[La méthode de l’effet tunnel pour les quanta de Hawking dans la gravité analogique]
Le rayonnement analogue de Hawking généré par les horizons acoustiques est désormais un phénomène bien établi, tant sur le plan théorique qu’expérimental. Son universalité, malgré les relations de dispersion modifiées qui caractérisent les modèles analogues, a été essentielle pour faire progresser notre compréhension de la robustesse de ce phénomène contre les modifications ultraviolettes de nos descriptions de l’espace-temps. Cependant, les approches théoriques précédentes, telles que la transformation de Bogoliubov reliant les états asymptotiques, ont quelque peu manqué d’une intuition physique directe concernant l’origine de cette robustesse et ses limites d’applicabilité. Pour remédier à cela, nous revisitons le rayonnement de Hawking analogue en utilisant la méthode de l’effet tunnel. Nous présentons un traitement unifié qui nous permet de considérer des courants avec ou sans horizons acoustiques et avec des relations de dispersion superluminales ou subluminales. Cette approche clarifie le mécanisme fondamental derrière la résilience du rayonnement de Hawking dans ces contextes et explique l’apparition surprenante d’excitations même dans des courants sous-critiques (super-critiques) avec des relations de dispersion subluminales (superluminales).
Analogue Hawking radiation from acoustic horizons is now a well-established phenomenon, both theoretically and experimentally. Its persistence, despite the modified dispersion relations characterising analogue models, has been crucial in advancing our understanding of the robustness of this phenomenon against ultraviolet modifications of our spacetime description. However, previous theoretical approaches, such as the Bogoliubov transformation relating asymptotic states, have somewhat lacked a straightforward physical intuition regarding the origin of this robustness and its limits of applicability. To address this, we revisit analogue Hawking radiation using the tunneling method. We present a unified treatment that allows us to consider flows with and without acoustic horizons and with superluminal or subluminal dispersion relations. This approach clarifies the fundamental mechanism behind the resilience of Hawking radiation in these settings and explains the puzzling occurrence of excitations even in subcritical (supercritical) flows with subluminal (superluminal) dispersion relations.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Gravité analogique, Production des particules, Rayonnement de Hawking, Méthode de l’effet tunnel, Relations de dispersion modifiées
Francesco Del Porro 1, 2, 3 ; Stefano Liberati 1, 2, 3 ; Marc Schneider 1, 2, 3

@article{CRPHYS_2024__25_S2_A13_0, author = {Francesco Del Porro and Stefano Liberati and Marc Schneider}, title = {Tunneling method for {Hawking} quanta in analogue gravity}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.239}, language = {en}, note = {Online first}, }
Francesco Del Porro; Stefano Liberati; Marc Schneider. Tunneling method for Hawking quanta in analogue gravity. Comptes Rendus. Physique, Online first (2024), pp. 1-27. doi : 10.5802/crphys.239.
[1] Experimental black hole evaporation, Phys. Rev. Lett., Volume 46 (1981), pp. 1351-1353 | DOI
[2] Black-hole evaporation and ultrashort distances, Phys. Rev. D, Volume 44 (1991), pp. 1731-1739 | DOI
[3] Black hole radiation in the presence of a short distance cutoff, Phys. Rev. D, Volume 48 (1993), pp. 728-741 | DOI
[4] Sonic analog of black holes and the effects of high frequencies on black hole evaporation, Phys. Rev. D, Volume 51 (1995) no. 6, pp. 2827-2838 | DOI
[5] Analogue gravity, Living Rev. Relativ., Volume 8 (2005), 12 | DOI
[6] Hawking radiation without trans-Planckian frequencies, Phys. Rev. D, Volume 52 (1995) no. 8, pp. 4559-4568 | DOI
[7] Hawking spectrum and high frequency dispersion, Phys. Rev. D, Volume 54 (1996), pp. 1568-1586 | DOI
[8] Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach, Phys. Rev. D, Volume 57 (1998), pp. 6280-6291 | DOI
[9] A Generalization of the model of Hawking radiation with modified high frequency dispersion relation, Phys. Rev. D, Volume 61 (2000), 064004 | DOI
[10] Black hole radiation with high frequency dispersion, Phys. Rev. D, Volume 61 (2000), 084023 | DOI
[11] On the universality of the Hawking effect, Phys. Rev. D, Volume 71 (2005), 024028 | DOI
[12] Black/White hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009), 124008 | DOI
[13] Black hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009), 043601 | DOI
[14] Spectral properties of acoustic black hole radiation: broadening the horizon, Phys. Rev. D, Volume 83 (2011), 084010 | DOI
[15] On the robustness of acoustic black hole spectra, J. Phys.: Conf. Ser., Volume 314 (2011), 012030 | DOI
[16] Black hole radiation with short distance dispersion, an analytical S-matrix approach, Phys. Rev. D, Volume 85 (2012), 024021 | DOI
[17] Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012), 124027 | DOI
[18] Probing the thermal character of analogue Hawking radiation for shallow water waves?, Phys. Rev. D, Volume 90 (2014), 044033 | DOI
[19] Mode mixing in sub- and trans-critical flows over an obstacle: when should Hawking’s predictions be recovered?, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Volume 2, World Scientific, Singapore, 2017, pp. 1709-1717 | DOI
[20] Hawking radiation as tunneling, Phys. Rev. Lett., Volume 85 (2000) no. 24, pp. 5042-5045 | DOI
[21] Particle production and complex path analysis, Phys. Rev. D, Volume 60 (1999) no. 2, 024007 | DOI
[22] Causal structure of analogue spacetimes, New J. Phys., Volume 6 (2004), 186 | DOI
[23] Origin of the particles in black hole evaporation, Phys. Rev. D, Volume 78 (2008) no. 4, 041504 | DOI
[24] Existence of steady-state black hole analogs in finite quasi-one-dimensional Bose–Einstein condensates, Phys. Rev. D, Volume 105 (2022), 124066 | DOI
[25] Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates, Phys. Rev. D, Volume 107 (2023), L121502 | DOI
[26] Ray tracing Einstein-Æther black holes: Universal versus Killing horizons, Phys. Rev. D, Volume 89 (2014) no. 6, 64061 | DOI
[27] Hawking radiation in Lorentz violating gravity: a tale of two horizons, J. High Energy Phys., Volume 2023 (2023) no. 12, 94 | DOI
[28] State independence for tunnelling processes through black hole horizons and Hawking radiation, Commun. Math. Phys., Volume 309 (2012), pp. 295-311 | DOI
[29] Back-reaction in canonical analogue black holes, Appl. Sci., Volume 10 (2020) no. 24, 8868 | DOI
[30] Tunnelling methods and Hawkings radiation: achievements and prospects, Class. Quantum Grav., Volume 28 (2011) no. 18, 183001 | DOI
[31] Quantum effects across dynamical horizons, Class. Quantum Grav., Volume 37 (2020) no. 21, 215020 | DOI
[32] The imprint of the analogue Hawking effect in subcritical flows, Phys. Rev. D, Volume 94 (2016) no. 6, 064026 | DOI
[33] Classical aspects of Hawking radiation verified in analogue gravity experiment, Analogue Gravity Phenomenology (D. Faccio; F. Belgiorno; S. Cacciatori; V. Gorini; S. Liberati; U. Moschella, eds.) (Lecture Notes in Physics), Volume 870, Springer, Cham, 2013, pp. 167-180 | DOI
[34] Low-frequency analogue Hawking radiation: the Bogoliubov-de Gennes model, Phys. Rev. D, Volume 97 (2018) no. 2, 025006 | DOI
[35] Hamilton geometry: phase space geometry from modified dispersion relations, Phys. Rev. D, Volume 92 (2015), 084053 | DOI
[36] Hawking radiation with dispersion: the broadened horizon paradigm, Phys. Rev. D, Volume 90 (2014) no. 12, 121501 | DOI
[37] Hawking radiation with dispersion versus breakdown of the WKB approximation, Phys. Rev. D, Volume 88 (2013) no. 12, 124009 | DOI
[38] Inverse problem of analog gravity systems, Phys. Rev. D, Volume 108 (2023) no. 12, 124053 | DOI
[39] Inverse problem of analog gravity systems. II. Rotation and energy-dependent boundary conditions, Phys. Rev. D, Volume 110 (2024) no. 6, 064084 | DOI
[40] Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302 | DOI
[41] Wave blocking and partial transmission in subcritical flows over an obstacle, Phys. Rev. D, Volume 91 (2015) no. 2, 024020 | DOI
[42] Observation of noise correlated by the Hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016) no. 12, 121301 | DOI
[43] Scattering of gravity waves in subcritical flows over an obstacle, Phys. Rev. D, Volume 93 (2016) no. 12, 124060 | DOI
[44] Superradiance New Frontiers in Black Hole Physics, Springer, New York, 2020 | DOI
[45] Tests of Lorentz invariance: a 2013 update, Class. Quantum Grav., Volume 30 (2013), 133001 | DOI
[46] On slow light as a black hole analogue, Phys. Rev. D, Volume 68 (2003) no. 2, 024008 | DOI
[47] Artificial Black Holes, World Scientific, Singapore, 2002 | DOI
[48] Hawking radiation, the Stefan–Boltzmann law, and unitarization, Phys. Lett. B, Volume 754 (2016), pp. 39-42 | DOI
[49] The black hole quantum atmosphere, Phys. Lett. B, Volume 774 (2017), pp. 308-316 | DOI
[50] Black hole quantum atmosphere for freely falling observers, Phys. Lett. B, Volume 797 (2019), 134828 | DOI
[51] Preferred instantaneous vacuum for linear scalar fields in cosmological space-times, Phys. Rev. D, Volume 91 (2015), 064051 | DOI
[52] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019) no. 7758, pp. 688-691 | DOI
[53] Beyond Lorentz invariance: a journey from Analogue to Hořava Gravity, PhD thesis, SISSA (2024)
[54] Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI
[55] Introduction to quantum fields in curved space-time and the Hawking effect, School on Quantum Gravity, Springer, New York, 2003, pp. 39-89 | DOI
[56] Particle production from marginally trapped surfaces of general spacetimes, Class. Quantum Grav., Volume 32 (2015) no. 8, 085004 | DOI
Cité par Sources :
Commentaires - Politique