We review a selected history of anomalous resonance, cloaking due to anomalous resonance, cloaking due to complementary media, and superlensing.
Nous passons en revue quelques faits saillant de l’historique de la résonance anormale, de l’invisibilité associée à la résonance anormale, et celle associée aux milieux complémentaires et de la super-résolution.
Published online:
Mots-clés : Résonance anormale, Invisibilité, Super-résolution
Ross C. McPhedran 1; Graeme W. Milton 2
@article{CRPHYS_2020__21_4-5_409_0, author = {Ross C. McPhedran and Graeme W. Milton}, title = {A review of anomalous resonance, its associated cloaking, and superlensing}, journal = {Comptes Rendus. Physique}, pages = {409--423}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {4-5}, year = {2020}, doi = {10.5802/crphys.6}, language = {en}, }
TY - JOUR AU - Ross C. McPhedran AU - Graeme W. Milton TI - A review of anomalous resonance, its associated cloaking, and superlensing JO - Comptes Rendus. Physique PY - 2020 SP - 409 EP - 423 VL - 21 IS - 4-5 PB - Académie des sciences, Paris DO - 10.5802/crphys.6 LA - en ID - CRPHYS_2020__21_4-5_409_0 ER -
Ross C. McPhedran; Graeme W. Milton. A review of anomalous resonance, its associated cloaking, and superlensing. Comptes Rendus. Physique, Metamaterials 1, Volume 21 (2020) no. 4-5, pp. 409-423. doi : 10.5802/crphys.6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.6/
[1] Transport properties of a three-phase composite material: The square array of coated cylinders, Proc. R. Soc. Lond. Ser. A, Volume 442 (1993) no. 1916, pp. 599-620
[2] Spectral theory of a Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2013) no. 2, pp. 667-692 | DOI | Zbl
[3] Anomalous localized resonance using a folded geometry in three dimensions, Proc. R. Soc. A, Volume 469 (2013) no. 2154, 20130048 | DOI | Zbl
[4] The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, UK, 2002 | MR | Zbl
[5] Peculiarities in light scattering by spherical particles with radial anisotropy, J. Opt. Soc. Amer. A, Volume 25 (2008) no. 7, pp. 1623-1628 | DOI
[6] Spectral super-resolution in metamaterial composites, New J. Phys., Volume 13 (2011) no. 11, 115005 | DOI
[7] Losses from lossless building blocks?, Metamaterials ’2012: The 6th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (2012), pp. 261-263
[8] Physics of unbounded, broadband absorption/gain efficiency in plasmonic nanoparticles, Phys. Rev. B, Volume 87 (2013) no. 20, 205418
[9] T-coercivity for scalar interface problems between dielectrics and metamaterials, Math. Model. Numer. Anal., Volume 46 (2012), pp. 1363-1387 | Numdam | MR | Zbl
[10] Radiation condition for a non-smooth interface between a dielectric and a metamaterial, Math. Models Methods Appl. Sci., Volume 23 (2013) no. 9, pp. 1629-1662 | DOI | MR | Zbl
[11] Two-dimensional Maxwell’s equations with sign-changing coefficients, Appl. Numer. Math., Volume 79 (2014), pp. 29-41 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | DOI | MR | Zbl
[12] T-coercivity for the Maxwell problem with sign-changing coefficients, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1007-1031 Workshop on Numerical Electromagnetics and Industrial Applications (NELIA 2011) | MR | Zbl
[13] Optical and dielectric properties of partially resonant composites, Phys. Rev. B, Volume 49 (1994) no. 12, pp. 8479-8482 | DOI
[14] Superscatterer: enhancement of scattering with complementary media, Opt. Express, Volume 16 (2008) no. 22, pp. 18545-18550 | DOI
[15] To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izv. Vyssh. Uchebn. Zaved., Volume 4 (1961) no. 5, pp. 964-967 (English translation available at http://www.math.utah.edu/ milton/DolinTrans2.pdf)
[16] Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E, Volume 72 (2005) no. 1, 0166623
[17] Invisible bodies, J. Opt. Soc. Amer., Volume 65 (1975) no. 4, pp. 376-379 | DOI
[18] Unusual resonant phenomena where ghost image charges appear in the matrix (unpublished report, Courant Institute, New York, NY, USA, 1993–1996, available on ResearchGate. Timestamp: May 13th 1996)
[19] Amplification of evanescent waves in a lossy left-handed material slab, Phys. Rev. B, Volume 68 (2003) no. 11, 113103
[20] Applications of surface plasmon and phonon polaritons to developing left-handed materials and nano-lithography, Plasmonics: Metallic Nanostructures and their Optical Properties (Bellingham, WA) (N. J. Halas, ed.) (Proceedings of SPIE), Volume 5221, SPIE Publications, Bellingham, 2003, pp. 124-132
[21] Photonic approach to making a material with a negative index of refraction, Phys. Rev. B, Volume 67 (2003) no. 3, 035109 | DOI
[22] Simulated causal subwavelength focusing by a negative refractive index slab, Appl. Phys. Lett., Volume 82 (2003) no. 10, pp. 1503-1505 | DOI
[23] Analytical solution of the almost-perfect-lens problem, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1290-1292 | DOI
[24] Perfect corner reflector, Opt. Lett., Volume 30 (2005), pp. 1204-1206 | DOI
[25] Near-sighted superlens, Opt. Lett., Volume 30 (2005) no. 1, pp. 75-77 | DOI
[26] Optimizing the superlens: manipulating geometry to enhance the resolution, Appl. Phys. Lett., Volume 87 (2005) no. 23, 231113
[27] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, pp. 3966-3969 | DOI
[28] The electrodynamics of substances with simultaneously negative values of and , Uspekhi Fizicheskikh Nauk, Volume 92 (1967), pp. 517-526 English translation in Sov. Phys. Uspekhi 10 (1968), no. 4, 509–514
[29] Frequency dispersion limits resolution in Veselago lens, Prog. Electromagn. Res. B, Volume 19 (2010), pp. 233-261 | DOI
[30] Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., Volume 51 (2010) no. 5, 052902 | DOI | MR | Zbl
[31] Negative index materials and time-harmonic electromagnetic field, C. R. Phys., Volume 13 (2012) no. 8, pp. 786-799 | DOI
[32] A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance, Proc. R. Soc. A, Volume 461 (2005) no. 2064, pp. 3999-4034 | DOI | MR | Zbl
[33] On the cloaking effects associated with anomalous localized resonance, Proc. R. Soc. A, Volume 462 (2006) no. 2074, pp. 3027-3059 | DOI | MR | Zbl
[34] Perfect cylindrical lenses, Opt. Express, Volume 11 (2003) no. 7, pp. 755-760 | DOI
[35] Controlling electromagnetic fields, Science, Volume 312 (2006) no. 5781, pp. 1780-1782 | DOI | MR | Zbl
[36] Optical conformal mapping, Science, Volume 312 (2006) no. 5781, pp. 1777-1780 | DOI | MR | Zbl
[37] Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas., Volume 24 (2003) no. 2, pp. 413-419 | DOI
[38] Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Opt. Express, Volume 15 (2007) no. 10, pp. 6314-6323 | DOI
[39] Superlens-cloaking of small dielectric bodies in the quasistatic regime, J. Appl. Phys., Volume 102 (2007) no. 12, 124502
[40] Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object, SIAM J. Math. Anal., Volume 49 (2017) no. 4, pp. 3208-3232 | DOI | MR | Zbl
[41] Cloaking of small objects by anomalous localized resonance, Quart. J. Mech. Appl. Math., Volume 63 (2010) no. 4, pp. 437-463 | DOI | MR | Zbl
[42] General relativity in electrical engineering, New J. Phys., Volume 8 (2006) no. 10, 247 | DOI
[43] Perfect lenses made with left-handed materials: Alice’s mirror?, J. Opt. Soc. Amer., Volume 21 (2004) no. 1, pp. 122-131 | DOI
[44] Solutions in folded geometries, and associated cloaking due to anomalous resonance, New J. Phys., Volume 10 (2008) no. 11, 115021
[45] A variational perspective on cloaking by anomalous localized resonance, Comm. Math. Phys., Volume 328 (2014) no. 1, pp. 1-27 (English), Available as arXiv:1210.4823 [math.AP] | DOI | MR | Zbl
[46] On absence and existence of the anomalous localized resonance without the quasi-static approximation, SIAM J. Appl. Math., Volume 78 (2018) no. 1, pp. 609-628 | DOI | MR | Zbl
[47] On anomalous localized resonance for the elastostatic system, SIAM J. Appl. Math., Volume 5 (2016), pp. 3322-3344 | DOI | Zbl
[48] Spectrum of Neumann–Poincaré operator on annuli and cloaking by anomalous localized resonance for linear elasticity, SIAM J. Appl. Math., Volume 49 (2017) no. 5, pp. 4232-4250 | DOI | Zbl
[49] Spectral properties of the Neumann–Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system, Eur. J. Appl. Math., Volume 29 (2018) no. 2, pp. 189-225 | DOI | Zbl
[50] Spectral properties of Neumann–Poincaré operator and anomalous localized resonance in elasticity beyond quasi-static limit, J. Elast. (2020), Deng2020 | DOI | Zbl
[51] Power drainage and energy dissipation in lossy but perfect lenses, Phys. Rev. A, Volume 95 (2017) no. 5, 053857 | DOI
[52] Opaque perfect lenses, Physica B, Volume 394 (2007) no. 2, pp. 171-175 | DOI
[53] Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs, Phys. Rev. E, Volume 73 (2006) no. 4, 046608
[54] Super-gain antennas and optical resolving power, Il Nuovo Cimento, Volume 9 (1952), pp. 426-438 | DOI
[55] Maximal free-space concentration of electromagnetic waves, Phys. Rev. Appl., Volume 14 (2020), 014007 | DOI
[56] Impedance, bandwidth, and Q of antennas, IEEE Trans. Antennas and Propagation, Volume 53 (2005) no. 4, pp. 1298-1324 | DOI
[57] Spectral theory for maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform, Comm. Partial Differential Equations, Volume 42 (2017) no. 11, pp. 1707-1748 | DOI | MR | Zbl
[58] Sensitivity of anomalous localized resonance phenomena with respect to dissipation, Quart. Appl. Math., Volume 74 (2016) no. 2, pp. 201-234 | DOI | MR | Zbl
[59] Enhancement of polarizabilities of cylinders with cylinder-slab resonances, Sci. Rep., Volume 5 (2015), p. 8189 | DOI
[60] Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Phys. Rev. Lett., Volume 102 (2009) no. 9, 093901
[61] Focussing light using negative refraction, J. Phys.: Condens. Matter, Volume 15 (2003) no. 37, pp. 6345-6364
[62] Finite frequency external cloaking with complementary bianisotropic media, Opt. Express, Volume 22 (2014) no. 14, pp. 17387-17402 | DOI
[63] Cloaking using complementary media in the quasistatic regime, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1509-1518 | DOI | MR | Zbl
[64] Cloaking using complementary media for the Helmholtz equation and a three spheres inequality for second order elliptic equations, Trans. Amer. Math. Soc. B, Volume 2 (2015), pp. 93-112 | DOI | MR | Zbl
[65] Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., Volume 102 (2009) no. 25, 253902
[66] Cloaking by plasmonic resonance among systems of particles: cooperation or combat?, C. R. Phys., Volume 10 (2009) no. 5, pp. 391-399 | DOI
[67] Active exterior cloaking for the 2D Laplace and Helmholtz equations, Phys. Rev. Lett., Volume 103 (2009) no. 7, 073901 | DOI | Zbl
[68] Broadband exterior cloaking, Opt. Express, Volume 17 (2009) no. 17, pp. 14800-14805 | DOI
[69] Exterior cloaking with active sources in two dimensional acoustics, Wave Motion, Volume 48 (2011) no. 6, pp. 515-524 | DOI | MR | Zbl
[70] Mathematical analysis of the two dimensional active exterior cloaking in the quasistatic regime, Anal. Math. Phys., Volume 2 (2012) no. 3, pp. 231-246 | DOI | MR | Zbl
[71] Active elastodynamic cloaking, Math. Mech. Solids, Volume 19 (2014) no. 6, pp. 603-625 | DOI | MR | Zbl
[72] On perfect cloaking, Opt. Express, Volume 14 (2006) no. 25, pp. 12457-12466 | DOI
[73] Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X, Volume 3 (2013) no. 4, 041011
[74] Active cloaking of inclusions for flexural waves in thin elastic plates, Quart. J. Mech. Appl. Math., Volume 68 (2015) no. 3, pp. 263-288 | DOI | MR | Zbl
[75] Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI
[76] Density of states functions for photonic crystals, Phys. Rev. E, Volume 69 (2004) no. 1, 016609
[77] Decay rate and level shift in a circular dielectric waveguide, Phys. Rev. A, Volume 71 (2005) no. 1, 013815
[78] Frequency shift of sources embedded in finite two-dimensional photonic clusters, Waves Random Complex Media, Volume 16 (2006) no. 2, pp. 151-165 | DOI | Zbl
[79] Engineering photonic density of states using metamaterials, Appl. Phys. B, Volume 100 (2010) no. 1, pp. 215-218 | DOI
[80] Hydrodynamische untersuchung: nebst einem anhange über die probleme der elektrostatik und der magnetischen induction, Teubner, Leipzig, 1883, pp. 271-282 | Zbl
[81] Effective transport and optical properties of composite materials, Ph. D. Thesis, University of Sydney, Australia (1991)
Cited by Sources:
Comments - Policy