Comptes Rendus
Article de recherche
Tunneling method for Hawking quanta in analogue gravity
[La méthode de l’effet tunnel pour les quanta de Hawking dans la gravité analogique]
Comptes Rendus. Physique, Online first (2024), pp. 1-27.

Le rayonnement analogue de Hawking généré par les horizons acoustiques est désormais un phénomène bien établi, tant sur le plan théorique qu’expérimental. Son universalité, malgré les relations de dispersion modifiées qui caractérisent les modèles analogues, a été essentielle pour faire progresser notre compréhension de la robustesse de ce phénomène contre les modifications ultraviolettes de nos descriptions de l’espace-temps. Cependant, les approches théoriques précédentes, telles que la transformation de Bogoliubov reliant les états asymptotiques, ont quelque peu manqué d’une intuition physique directe concernant l’origine de cette robustesse et ses limites d’applicabilité. Pour remédier à cela, nous revisitons le rayonnement de Hawking analogue en utilisant la méthode de l’effet tunnel. Nous présentons un traitement unifié qui nous permet de considérer des courants avec ou sans horizons acoustiques et avec des relations de dispersion superluminales ou subluminales. Cette approche clarifie le mécanisme fondamental derrière la résilience du rayonnement de Hawking dans ces contextes et explique l’apparition surprenante d’excitations même dans des courants sous-critiques (super-critiques) avec des relations de dispersion subluminales (superluminales).

Analogue Hawking radiation from acoustic horizons is now a well-established phenomenon, both theoretically and experimentally. Its persistence, despite the modified dispersion relations characterising analogue models, has been crucial in advancing our understanding of the robustness of this phenomenon against ultraviolet modifications of our spacetime description. However, previous theoretical approaches, such as the Bogoliubov transformation relating asymptotic states, have somewhat lacked a straightforward physical intuition regarding the origin of this robustness and its limits of applicability. To address this, we revisit analogue Hawking radiation using the tunneling method. We present a unified treatment that allows us to consider flows with and without acoustic horizons and with superluminal or subluminal dispersion relations. This approach clarifies the fundamental mechanism behind the resilience of Hawking radiation in these settings and explains the puzzling occurrence of excitations even in subcritical (supercritical) flows with subluminal (superluminal) dispersion relations.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.239
Keywords: Analogue gravity, Particle creation, Hawking effect, Tunneling method, General dispersion relations
Mots-clés : Gravité analogique, Production des particules, Rayonnement de Hawking, Méthode de l’effet tunnel, Relations de dispersion modifiées

Francesco Del Porro 1, 2, 3 ; Stefano Liberati 1, 2, 3 ; Marc Schneider 1, 2, 3

1 SISSA, Via Bonomea 265, 34136 Trieste, Italy
2 INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
3 IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A13_0,
     author = {Francesco Del Porro and Stefano Liberati and Marc Schneider},
     title = {Tunneling method for {Hawking} quanta in analogue gravity},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.239},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Francesco Del Porro
AU  - Stefano Liberati
AU  - Marc Schneider
TI  - Tunneling method for Hawking quanta in analogue gravity
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.239
LA  - en
ID  - CRPHYS_2024__25_S2_A13_0
ER  - 
%0 Journal Article
%A Francesco Del Porro
%A Stefano Liberati
%A Marc Schneider
%T Tunneling method for Hawking quanta in analogue gravity
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.239
%G en
%F CRPHYS_2024__25_S2_A13_0
Francesco Del Porro; Stefano Liberati; Marc Schneider. Tunneling method for Hawking quanta in analogue gravity. Comptes Rendus. Physique, Online first (2024), pp. 1-27. doi : 10.5802/crphys.239.

[1] W. G. Unruh Experimental black hole evaporation, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI

[2] T. A. Jacobson Black-hole evaporation and ultrashort distances, Phys. Rev. D, Volume 44 (1991), pp. 1731-1739 | DOI

[3] T. A. Jacobson Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D, Volume 48 (1993), pp. 728-741 | DOI

[4] W. G. Unruh Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995) no. 6, pp. 2827-2838 | DOI

[5] C. Barceló; S. Liberati; M. Visser Analogue gravity, Living Rev. Relativ., Volume 8 (2005), 12 | DOI

[6] R. Brout; S. Massar; R. Parentani; P. Spindel Hawking radiation without trans-Planckian frequencies, Phys. Rev. D, Volume 52 (1995) no. 8, pp. 4559-4568 | DOI

[7] S. Corley; T. Jacobson Hawking spectrum and high frequency dispersion, Phys. Rev. D, Volume 54 (1996), pp. 1568-1586 | DOI

[8] S. Corley Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach, Phys. Rev. D, Volume 57 (1998), pp. 6280-6291 | DOI

[9] Y. Himemoto; T. Tanaka A Generalization of the model of Hawking radiation with modified high frequency dispersion relation, Phys. Rev. D, Volume 61 (2000), 064004 | DOI

[10] H. Saida; M.-aki Sakagami Black hole radiation with high frequency dispersion, Phys. Rev. D, Volume 61 (2000), 084023 | DOI

[11] W. G. Unruh; R. Schutzhold On the universality of the Hawking effect, Phys. Rev. D, Volume 71 (2005), 024028 | DOI

[12] J. Macher; R. Parentani Black/White hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009), 124008 | DOI

[13] J. Macher; R. Parentani Black hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009), 043601 | DOI

[14] S. Finazzi; R. Parentani Spectral properties of acoustic black hole radiation: broadening the horizon, Phys. Rev. D, Volume 83 (2011), 084010 | DOI

[15] S. Finazzi; R. Parentani On the robustness of acoustic black hole spectra, J. Phys.: Conf. Ser., Volume 314 (2011), 012030 | DOI

[16] A. Coutant; R. Parentani; S. Finazzi Black hole radiation with short distance dispersion, an analytical S-matrix approach, Phys. Rev. D, Volume 85 (2012), 024021 | DOI

[17] S. Finazzi; R. Parentani Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012), 124027 | DOI

[18] F. Michel; R. Parentani Probing the thermal character of analogue Hawking radiation for shallow water waves?, Phys. Rev. D, Volume 90 (2014), 044033 | DOI

[19] F. Michel; R. Parentani Mode mixing in sub- and trans-critical flows over an obstacle: when should Hawking’s predictions be recovered?, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Volume 2, World Scientific, Singapore, 2017, pp. 1709-1717 | DOI

[20] M. K. Parikh; F. Wilczek Hawking radiation as tunneling, Phys. Rev. Lett., Volume 85 (2000) no. 24, pp. 5042-5045 | DOI

[21] K. Srinivasan; T. Padmanabhan Particle production and complex path analysis, Phys. Rev. D, Volume 60 (1999) no. 2, 024007 | DOI

[22] C. Barceló; S. Liberati; S. Sonego; M. Visser Causal structure of analogue spacetimes, New J. Phys., Volume 6 (2004), 186 | DOI

[23] R. Schützhold; W. G. Unruh Origin of the particles in black hole evaporation, Phys. Rev. D, Volume 78 (2008) no. 4, 041504 | DOI

[24] C. C. H. Ribeiro; S.-S. Baak; U. R. Fischer Existence of steady-state black hole analogs in finite quasi-one-dimensional Bose–Einstein condensates, Phys. Rev. D, Volume 105 (2022), 124066 | DOI

[25] C. C. Holanda Ribeiro; U. R. Fischer Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates, Phys. Rev. D, Volume 107 (2023), L121502 | DOI

[26] B. Cropp; S. Liberati; A. Mohd; M. Visser Ray tracing Einstein-Æther black holes: Universal versus Killing horizons, Phys. Rev. D, Volume 89 (2014) no. 6, 64061 | DOI

[27] F. Del Porro; M. Herrero-Valea; S. Liberati; M. Schneider Hawking radiation in Lorentz violating gravity: a tale of two horizons, J. High Energy Phys., Volume 2023 (2023) no. 12, 94 | DOI

[28] V. Moretti; N. Pinamonti State independence for tunnelling processes through black hole horizons and Hawking radiation, Commun. Math. Phys., Volume 309 (2012), pp. 295-311 | DOI

[29] S. Liberati; G. Tricella; A. Trombettoni Back-reaction in canonical analogue black holes, Appl. Sci., Volume 10 (2020) no. 24, 8868 | DOI

[30] L. Vanzo; G. Acquaviva; R. D. Criscienzo Tunnelling methods and Hawkings radiation: achievements and prospects, Class. Quantum Grav., Volume 28 (2011) no. 18, 183001 | DOI

[31] C. Giavoni; M. Schneider Quantum effects across dynamical horizons, Class. Quantum Grav., Volume 37 (2020) no. 21, 215020 | DOI

[32] A. Coutant; S. Weinfurtner The imprint of the analogue Hawking effect in subcritical flows, Phys. Rev. D, Volume 94 (2016) no. 6, 064026 | DOI

[33] S. Weinfurtner; E. W. Tedford; M. C. J. Penrice; W. G. Unruh; G. A. Lawrence Classical aspects of Hawking radiation verified in analogue gravity experiment, Analogue Gravity Phenomenology (D. Faccio; F. Belgiorno; S. Cacciatori; V. Gorini; S. Liberati; U. Moschella, eds.) (Lecture Notes in Physics), Volume 870, Springer, Cham, 2013, pp. 167-180 | DOI

[34] A. Coutant; S. Weinfurtner Low-frequency analogue Hawking radiation: the Bogoliubov-de Gennes model, Phys. Rev. D, Volume 97 (2018) no. 2, 025006 | DOI

[35] L. Barcaroli; L. K. Brunkhorst; G. Gubitosi; N. Loret; C. Pfeifer Hamilton geometry: phase space geometry from modified dispersion relations, Phys. Rev. D, Volume 92 (2015), 084053 | DOI

[36] A. Coutant; R. Parentani Hawking radiation with dispersion: the broadened horizon paradigm, Phys. Rev. D, Volume 90 (2014) no. 12, 121501 | DOI

[37] R. Schützhold; W. G. Unruh Hawking radiation with dispersion versus breakdown of the WKB approximation, Phys. Rev. D, Volume 88 (2013) no. 12, 124009 | DOI

[38] S. Albuquerque; S. H. Völkel; K. D. Kokkotas; V. B. Bezerra Inverse problem of analog gravity systems, Phys. Rev. D, Volume 108 (2023) no. 12, 124053 | DOI

[39] S. Albuquerque; S. H. Völkel; K. D. Kokkotas; V. B. Bezerra Inverse problem of analog gravity systems. II. Rotation and energy-dependent boundary conditions, Phys. Rev. D, Volume 110 (2024) no. 6, 064084 | DOI

[40] S. Weinfurtner; E. W. Tedford; M. C. J. Penrice; W. G. Unruh; G. A. Lawrence Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302 | DOI

[41] L.-P. Euvé; F. Michel; R. Parentani; G. Rousseaux Wave blocking and partial transmission in subcritical flows over an obstacle, Phys. Rev. D, Volume 91 (2015) no. 2, 024020 | DOI

[42] L.-P. Euvé; F. Michel; R. Parentani; T. G. Philbin; G. Rousseaux Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016) no. 12, 121301 | DOI

[43] S. Robertson; F. Michel; R. Parentani Scattering of gravity waves in subcritical flows over an obstacle, Phys. Rev. D, Volume 93 (2016) no. 12, 124060 | DOI

[44] R. Brito; V. Cardoso; P. Pani Superradiance New Frontiers in Black Hole Physics, Springer, New York, 2020 | DOI

[45] S. Liberati Tests of Lorentz invariance: a 2013 update, Class. Quantum Grav., Volume 30 (2013), 133001 | DOI

[46] W. G. Unruh; R. Schützhold On slow light as a black hole analogue, Phys. Rev. D, Volume 68 (2003) no. 2, 024008 | DOI

[47] M. Novello; M. Visser; G. Volovik Artificial Black Holes, World Scientific, Singapore, 2002 | DOI

[48] S. B. Giddings Hawking radiation, the Stefan–Boltzmann law, and unitarization, Phys. Lett. B, Volume 754 (2016), pp. 39-42 | DOI

[49] R. Dey; S. Liberati; D. Pranzetti The black hole quantum atmosphere, Phys. Lett. B, Volume 774 (2017), pp. 308-316 | DOI

[50] R. Dey; S. Liberati; Z. Mirzaiyan; D. Pranzetti Black hole quantum atmosphere for freely falling observers, Phys. Lett. B, Volume 797 (2019), 134828 | DOI

[51] I. Agullo; W. Nelson; A. Ashtekar Preferred instantaneous vacuum for linear scalar fields in cosmological space-times, Phys. Rev. D, Volume 91 (2015), 064051 | DOI

[52] J. R. Muñoz de Nova; K. Golubkov; V. I. Kolobov; J. Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI

[53] F. Del Porro Beyond Lorentz invariance: a journey from Analogue to Hořava Gravity, PhD thesis, SISSA (2024)

[54] W. G. Unruh Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI

[55] T. Jacobson Introduction to quantum fields in curved space-time and the Hawking effect, School on Quantum Gravity, Springer, New York, 2003, pp. 39-89 | DOI

[56] J. M. M. Senovilla; R. Torres Particle production from marginally trapped surfaces of general spacetimes, Class. Quantum Grav., Volume 32 (2015) no. 8, 085004 | DOI

Cité par Sources :

Commentaires - Politique