Comptes Rendus
A review of anomalous resonance, its associated cloaking, and superlensing
Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 409-423.

We review a selected history of anomalous resonance, cloaking due to anomalous resonance, cloaking due to complementary media, and superlensing.

Nous passons en revue quelques faits saillant de l’historique de la résonance anormale, de l’invisibilité associée à la résonance anormale, et celle associée aux milieux complémentaires et de la super-résolution.

Online First:
Published online:
DOI: 10.5802/crphys.6
Keywords: Anomalous resonance, Cloaking, Superlensing
Mots-clés : Résonance anormale, Invisibilité, Super-résolution

Ross C. McPhedran 1; Graeme W. Milton 2

1 School of Physics, The University of Sydney, Australia
2 Department of Mathematics, University of Utah, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2020__21_4-5_409_0,
     author = {Ross C. McPhedran and Graeme W. Milton},
     title = {A review of anomalous resonance, its associated cloaking, and superlensing},
     journal = {Comptes Rendus. Physique},
     pages = {409--423},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {4-5},
     year = {2020},
     doi = {10.5802/crphys.6},
     language = {en},
}
TY  - JOUR
AU  - Ross C. McPhedran
AU  - Graeme W. Milton
TI  - A review of anomalous resonance, its associated cloaking, and superlensing
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 409
EP  - 423
VL  - 21
IS  - 4-5
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.6
LA  - en
ID  - CRPHYS_2020__21_4-5_409_0
ER  - 
%0 Journal Article
%A Ross C. McPhedran
%A Graeme W. Milton
%T A review of anomalous resonance, its associated cloaking, and superlensing
%J Comptes Rendus. Physique
%D 2020
%P 409-423
%V 21
%N 4-5
%I Académie des sciences, Paris
%R 10.5802/crphys.6
%G en
%F CRPHYS_2020__21_4-5_409_0
Ross C. McPhedran; Graeme W. Milton. A review of anomalous resonance, its associated cloaking, and superlensing. Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 409-423. doi : 10.5802/crphys.6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.6/

[1] N. A. Nicorovici; R. C. McPhedran; G. W. Milton Transport properties of a three-phase composite material: The square array of coated cylinders, Proc. R. Soc. Lond. Ser. A, Volume 442 (1993) no. 1916, pp. 599-620

[2] H. Ammari; G. Ciraolo; H. Kang; H. Lee; G. W. Milton Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl

[3] H. Ammari; G. Ciraolo; H. Kang; H. Lee; G. W. Milton Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, Volume 469 (2013) no. 2154, 20130048 | DOI | Zbl

[4] G. W. Milton The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl

[5] C.-W. Qiu; B. Luk’yanchuk Peculiarities in light scattering by spherical particles with radial anisotropy, J. Opt. Soc. Amer. A, Volume 25 (2008) no. 7, pp. 1623-1628 | DOI

[6] J. Helsing; R. C. McPhedran; G. W. Milton Spectral super-resolution in metamaterial composites, New J. Phys., Volume 13 (2011) no. 11, 115005 | DOI

[7] A. Sihvola; H. Wallén; H. Kettunen Losses from lossless building blocks?, Metamaterials ’2012: The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (2012), pp. 261-263

[8] N. M. Estakhri; A. Alù Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013) no. 20, 205418

[9] A. Bonnet-BenDhia; L. Chesnel; P. Ciarlet Jr. T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387 | Numdam | MR | Zbl

[10] A.-S. Bonnet-Ben Dhia; L. Chesnel; X. Claeys Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 9, pp. 1629-1662 | DOI | MR | Zbl

[11] A.-S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet Jr. Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | DOI | MR | Zbl

[12] A.-S. Bonnet-Ben Dhia; L. Chesnel; P. Ciarlet Jr. T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | MR | Zbl

[13] N. A. Nicorovici; R. C. McPhedran; G. W. Milton Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994) no. 12, pp. 8479-8482 | DOI

[14] T. Yang; H. Chen; X. Luo; H. Ma Superscatterer: enhancement of scattering with complementary media, Opt. Express, Volume 16 (2008) no. 22, pp. 18545-18550 | DOI

[15] L. S. Dolin To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izv. Vyssh. Uchebn. Zaved., Volume 4 (1961) no. 5, pp. 964-967 (English translation available at http://www.math.utah.edu/ milton/DolinTrans2.pdf)

[16] A. Alú; N. Engheta Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E, Volume 72 (2005) no. 1, 0166623

[17] M. Kerker Invisible bodies, J. Opt. Soc. Amer., Volume 65 (1975) no. 4, pp. 376-379 | DOI

[18] G. W. Milton Unusual resonant phenomena where ghost image charges appear in the matrix (unpublished report, Courant Institute, New York, NY, USA, 1993–1996, available on ResearchGate. Timestamp: May 13th 1996)

[19] X. S. Rao; C. K. Ong Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B, Volume 68 (2003) no. 11, 113103

[20] G. Shvets Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography, Plasmonics: Metallic Nanostructures and their Optical Properties (Bellingham, WA) (N. J. Halas, ed.) (Proceedings of SPIE), Volume 5221, SPIE Publications, Bellingham, 2003, pp. 124-132

[21] G. Shvets Photonic approach to making a material with a negative index of refraction, Phys. Rev. B, Volume 67 (2003) no. 3, 035109 | DOI

[22] S. A. Cummer Simulated causal subwavelength focusing by a negative refractive index slab, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1503-1505 | DOI

[23] R. Merlin Analytical solution of the almost-perfect-lens problem, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1290-1292 | DOI

[24] S. Guenneau; B. Gralak; J. B. Pendry Perfect corner reflector, Opt. Lett., Volume 30 (2005), pp. 1204-1206 | DOI

[25] V. A. Podolskiy; E. E. Narimanov Near-sighted superlens, Opt. Lett., Volume 30 (2005) no. 1, pp. 75-77 | DOI

[26] V. A. Podolskiy; N. A. Kuhta; G. W. Milton Optimizing the superlens: manipulating geometry to enhance the resolution, Appl. Phys. Lett., Volume 87 (2005) no. 23, 231113

[27] J. B. Pendry Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969 | DOI

[28] V. G. Veselago The electrodynamics of substances with simultaneously negative values of ϵ and μ, Uspekhi Fizicheskikh Nauk, Volume 92 (1967), pp. 517-526 English translation in Sov. Phys. Uspekhi 10 (1968), no. 4, 509–514

[29] R. E. Collin Frequency dispersion limits resolution in Veselago lens, Prog. Electromagn. Res. B, Volume 19 (2010), pp. 233-261 | DOI

[30] B. Gralak; A. Tip Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902 | DOI | MR | Zbl

[31] B. Gralak; D. Maystre Negative index materials and time-harmonic electromagnetic field, C. R. Phys., Volume 13 (2012) no. 8, pp. 786-799 | DOI

[32] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran; V. A. Podolskiy A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. A, Volume 461 (2005) no. 2064, pp. 3999-4034 | DOI | MR | Zbl

[33] G. W. Milton; N.-A. P. Nicorovici On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | DOI | MR | Zbl

[34] J. B. Pendry Perfect cylindrical lenses, Opt. Express, Volume 11 (2003) no. 7, pp. 755-760 | DOI

[35] J. B. Pendry; D. Schurig; D. R. Smith Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl

[36] U. Leonhardt Optical conformal mapping, Science, Volume 312 (2006) no. 5781, pp. 1777-1780 | DOI | MR | Zbl

[37] A. Greenleaf; M. Lassas; G. Uhlmann Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003) no. 2, pp. 413-419 | DOI

[38] N.-A. P. Nicorovici; G. W. Milton; R. C. McPhedran; L. C. Botten Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15 (2007) no. 10, pp. 6314-6323 | DOI

[39] O. P. Bruno; S. Lintner Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007) no. 12, 124502

[40] H.-M. Nguyên Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3208-3232 | DOI | MR | Zbl

[41] G. Bouchitté; B. Schweizer Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | DOI | MR | Zbl

[42] U. Leonhardt; T. G. Philbin General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, 247 | DOI

[43] D. Maystre; S. Enoch Perfect lenses made with left-handed materials: Alice’s mirror?, J. Opt. Soc. Amer., Volume 21 (2004) no. 1, pp. 122-131 | DOI

[44] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran; K. Cherednichenko; Z. Jacob Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008) no. 11, 115021

[45] R. V. Kohn; J. Lu; B. Schweizer; M. I. Weinstein A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 (English), Available as arXiv:1210.4823 [math.AP] | DOI | MR | Zbl

[46] H. Kettunen; M. Lassas; P. Ola On absence and existence of the anomalous localized resonance without the quasi-static approximation, SIAM J. Appl. Math., Volume 78 (2018) no. 1, pp. 609-628 | DOI | MR | Zbl

[47] H. Li; H. Liu On anomalous localized resonance for the elastostatic system, SIAM J. Appl. Math., Volume 5 (2016), pp. 3322-3344 | DOI | Zbl

[48] K. Ando; H. Kang; K. Kim; S. Yu Spectrum of Neumann–Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity, SIAM J. Appl. Math., Volume 49 (2017) no. 5, pp. 4232-4250 | DOI | Zbl

[49] K. Ando; Y.-G. Ji; H. Kang; K. Kim; S. Yu Spectral properties of the Neumann–Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system, Eur. J. Appl. Math., Volume 29 (2018) no. 2, pp. 189-225 | DOI | Zbl

[50] Y. Deng; H. Li; H. Liu Spectral properties of Neumann–Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit, J. Elast. (2020), Deng2020 | DOI | Zbl

[51] G. Rosenblatt; M. Orenstein Power drainage and energy dissipation in lossy but perfect lenses, Phys. Rev. A, Volume 95 (2017) no. 5, 053857 | DOI

[52] G. W. Milton; N.-A. P. Nicorovici; R. C. McPhedran Opaque perfect lenses, Physica B, Volume 394 (2007) no. 2, pp. 171-175 | DOI

[53] A. D. Yaghjian; T. B. Hansen Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs, Phys. Rev. E, Volume 73 (2006) no. 4, 046608

[54] G. T. Di Francia Super-gain antennas and optical resolving power, Il Nuovo Cimento, Volume 9 (1952), pp. 426-438 | DOI

[55] H. Shim; H. Chung; O. D. Miller Maximal free-space concentration of electromagnetic waves, Phys. Rev. Appl., Volume 14 (2020), 014007 | DOI

[56] A. D. Yaghjian; S. R. Best Impedance, bandwidth, and Q of antennas, IEEE Trans. Antennas and Propagation, Volume 53 (2005) no. 4, pp. 1298-1324 | DOI

[57] M. Cassier; C. Hazard; P. Joly Spectral theory for maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform, Comm. Partial Differential Equations, Volume 42 (2017) no. 11, pp. 1707-1748 | DOI | MR | Zbl

[58] T. Meklachi; G. W. Milton; D. Onofrei; A. E. Thaler; G. Funchess Sensitivity of anomalous localized resonance phenomena with respect to dissipation, Quart. Appl. Math., Volume 74 (2016) no. 2, pp. 201-234 | DOI | MR | Zbl

[59] M. Xiao; X. Huang; H. Liu; C. T. Chan Enhancement of polarizabilities of cylinders with cylinder-slab resonances, Sci. Rep., Volume 5 (2015), p. 8189 | DOI

[60] Y. Lai; H. Chen; Z.-Q. Zhang; C. T. Chan Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) no. 9, 093901

[61] J. B. Pendry; S. A. Ramakrishna Focussing light using negative refraction, J. Phys.: Condens. Matter, Volume 15 (2003) no. 37, pp. 6345-6364

[62] Y. Liu; B. Gralak; R. C. McPhedran; S. Guenneau Finite frequency external cloaking with complementary bianisotropic media, Opt. Express, Volume 22 (2014) no. 14, pp. 17387-17402 | DOI

[63] L. H. Nguyên Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | DOI | MR | Zbl

[64] H.-M. Nguyên; L. H. Nguyên Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. B, Volume 2 (2015), pp. 93-112 | DOI | MR | Zbl

[65] Y. Lai; J. Ng; H. Chen; D. Han; J. Xiao; Z.-Q. Zhang; C. T. Chan Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., Volume 102 (2009) no. 25, 253902

[66] R. C. McPhedran; N.-A. P. Nicorovici; L. C. Botten; G. W. Milton Cloaking by plasmonic resonance among systems of particles: cooperation or combat?, C. R. Phys., Volume 10 (2009) no. 5, pp. 391-399 | DOI

[67] F. G. Vasquez; G. W. Milton; D. Onofrei Active exterior cloaking for the 2D Laplace and Helmholtz equations, Phys. Rev. Lett., Volume 103 (2009) no. 7, 073901 | DOI | Zbl

[68] F. G. Vasquez; G. W. Milton; D. Onofrei Broadband exterior cloaking, Opt. Express, Volume 17 (2009) no. 17, pp. 14800-14805 | DOI

[69] F. G. Vasquez; G. W. Milton; D. Onofrei Exterior cloaking with active sources in two dimensional acoustics, Wave Motion, Volume 48 (2011) no. 6, pp. 515-524 | DOI | MR | Zbl

[70] F. G. Vasquez; G. W. Milton; D. Onofrei Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime, Anal. Math. Phys., Volume 2 (2012) no. 3, pp. 231-246 | DOI | MR | Zbl

[71] A. N. Norris; F. A. Amirkulova; W. J. Parnell Active elastodynamic cloaking, Math. Mech. Solids, Volume 19 (2014) no. 6, pp. 603-625 | DOI | MR | Zbl

[72] D. A. B. Miller On perfect cloaking, Opt. Express, Volume 14 (2006) no. 25, pp. 12457-12466 | DOI

[73] M. Selvanayagam; G. V. Eleftheriades Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X, Volume 3 (2013) no. 4, 041011

[74] J. O’Neill; Ö. Selsil; R. C. McPhedran; A. B. Movchan; N. V. Movchan Active cloaking of inclusions for flexural waves in thin elastic plates, Quart. J. Mech. Appl. Math., Volume 68 (2015) no. 3, pp. 263-288 | DOI | MR | Zbl

[75] E. Yablonovitch Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI

[76] R. C. McPhedran; L. C. Botten; J. McOrist; A. A. Asatryan; C. M. de Sterke; N. A. Nicorovici Density of states functions for photonic crystals, Phys. Rev. E, Volume 69 (2004) no. 1, 016609

[77] D. P. Fussell; R. C. McPhedran; C. M. de Sterke Decay rate and level shift in a circular dielectric waveguide, Phys. Rev. A, Volume 71 (2005) no. 1, 013815

[78] A. A. Asatryan; L. C. Botten; N. A. Nicorovici; R. C. McPhedran; C. M. de Sterke Frequency shift of sources embedded in finite two-dimensional photonic clusters, Waves Random Complex Media, Volume 16 (2006) no. 2, pp. 151-165 | DOI | Zbl

[79] Z. Jacob; J.-Y. Kim; G. V. Naik; A. Boltasseva; E. E. Narimanov; V. M. Shalaev Engineering photonic density of states using metamaterials, Appl. Phys. B, Volume 100 (2010) no. 1, pp. 215-218 | DOI

[80] C. Neumann Hydrodynamische untersuchung: nebst einem anhange über die probleme der elektrostatik und der magnetischen induction, Teubner, Leipzig, 1883, pp. 271-282 | Zbl

[81] L. Poladian Effective transport and optical properties of composite materials, Ph. D. Thesis, University of Sydney, Australia (1991)

Cited by Sources:

Comments - Policy