la génération d’états photoniques liés dans le continuum ou encore (iii) la génération de couleurs structurelles par des métasurfaces diélectriques.

All-dielectric subwavelength structures made of high-refractive-index materials combine a unique set of advantages in comparison with their plasmonic counterparts. In particular, they can interact resonantly with light through the excitation of both electric and magnetic multipolar Mie-type resonances. This review discusses novel approaches to manipulate light with Mie-resonant dielectric subwavelength structures, spanning from individual nanoparticles to metasurfaces, and covering a broad range of effects, from near-field energy enhancement to far-field beam shaping.

Première publication :
Publié le :
DOI : 10.5802/crphys.31
Keywords: All-dielectric nanophotonics, Mie resonances, Kerker effect, Bound states in the continuum, Metaphotonics, Metasurfaces
Mot clés : Nanophotonique diélectrique, Résonances de Mie, Conditions de Kerker, Etats liés dans le continuum, Métaphotonique, Métasurfaces
Nicolas Bonod 1 ; Yuri Kivshar 2, 3

1 Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
2 ITMO University, St. Petersburg 197101, Russia
3 Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_4-5_425_0,
     author = {Nicolas Bonod and Yuri Kivshar},
     title = {All-dielectric {Mie-resonant} metaphotonics},
     journal = {Comptes Rendus. Physique},
     pages = {425--442},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {4-5},
     year = {2020},
     doi = {10.5802/crphys.31},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Bonod
AU  - Yuri Kivshar
TI  - All-dielectric Mie-resonant metaphotonics
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 425
EP  - 442
VL  - 21
IS  - 4-5
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.31
LA  - en
ID  - CRPHYS_2020__21_4-5_425_0
ER  - 
%0 Journal Article
%A Nicolas Bonod
%A Yuri Kivshar
%T All-dielectric Mie-resonant metaphotonics
%J Comptes Rendus. Physique
%D 2020
%P 425-442
%V 21
%N 4-5
%I Académie des sciences, Paris
%R 10.5802/crphys.31
%G en
%F CRPHYS_2020__21_4-5_425_0
Nicolas Bonod; Yuri Kivshar. All-dielectric Mie-resonant metaphotonics. Comptes Rendus. Physique, Volume 21 (2020) no. 4-5, pp. 425-442. doi : 10.5802/crphys.31. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.31/

[1] S. O’Brien; J. B. Pendry Photonic band-gap effects and magnetic activity in dielectric composites, J. Phys.: Condens. Matter, Volume 14 (2002) no. 15, p. 4035

[2] J. A. Schuller; R. Zia; T. Taubner; M. L. Brongersma Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles, Phys. Rev. Lett., Volume 99 (2007), 107401

[3] A. B. Evlyukhin; C. Reinhardt; A. Seidel; B. S. Luk’yanchuk; B. N. Chichkov Optical response features of si-nanoparticle arrays, Phys. Rev. B, Volume 82 (2010), 045404

[4] A. B. Evlyukhin; C. Reinhardt; B. N. Chichkov Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation, Phys. Rev. B, Volume 84 (2011), 235429

[5] A. García-Etxarri; R. Gómez-Medina; L. S. Froufe-Pérez; C. López; L. Chantada; F. Scheffold; J. Aizpurua; M. Nieto-Vesperinas; J. J. Sáenz Strong magnetic response of submicron silicon particles in the infrared, Opt. Express, Volume 19 (2011) no. 6, pp. 4815-4826 | DOI

[6] A. Krasnok; A. Miroshnichenko; P. Belov; Y. Kivshar Huygens optical elements and Yagi–Uda nanoantennas based on dielectric nanoparticles, JETP Lett., Volume 94 (2011), pp. 593-598 | DOI

[7] B. Rolly; B. Stout; N. Bonod Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles, Opt. Express, Volume 20 (2012) no. 18, pp. 20376-20386 | DOI

[8] A. E. Krasnok; A. E. Miroshnichenko; P. A. Belov; Y. S. Kivshar All-dielectric optical nanoantennas, Opt. Express, Volume 20 (2012) no. 18, pp. 20599-20604 | DOI

[9] A. I. Kuznetsov; A. E. Miroshnichenko; Y. H. Fu; J. Zhang; B. Lukyanchuk Magnetic light, Sci. Rep., Volume 2 (2012), p. 492 | DOI

[10] A. B. Evlyukhin; S. M. Novikov; U. Zywietz; R. L. Eriksen; C. Reinhardt; S. I. Bozhevolnyi; B. N. Chichkov Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett., Volume 12 (2012) no. 7, pp. 3749-3755 | DOI

[11] A. I. Kuznetsov; A. E. Miroshnichenko; M. L. Brongersma; Y. S. Kivshar; B. Luk’yanchuk Optically resonant dielectric nanostructures, Science, Volume 354 (2016) no. 6314, aag2472

[12] S. Kruk; Y. Kivshar Functional meta-optics and nanophotonics governed by Mie resonances, ACS Photon., Volume 4 (2017), p. 2638 | DOI

[13] G. Mie Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Ann. Phys., Volume 330 (1908) no. 3, pp. 377-445 | DOI | Zbl

[14] H. Hulst Light scattering by small particles, Structure of matter series, Wiley, 1957

[15] A. Lagendijk; B. A. van Tiggelen Resonant multiple scattering of light, Phys. Rep., Volume 270 (1996) no. 3, pp. 143-215 | DOI

[16] A. B. Matsko; V. S. Ilchenko Optical resonators with whispering gallery modes i: basics, IEEE J. Sel. Top. Quantum Electron., Volume 12 (2006) no. 3, p. 3 | DOI

[17] V. S. Ilchenko; A. B. Matsko Optical resonators with whispering-gallery modes-part ii: applications, IEEE J. Sel. Top. Quantum Electron., Volume 12 (2006) no. 1, pp. 15-32 | DOI

[18] A. Devilez; X. Zambrana-Puyalto; B. Stout; N. Bonod Mimicking localized surface plasmons with dielectric particles, Phys. Rev. B, Volume 92 (2015) no. 24, 241412 | DOI

[19] U. Zywietz; A. B. Evlyukhin; C. Reinhardt; B. N. Chichkov Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses, Nat. Commun., Volume 5 (2014), p. 3402 | DOI

[20] F. B. Arango; A. F. Koenderink Polarizability tensor retrieval for magnetic and plasmonic antenna design, New J. Phys., Volume 15 (2013) no. 7, 073023

[21] J. Proust; N. Bonod; J. Grand; B. Gallas Optical monitoring of the magnetoelectric coupling in individual plasmonic scatterers, ACS Photon., Volume 3 (2016) no. 9, pp. 1581-1588 | DOI

[22] M. Dubois; L. Leroi; Z. Raolison; R. Abdeddaim; T. Antonakakis; J. de Rosny; A. Vignaud; P. Sabouroux; E. Georget; B. Larrat et al. Kerker effect in ultrahigh-field magnetic resonance imaging, Phys. Rev. X, Volume 8 (2018) no. 3, 031083

[23] P. Nordlander; C. Oubre; E. Prodan; K. Li; M. Stockman Plasmon hybridizaton in nanoparticle dimers, Nano Lett., Volume 4 (2004) no. 5, pp. 899-903 | DOI

[24] M. Kerker; D.-S. Wang; C. L. Giles Electromagnetic scattering by magnetic spheres, J. Opt. Soc. Am., Volume 73 (1983) no. 6, pp. 765-767 | DOI

[25] R. Gomez-Medina; B. Garcia-Camara; I. Suarez-Lacalle; F. Gonzalez; F. Moreno; M. Nieto-Vesperinas; J. J. Saenz Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces, J. Nanophoton., Volume 5 (2011), 053512 | DOI

[26] M. Nieto-Vesperinas; R. Gomez-Medina; J. J. Saenz Angle-suppressed scattering and optical forces on submicrometer dielectric particles, J. Opt. Soc. Am. A, Volume 28 (2011) no. 1, pp. 54-60 | DOI

[27] S. Person; M. Jain; Z. Lapin; J. J. Saenz; G. Wicks; L. Novotny Demonstration of zero optical backscattering from single nanoparticles, Nano Lett., Volume 13 (2013) no. 4, pp. 1806-1809 | DOI

[28] H. Shamkhi; K. Baryshnikova; A. Sayanskiy; P. Kapitanova; P. Terekhov; P. Belov; A. Karabchevsky; A. Evlyukhin; Y. Kivshar; A. Shalin Transverse scattering and generalized Kerker effects in all-dielectric mie-resonant metaoptics, Phys. Rev. Lett., Volume 122 (2019), 193905 | DOI

[29] R. Paniagua-Domínguez; F. López-Tejeira; R. Marqués; J. A. Sánchez-Gil Metallo-dielectric core-shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials, New J. Phys., Volume 13 (2011) no. 12, 123017 | DOI

[30] J. Geffrin; B. García-Cámara; R. Gómez-Medina; P. Albella; L. Froufe-Pérez; C. Eyraud; A. Litman; R. Vaillon; F. González; M. Nieto-Vesperinas et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere, Nat. Commun., Volume 3 (2012), p. 1171 | DOI

[31] Y. H. Fu; A. I. Kuznetsov; A. E. Miroshnichenko; Y. F. Yu; B. Lukyanchuk Directional visible light scattering by silicon nanoparticles, Nat. Commun., Volume 4 (2013), p. 1527 | DOI

[32] I. Staude; A. E. Miroshnichenko; M. Decker; N. T. Fofang; S. Liu; E. Gonzales; J. Dominguez; T. S. Luk; D. N. Neshev; I. Brener et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks, ACS Nano, Volume 7 (2013) no. 9, pp. 7824-7832 | DOI

[33] B. S. Luk’yanchuk; N. V. Voshchinnikov; R. Paniagua-Domínguez; A. I. Kuznetsov Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index, ACS Photon., Volume 2 (2015) no. 7, pp. 993-999 | DOI

[34] P. Moitra; B. A. Slovick; W. Li; I. I. Kravchencko; D. P. Briggs; S. Krishnamurthy; J. Valentine Large-scale all-dielectric metamaterial perfect reflectors, ACS Photon., Volume 2 (2015) no. 6, pp. 692-698 | DOI

[35] W. Liu; Y. Kivshar Generalized kerker effects in nanophotonics and meta-optics, Opt. Express, Volume 26 (2018), pp. 13085-13105 | DOI

[36] H. K. Shamkhi; A. Sayanskiy; A. C. Valero; A. S. Kupriianov; P. Kapitanova; Y. S. Kivshar; A. S. Shalin; V. R. Tuz Transparency and perfect absorption of all-dielectric resonant metasurfaces governed by the transverse kerker effect, Phys. Rev. Mater., Volume 3 (2019) no. 8, 085201

[37] M. Rybin; D. Filonov; P. Belov; Y. Kivshar; M. Limonov Switching from visibility to invisibility via fano resonances: Theory and experiment, Sci. Rep., Volume 5 (2015), p. 8774 | DOI

[38] Q. Zhao; J. Zhou; F. Zhang; D. Lippens Mie resonance-based dielectric metamaterials, Mater. Today, Volume 12 (2009), pp. 60-69 | DOI

[39] J. Valentine; J. Li; T. Zentgraf; G. Bartal; X. Zhang An optical cloak made of dielectrics, Nat. Mater., Volume 8 (2009), pp. 568-571 | DOI

[40] M. M. Farhat; S. Muhlig; C. Rockstuhl; F. Lederer Scattering cancellation of the magnetic dipole field from macroscopic spheres, Opt. Express, Volume 20 (2012), pp. 13896-13906 | DOI

[41] L. Novotny; N. van Hulst Antennas for light, Nat. Photon., Volume 5 (2011) no. 2, pp. 83-90 | DOI

[42] E. Dulkeith; A. Morteani; T. Niedereichholz; T. Klar; J. Feldmann; S. Levi; F. Van Veggel; D. Reinhoudt; M. Möller; D. Gittins Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects, Phys. Rev. Lett., Volume 89 (2002) no. 20, 203002 | DOI

[43] P. Mühlschlegel; H. Eisler; O. Martin; B. Hecht; D. Pohl Resonant optical antennas, Science, Volume 308 (2005) no. 5728, pp. 1607-1609 | DOI

[44] P. Anger; P. Bharadwaj; L. Novotny Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett., Volume 96 (2006), 113002 | DOI

[45] P. Bharadwaj; L. Novotny Spectral dependence of single molecule fluorescence enhancement, Opt. Express, Volume 15 (2007) no. 21, pp. 14266-14274 | DOI

[46] M. Ringler; A. Schwemer; M. Wunderlich; A. Nichtl; K. Kürzinger; T. Klar; J. Feldmann Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators, Phys. Rev. Lett., Volume 100 (2008) no. 20, 203002 | DOI

[47] J. Li; A. Salandrino; N. Engheta Shaping light beams in the nanometer scale: A Yagi–Uda nanoantenna in the optical domain, Phys. Rev. B, Volume 76 (2007), 245403

[48] A. G. Curto; G. Volpe; T. H. Taminiau; M. P. Kreuzer; R. Quidant; N. F. van Hulst Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, Volume 329 (2010) no. 5994, pp. 930-933 | DOI

[49] H. Aouani; O. Mahboub; N. Bonod; E. Devaux; E. Popov; H. Rigneault; T. W. Ebbesen; J. Wenger Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations, Nano Lett., Volume 11 (2011) no. 2, pp. 637-644 | DOI

[50] M. P. Busson; B. Rolly; B. Stout; N. Bonod; S. Bidault Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA, Nat. Commun., Volume 3 (2012), p. 962 | DOI

[51] G. Acuna; F. Möller; P. Holzmeister; S. Beater; B. Lalkens; P. Tinnefeld Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas, Science, Volume 338 (2012) no. 6106, pp. 506-510 | DOI

[52] T. B. Hoang; G. M. Akselrod; M. H. Mikkelsen Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities, Nano Lett., Volume 16 (2015) no. 1, pp. 270-275 | DOI

[53] J. J. Baumberg; J. Aizpurua; M. H. Mikkelsen; D. R. Smith Extreme nanophotonics from ultrathin metallic gaps, Nat. Mater., Volume 18 (2019), pp. 668-678 | DOI

[54] D. Gérard; A. Devilez; H. Aouani; B. Stout; N. Bonod; J. Wenger; E. Popov; H. Rigneault Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere, J. Opt. Soc. Am. B, Volume 26 (2009) no. 7, pp. 1473-1478 | DOI

[55] A. Devilez; B. Stout; N. Bonod Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission, ACS Nano, Volume 4 (2010) no. 6, pp. 3390-3396 | DOI

[56] J. Ho; Y. H. Fu; Z. Dong; R. Paniagua-Dominguez; E. H. Koay; Y. F. Yu; V. Valuckas; A. I. Kuznetsov; J. K. Yang Highly directive hybrid metal–dielectric Yagi–Uda nanoantennas, ACS Nano, Volume 12 (2018) no. 8, pp. 8616-8624 | DOI

[57] S. Bidault; M. Mivelle; N. Bonod Dielectric nanoantennas to manipulate solid-state light emission, J. Appl. Phys., Volume 126 (2019) no. 9, 094104 | DOI

[58] D. G. Baranov; R. S. Savelev; S. V. Li; A. E. Krasnok; A. Alù Modifying magnetic dipole spontaneous emission with nanophotonic structures, Laser Photon. Rev., Volume 11 (2017) no. 3, 1600268

[59] S. Karaveli; R. Zia Strong enhancement of magnetic dipole emission in a multilevel electronic system, Opt. Lett., Volume 35 (2010) no. 20, pp. 3318-3320 | DOI

[60] S. Karaveli; R. Zia Spectral tuning by selective enhancement of electric and magnetic dipole emission, Phys. Rev. Lett., Volume 106 (2011), 193004 | DOI

[61] C. M. Dodson; R. Zia Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths, Phys. Rev. B, Volume 86 (2012), 125102

[62] B. Rolly; B. Bebey; S. Bidault; B. Stout; N. Bonod Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances, Phys. Rev. B, Volume 85 (2012), 245432 | DOI

[63] M. K. Schmidt; R. Esteban; J. J. Sáenz; I. Suárez-Lacalle; S. Mackowski; J. Aizpurua Dielectric antennas - a suitable platform for controlling magnetic dipolar emission, Opt. Express, Volume 20 (2012) no. 13, pp. 13636-13650 | DOI

[64] M. Sanz-Paz; C. Ernandes; J. U. Esparza; G. W. Burr; N. F. van Hulst; A. Maitre; L. Aigouy; T. Gacoin; N. Bonod; M. F. Garcia-Parajo et al. Enhancing magnetic light emission with all-dielectric optical nanoantennas, Nano Lett., Volume 18 (2018) no. 6, pp. 3481-3487 | DOI

[65] A. Vaskin; S. Mashhadi; M. Steinert; K. E. Chong; D. Keene; S. Nanz; A. Abass; E. Rusak; D.-Y. Choi; I. Fernandez-Corbaton; T. Pertsch; C. Rockstuhl; M. A. Noginov; Y. S. Kivshar; D. N. Neshev; N. Noginova; I. Staude Manipulation of magnetic dipole emission from eu3+ with mie-resonant dielectric metasurfaces, Nano Lett., Volume 19 (2019) no. 2, pp. 1015-1022 | DOI

[66] M. Sigalas; D. Fattal; R. Williams; S. Wang; R. Beausoleil Electric field enhancement between two si microdisks, Opt. Express, Volume 15 (2007) no. 22, pp. 14711-14716 | DOI

[67] J. Cambiasso; G. Grinblat; Y. Li; A. Rakovich; E. Cortés; S. A. Maier Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas, Nano Lett., Volume 17 (2017) no. 2, pp. 1219-1225 | DOI

[68] R. Regmi; J. Berthelot; P. M. Winkler; M. Mivelle; J. Proust; F. Bedu; I. Ozerov; T. Begou; J. Lumeau; H. Rigneault et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules, Nano Lett., Volume 16 (2016) no. 8, pp. 5143-5151 | DOI

[69] A. Kinkhabwala; Z. Yu; S. Fan; Y. Avlasevich; K. Mullen; W. E. Moerner Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photon., Volume 3 (2009) no. 11, pp. 654-657 | DOI

[70] D. Punj; M. Mivelle; S. B. Moparthi; T. S. Van Zanten; H. Rigneault; N. F. Van Hulst; M. F. García-Parajó; J. Wenger A plasmonic antenna-in-box platform for enhanced single-molecule analysis at micromolar concentrations, Nat. Nanotechnol., Volume 8 (2013) no. 7, p. 512 | DOI

[71] P. Albella; M. A. Poyli; M. K. Schmidt; S. A. Maier; F. Moreno; J. J. Sáenz; J. Aizpurua Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers, J. Phys. Chem. C, Volume 117 (2013) no. 26, pp. 13573-13584 | DOI

[72] M. Caldarola; P. Albella; E. Cortés; M. Rahmani; T. Roschuk; G. Grinblat; R. F. Oulton; A. V. Bragas; S. A. Maier Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion, Nat. Commun., Volume 6 (2015), p. 7915 | DOI

[73] X. Zambrana-Puyalto; N. Bonod Purcell factor of spherical mie resonators, Phys. Rev. B, Volume 91 (2015) no. 19, 195422 | DOI

[74] V. Rutckaia; F. Heyroth; A. Novikov; M. Shaleev; M. Petrov; J. Schilling Quantum dot emission driven by mie resonances in silicon nanostructures, Nano Lett., Volume 17 (2017) no. 11, pp. 6886-6892 | DOI

[75] K. Frizyuk; M. Hasan; A. Krasnok; A. Alú; M. Petrov Enhancement of Raman scattering in dielectric nanostructures with electric and magnetic mie resonances, Phys. Rev. B, Volume 97 (2018) no. 8, 085414 | DOI

[76] D. G. Baranov; R. Verre; P. Karpinski; M. Kall Anapole-enhanced intrinsic Raman scattering from silicon nanodisks, ACS Photon., Volume 5 (2018) no. 7, pp. 2730-2736 | DOI

[77] D. A. Shilkin; M. R. Shcherbakov; E. V. Lyubin; K. G. Katamadze; O. S. Kudryavtsev; V. S. Sedov; I. I. Vlasov; A. A. Fedyanin Optical magnetism and fundamental modes of nanodiamonds, ACS Photon., Volume 4 (2017) no. 5, pp. 1153-1158 | DOI

[78] R. Savelev; A. Zalogina; S. Kudryashov; A. Ivanova; A. Levchenko; S. Makarov; D. Zuev; I. Shadrivov Control of spontaneous emission rate in luminescent resonant diamond particles, J. Phys.: Conf. Ser., Volume 961 (2018), 012007

[79] A. Zalogina; R. Savelev; E. Ushakova; G. Zograf; F. Komissarenko; V. Milichko; S. Makarov; D. Zuev; I. Shadrivov Purcell effect in active diamond nanoantennas, Nanoscale, Volume 10 (2018) no. 18, pp. 8721-8727 | DOI

[80] S. Makarov; A. Furasova; E. Tiguntseva; A. Hemmetter; A. Berestennikov; A. Pushkarev; A. Zakhidov; Y. Kivshar Halide-perovskite resonant nanophotonics, Adv. Opt. Mater., Volume 7 (2019) no. 1, 1800784 | DOI

[81] A. S. Berestennikov; P. M. Voroshilov; S. V. Makarov; Y. S. Kivshar Active meta-optics and nanophotonics with halide perovskites, Appl. Phys. Rev., Volume 6 (2019) no. 3, 031307

[82] E. Y. Tiguntseva; G. P. Zograf; F. E. Komissarenko; D. A. Zuev; A. A. Zakhidov; S. V. Makarov; Y. S. Kivshar Light-emitting halide perovskite nanoantennas, Nano Lett., Volume 18 (2018) no. 2, pp. 1185-1190 | DOI

[83] E. Tiguntseva; K. Koshelev; A. Furasova; P. Tonkaev; V. Mikhailovskii; E. V. Ushakova; D. G. Baranov; T. Shegai; A. A. Zakhidov; Y. Kivshar et al. Room-temperature lasing from mie-resonant non-plasmonic nanoparticles, ACS Nano, Volume 14 (2020) no. 7, pp. 8149-8156 | DOI

[84] C. Hsu; B. Zhen; A. Stone; J. Joannopoulos; M. Soljacić Bound states in the continuum, Nat. Rev. Mater., Volume 1 (2016), 16048

[85] A. Kodigala; T. Lepetit; Q. Gu; B. Bahari; Y. Fainman; B. Kanté Lasing action from photonic bound states in continuum, Nature, Volume 541 (2017), pp. 196-199 | DOI

[86] M. Rybin; Y. Kivshar Supercavity lasing, Nature, Volume 541 (2017), pp. 165-166 | DOI

[87] C. Hsu; B. Zhen; J. Lee; S. Chua; S. Johnson; J. Joannopoulos Observation of trapped light within the radiation continuum, Nature, Volume 499 (2013), pp. 188-191 | DOI

[88] F. Monticone; A. Alu Embedded photonic eigenvalues in 3d nanostructures, Phys. Rev. Lett., Volume 112 (2014), 213903 | DOI

[89] K. Koshelev; S. Lepeshov; M. Liu; A. Bogdanov; Y. Kivshar Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum, Phys. Rev. Lett., Volume 121 (2018) no. 19, 193903 | DOI

[90] E. Mikheeva; K. Koshelev; D.-Y. Choi; S. Kruk; J. Lumeau; R. Abdeddaim; I. Voznyuk; S. Enoch; Y. Kivshar Photosensitive chalcogenide metasurfaces supporting bound states in the continuum, Opt. Express, Volume 27 (2019), pp. 33847-33853 | DOI

[91] L. Wang; S. Kruk; K. Koshelev; I. Kravchenko; B. Luther-Davies; Y. Kivshar Nonlinear wavefront control with all-dielectric metasurfaces, Nano Lett., Volume 18 (2018) no. 6, p. 3978 | DOI

[92] K. Koshelev; Y. Tang; K. Li; D.-Y. Choi; G. Li; Y. Kivshar Nonlinear metasurfaces governed by bound states in the continuum, ACS Photon., Volume 6 (2019) no. 7, p. 1639 | DOI

[93] B. Gralak; G. Tayeb; S. Enoch Morpho butterflies wings color modeled with lamellar grating theory, Opt. Express, Volume 9 (2001) no. 11, pp. 567-578 | DOI

[94] P. Vukusic; J. R. Sambles Photonic structures in biology, Nature, Volume 424 (2003) no. 6950, p. 852 | DOI

[95] K. Kumar; H. Duan; R. S. Hegde; S. C. Koh; J. N. Wei; J. K. Yang Printing colour at the optical diffraction limit, Nat. Nanotechnol., Volume 7 (2012) no. 9, p. 557 | DOI

[96] A. Kristensen; J. K. Yang; S. I. Bozhevolnyi; S. Link; P. Nordlander; N. J. Halas; N. A. Mortensen Plasmonic colour generation, Nat. Rev. Mater., Volume 2 (2017) no. 1, 16088 | DOI

[97] M. Abbarchi; M. Naffouti; B. Vial; A. Benkouider; L. Lermusiaux; L. Favre; A. Ronda; S. Bidault; I. Berbezier; N. Bonod Wafer scale formation of monocrystalline silicon-based mie resonators via silicon-on-insulator dewetting, ACS Nano, Volume 8 (2014) no. 11, pp. 11181-11190 | DOI

[98] E. Højlund-Nielsen; J. Weirich; J. Nørregaard; J. Garnaes; N. A. Mortensen; A. Kristensen Angle-independent structural colors of silicon, J. Nanophoton., Volume 8 (2014) no. 1, 083988 | DOI

[99] J. Proust; F. Bedu; B. Gallas; I. Ozerov; N. Bonod All-dielectric colored metasurfaces with silicon mie resonators, ACS Nano, Volume 10 (2016) no. 8, pp. 7761-7767 | DOI

[100] Z. Dong; J. Ho; Y. F. Yu; Y. H. Fu; R. Paniagua-Dominguez; S. Wang; A. I. Kuznetsov; J. K. Yang Printing beyond srgb color gamut by mimicking silicon nanostructures in free-space, Nano Lett., Volume 17 (2017) no. 12, pp. 7620-7628 | DOI

[101] V. Flauraud; M. Reyes; R. Paniagua-Dominguez; A. I. Kuznetsov; J. Brugger Silicon nanostructures for bright field full color prints, ACS Photon., Volume 4 (2017) no. 8, pp. 1913-1919 | DOI

[102] V. Vashistha; G. Vaidya; R. S. Hegde; A. E. Serebryannikov; N. Bonod; M. Krawczyk All-dielectric metasurfaces based on cross-shaped resonators for color pixels with extended gamut, ACS Photon., Volume 4 (2017) no. 5, pp. 1076-1082 | DOI

[103] T. Wood; M. Naffouti; J. Berthelot; T. David; J.-B. Claude; L. Métayer; A. Delobbe; L. Favre; A. Ronda; I. Berbezier et al. All-dielectric color filters using sige-based mie resonator arrays, ACS Photon., Volume 4 (2017) no. 4, pp. 873-883 | DOI

[104] X. Zhu; W. Yan; U. Levy; N. A. Mortensen; A. Kristensen Resonant laser printing of structural colors on high-index dielectric metasurfaces, Sci. Adv., Volume 3 (2017) no. 5, e1602487

[105] S. Sun; Z. Zhou; C. Zhang; Y. Gao; Z. Duan; S. Xiao; Q. Song All-dielectric full-color printing with tio2 metasurfaces, ACS Nano, Volume 11 (2017) no. 5, pp. 4445-4452 | DOI

[106] L. Wang; S. Kruk; H. Tang; T. Li; I. Kravchenko; D. N. Neshev; Y. S. Kivshar Grayscale transparent metasurface holograms, Optica, Volume 3 (2016) no. 12, pp. 1504-1505 | DOI

[107] H. Ren; G. Briere; X. Fang; P. Ni; R. Sawant; S. Héron; S. Chenot; S. Vézian; B. Damilano; V. Brändli et al. Metasurface orbital angular momentum holography, Nat. Commun., Volume 10 (2019) no. 1, p. 2986 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dispersion and efficiency engineering of metasurfaces

Xiaomeng Zhang; Benfeng Bai; Hong-Bo Sun

C. R. Phys (2020)


Bottom-up nanocolloidal metamaterials and metasurfaces at optical frequencies

Alexandre Baron; Ashod Aradian; Virginie Ponsinet; ...

C. R. Phys (2020)