[Aspects principaux de la transition métal–isolant du dioxyde de vanadium VO : une revue critique]
Le dioxyde de vanadium présente une transition métal–isolant (TMI) du premier ordre à 340 K () d’une structure rutile (R) à une structure monoclinique (). Le mécanisme de cette transition interprétée comme étant due soit à une instabilité de Peierls soit à une instabilité de Mott–Hubbard reste très controversé depuis près d’un demi-siècle. Cependant depuis une vingtaine d’années l’étude des propriétés chimiques et physiques de et de ses alliages suscite un renouveau d’intérêt par la possibilité d’applications provenant de l’obtention de dispositifs s’appuyant sur la réalisation de films minces. Nous décrivons dans cette revue les propriétés structurales, électroniques et magnétiques des différentes phases métallique (R) et isolantes (, T et ) de , de ses solutions solides et des modifications sous contrainte. Nous présentons de façon synthétique les divers diagrammes de phase et leur analyse par symétrie. Ce travail conduit à relativiser certaines interprétations du passé et à souligner en particulier le rôle particulièrement important des interactions électron–électron dans les différentes phases de et des fluctuations structurales dans le mécanisme de la TMI. Dans ce cadre nous montrons que la transition de phase est annoncée de façon surprenante par des corrélations structurales d’anisotropie unidimensionnelle (1D) révélant un ordre local en chaine du V issu d’une instabilité sous-jacente de la structure rutile. A celles-ci correspond une dynamique critique inattendue de type relaxation (ou ordre-désordre). Nous décrivons comment le couplage bidimensionnel (2D) de ces fluctuations 1D forme localement des chaines zig-zag de et des paires V–V, conduisant aux phases isolantes et . Ces phases présentent une forte anisotropie électronique avec de substantielles corrélations électron–électron conduisant à un découplage spin–charge. Le fondamental de type spin-Peierls de la phase est analysé à partir d’un mécanisme de dimérisation, en phase T, des chaines d’Heisenberg de spin 1/2 formées par les zig-zags de dans la phase . Cette revue résume de façon critique les résultats principaux de l’abondante littérature concernant les aspects fondamentaux de la TMI de . Elle est complétée par d’anciens résultats jamais publiés. Les interprétations proposées se placent dans un cadre conceptuel relativement large se révélant pertinent pour l’interprétation des propriétés physiques d’autres classes de matériaux.
Vanadium dioxide exhibits a first order metal to insulator transition (MIT) at 340 K () from a rutile (R) structure to a monoclinic () structure. The mechanism of this transition interpreted as due either to a Peierls instability or to a Mott–Hubbard instability is controversial since half a century. However, in the last twenty years the study of chemical and physical properties of and of its alloys, benefits of a renewed interest due to possible applications coming from the realization of devices made of thin films. We describe in this review the structural, electronic and magnetic properties of the different metallic (R) and insulating (, T, ) phases of , of its solid solutions and under constraint. We present in a synthetic manner the various phase diagrams and their symmetry analysis. This work allows us to revisit older interpretation and to emphasize in particular the combined role of electron–electron interactions in the various phase of and of structural fluctuations in the MIT mechanism. In this framework we show that the phase transition is surprisingly announced by anisotropic one-dimensional (1D) structural fluctuations revealing chain like correlations between the V due to an incipient instability of the rutile structure. This leads to an unexpected critical dynamics of the order–disorder (or relaxation) type. We describe how the two-dimensional (2D) coupling between these 1D fluctuations, locally forming uniform zig-zag chains and V–V pairs, stabilizes the and insulating phases. These phases exhibit a 1D electronic anisotropy where substantial electron–electron correlations conduct to a spin–charge decoupling. The spin-Peierls ground state of is analyzed via a mechanism of dimerization, in the T phase, of the spin 1/2 zig-zag Heisenberg chains formed in the phase. This review summarizes in a critical manner the main results of the large literature on fundamental aspects of the MIT of . It is completed by unpublished old results. Interpretations are also placed in a large conceptual frame which is also relevant to interpret physical properties of other classes of materials.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Dioxyde de vanadium, Transition métal–isolant, Localisation de charge de Mott–Hubbard, Transitions de Peierls et de spin-Peierls, Instabilités structurales corrélées à une dimension, Couplage électron–phonon
Jean-Paul Pouget 1
@article{CRPHYS_2021__22_1_37_0, author = {Jean-Paul Pouget}, title = {Basic aspects of the metal{\textendash}insulator transition in vanadium dioxide {VO}$_{2}$: a critical review}, journal = {Comptes Rendus. Physique}, pages = {37--87}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {1}, year = {2021}, doi = {10.5802/crphys.74}, language = {en}, }
TY - JOUR AU - Jean-Paul Pouget TI - Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review JO - Comptes Rendus. Physique PY - 2021 SP - 37 EP - 87 VL - 22 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crphys.74 LA - en ID - CRPHYS_2021__22_1_37_0 ER -
Jean-Paul Pouget. Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 37-87. doi : 10.5802/crphys.74. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.74/
[1] Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., Volume 40 (1968), pp. 714-736 | DOI
[2] The metal-nonmetal transition, Rep. Prog. Phys., Volume 33 (1970), pp. 881-940 | DOI
[3] Theory of semiconductor-to-metal transitions, Phys. Rev., Volume 155 (1967), pp. 826-840 | DOI
[4] Role of phonons and band structure in metal-insulator phase transition, Phys. Rev. Lett., Volume 25 (1970), pp. 376-380 | DOI
[5] The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Phys., Volume 17 (2016), pp. 332-356 | DOI
[6] Metal-non-metal transitions in narrow band materials; crystal structure versus correlation, Philos. Mag., Volume 21 (1970), pp. 881-895 | DOI
[7] Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), pp. 1039-1263 | DOI
[8] Transition Metal Compounds, Cambridge University Press, Cambridge, 2014 | DOI
[9] Contribution à l’étude de la magnéto-chimie du vanadium, J. Phys. Radium, Volume 8 (1927), pp. 473-480 | DOI
[10] Weitere beitr age zur kenntnis der vanadinoxyde, Z. Anorg. Allg. Chem., Volume 242 (1939), pp. 63-69 | DOI
[11] High-temperature heat contents of VO, VO, and VO, J. Am. Chem. Soc., Volume 69 (1947), pp. 331-333
[12] Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., Volume 3 (1959), pp. 34-36 | DOI
[13] Magnetismus, leitfähigkeit und reflexionsspektren von vanadindioxyd und vanadindioxyd-titandioxyd-mischkristallen, Z. Anorg. Allg. Chem., Volume 297 (1958), pp. 1-13 | DOI
[14] Note on a phase transition in VO, Acta Chem. Scand., Volume 15 (1961), p. 217 | DOI
[15] On the MoO structure type, Acta Chem. Scand., Volume 9 (1955), pp. 1378-1381 | DOI
[16] Studies on vanadium oxides II. The crystal structure of vanadium dioxide, Acta Chem. Scand., Volume 10 (1956), pp. 623-628 | DOI
[17] The phase transition in VO, J. Phys. Soc. Japan, Volume 22 (1967), pp. 551-557 | DOI
[18] Phase diagram and magnetism of VO–VO system, J. Phys. Soc. Japan, Volume 18 (1963), pp. 318-319 | DOI
[19] The two components of the crystallographic transition in VO, J. Solid State Chem., Volume 3 (1971), pp. 490-500 | DOI
[20] Metal-insulator phase transition in VO, J. Phys. Colloq., Volume 37 (1976), p. C4-49–C4-57 | DOI
[21] Metal-insulator transitions in pure and doped VO, Localization and Metal-Insulator Transitions (H. Fritzsche; D. Adler, eds.), Springer, Boston, MA, 1985, pp. 39-52 | DOI
[22] Contribution to the study of the metal-insulator transition in the VNbO system: II Magnetic properties, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1961-1967 | DOI
[23] Heat capacity of vanadium oxides at low temperature, Phys. Rev. B, Volume 7 (1973), pp. 326-332 | DOI
[24] Metal-insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), pp. 4383-4395 | DOI
[25] VO: Peierls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., Volume 72 (1994), pp. 3389-3391 | DOI
[26] Comment on “VO: Peierls or Mott–Hubbard? A View from Band Theory”, Phys. Rev. Lett., Volume 73 (1994), 3042
[27] Synthesis of vanadium dioxide thin films and nanostructures, J. Appl. Phys., Volume 128 (2020), 231101 | DOI
[28] Recent progress on vanadium dioxide nanostructures and devices: fabrication, properties, applications and perspectives, Nanomaterials, Volume 11 (2021), 338
[29] Recent progress on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI
[30] Recent progress in the phase transition mechanism and modulation of vanadium dioxide materials, NPG Asia Mater., Volume 10 (2018), pp. 581-605 | DOI
[31] Metal to insulator phase-transition in VNbO explained by local pairing of vanadium atoms, Acta Cryst. A, Volume 30 (1974), pp. 55-60
[32] Structural instability of the rutile compounds and its relevance to the metal-insulator transition of VO, Prog. Solid State Chem., Volume 43 (2015), pp. 47-69 | DOI
[33] The metal-insulator transitions of VO: A band theoretical approach, Ann. Phys. (Leipzig), Volume 11 (2002), pp. 650-702 | DOI | Zbl
[34] X-ray diffraction of metallic VO, Phys. Rev. B, Volume 14 (1974), pp. 490-495 | DOI
[35] Structural aspects of the metal-insulator transitions in Cr-doped VO, Phys. Rev. B, Volume 5 (1972), pp. 2541-2551 | DOI
[36] A Refinement of the Structure of VO, Acta Chem. Scand., Volume 24 (1970), pp. 420-426 | DOI
[37] Contribution à l’étude structurale des phases VCrO, Mater. Res. Bull., Volume 8 (1973), pp. 1111-1122
[38] Dimerization of a linear Heisenberg chain in the insulating phases of VCrO, Phys. Rev. B, Volume 10 (1974), pp. 1801-1815 | DOI
[39] Diagramme de phase du système VAlO, Mater. Res. Bull., Volume 9 (1974), pp. 1199-1208
[40] Le système VFeO: propriétés structurales et magnétiques, Mater. Res. Bull., Volume 11 (1976), pp. 159-166
[41] Phase transitions and semiconductor-metal transition in VGaO, single crystals, Phys. Status Solidi (a), Volume 38 (1976), p. K13-K16 | DOI
[42] Structural aspects of the metal-insulator transitions in VAlO, J. Solid State Chem., Volume 22 (1977), pp. 423-438 | DOI
[43] Magnetic and structural properties of stoichiometric and non-stoichiometric (V, Al) O alloys, J. Phys. C: Solid State Phys., Volume 10 (1977), pp. 3621-3631 | DOI
[44] Occupation switching of d orbitals in vanadium dioxide probed via hyperfine interactions, Phys. Rev. B, Volume 101 (2020), 245123 | DOI
[45] Etude par résonance magnétique nucléaire de la transition métal-isolant de VO et ses alliages, Ph. D. Thesis, Université Paris-Sud, France (1974)
[46] A study of magnetic resonance, Hitachi Rev. (Japan), Volume 17 (1968), pp. 204-211
[47] Nuclear magnetic resonance in polycrystalline VO, J. Chem. Phys., Volume 42 (1965), pp. 1458-1459 | DOI
[48] Electrical, magnetic and thermal studies of VTiO , Acta Chem. Scand. A, Volume 30 (1976), pp. 619-624 | DOI
[49] A new phase appearing in metal-semiconductor transition in VO, J. Phys. Soc. Japan, Volume 21 (1966), pp. 1461-1462 | DOI
[50] Die rutilphase (VNb)O, Z. Anorg. Allg. Chem., Volume 334 (1964), pp. 142-149
[51] Contribution à l’étude des systèmes VO–NbVO et VO–TaVO, Ann. Chim. (France), Volume 4 (1969), pp. 183-194
[52] Phase transitions and conductivity anomalies in solid solutions of VO with TiO, NbO and MoO, J. Phys. Chem. Solids, Volume 32 (1971), pp. 1147-1150 | DOI
[53] On the phase transformation of VO, Japan J. Appl. Phys., Volume 6 (1967), pp. 1060-1071 | DOI
[54] Sur quelques nouvelles phases à caractère non-stæchiométrique dans les systèmes VO–VO–MO (M:Al, Cr et Fe), Bull. Soc. Chim. France, Volume 1 (1967), pp. 227-234
[55] Contribution to the study of the metal-insulator transition in the VNbO system: I—Crystallographic and Transport properties, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1953-1959 | DOI
[56] A D.T.A. study of the semiconductor-metallic transition in VWO, , Mater. Res. Bull., Volume 4 (1969), pp. 881-887 | DOI
[57] Electrical and magnetic properties of VWO, , Mater. Res. Bull., Volume 7 (1972), pp. 1515-1524
[58] Metal-insulator transition in epitaxial VWO () thin films, Appl. Phys. Lett., Volume 96 (2010), 022102 | DOI
[59] Electrical, magnetic and thermal studies on the VMoO system with , Mater. Res. Bull., Volume 8 (1973), pp. 179-190
[60] Insulator to correlated metal transition in VMoO, Phys. Rev. B, Volume 79 (2009), 245114 | DOI
[61] Electrical, magnetic and thermal studies of the VReO system with , Phys. Status Solidi (a), Volume 43 (1977), pp. 645-652 | DOI
[62] Contribution to the study of the metal-insulator transition in the VNbO system: III—Theoretical discussion, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1969-1978 | DOI
[63] Transitions métal-isolant dans V NbO2 et V Crx O2 : aspects structuraux, magnétiques et électriques, Ph. D. Thesis, Université de Bordeaux I, France (1974)
[64] Propriétés physiques et structurales de la phase CrVO, Mater. Res. Bull., Volume 6 (1971), pp. 119-130 | DOI
[65] Doping-based stabilization of the M phase in free-standing VO nanostructures at room temperature, Nano Lett., Volume 12 (2012), pp. 6198-6205 | DOI
[66] Phase diagram of VFeO in the region, Mater. Res. Bull., Volume 11 (1976), pp. 255-262 | DOI
[67] et al. Metal-nonmetal transition in Fe and Al doped VO, J. Phys. Colloq., Volume 37 (1976), p. C4-63–C4-68 | DOI
[68] The phase transition MT in VGaO, Phys. Status Solidi (a), Volume 38 (1976), pp. 93-102
[69] Experimental study of the electronic and lattice contributions to the VO transition, J. Phys. Chem. Solids, Volume 39 (1978), pp. 941-949 | DOI
[70] Spinodal decomposition in the TiO–VO system, Chem Mater., Volume 25 (2013), pp. 2202-2210 | DOI
[71] Vanadium-vanadium bonds in the VTiO system, J. Phys. Colloq., Volume 37 (1976), p. C4-69–C4-73 | DOI
[72] Propriétés magnétiques et electriques de lâoxyfluorure de formule VOF, Solid State Chem., Volume 12 (1975), pp. 41-50 | DOI
[73] Influence of non stoichiometry on the phase transitions in Ga-, Al-, and Fe-doped VO, Phys. Status Solidi (a), Volume 42 (1977), pp. 295-303 | DOI
[74] Propriétés structurales, magnétiques, et electriques de 1’oxyfluorure CrVOF, Solid State Chem., Volume 12 (1975), pp. 31-40 | DOI
[75] et al. Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects, Phys. Rev. B, Volume 91 (2015), 205123 | DOI
[76] Role of defects in the metal-insulator transition in VO and VO, Phys. Rev. B, Volume 99 (2019), 214103 | DOI
[77] Electron Localization Induced by Uniaxial Stress in Pure VO, Phys. Rev. Lett., Volume 35 (1975), pp. 873-875 | DOI
[78] Measurement of a solid-state triple point at the metal-insulator transition of VO, Nature, Volume 500 (2013), pp. 431-434 | DOI
[79] et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI
[80] Strain and temperature dependence of the insulating phases of VO near the metal-insulator transition, Phys. Rev. B, Volume 85 (2012), 020101(R) | DOI
[81] et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy, Nat. Phys., Volume 9 (2013), pp. 661-666 | DOI
[82] Large modification of the metal-insulator transition in strained VO films grown on TiO substrates, J. Phys. Chem. Solids, Volume 63 (2002), pp. 965-967 | DOI
[83] et al. Pressure—temperature phase diagram of vanadium dioxide, Nano Lett., Volume 17 (2017), pp. 2512-2516 | DOI
[84] Evidence of a pressure-induced metallization process in monoclinic VO, Phys. Rev. Lett., Volume 98 (2007), 196406 | DOI
[85] Pressure-induced phase transitions and metallization in VO, Phys. Rev. B, Volume 91 (2015), 104110
[86] Anisotropic compression in the high-pressure regime of pure and chromium-doped vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 184108 | DOI
[87] et al. High-pressure phases of VO from the combination of Raman scattering and ab initio structural search, Phys. Rev. B, Volume 97 (2018), 024107 | DOI
[88] Symmetry considerations and the vanadium dioxide phase transition, Phys. Rev. B, Volume 1 (1970), pp. 2557-2568 | DOI
[89] et al. Symmetry relationship and strain-induced transitions between insulating M and M and metallic R phases of vanadium dioxide, Nano Lett., Volume 10 (2010), pp. 4409-4416 | DOI
[90] On the theory of phase transitions represented by four-component order parameters, Sov. Phys. Crystallogr., Volume 25 (1980), pp. 527-532 | MR | Zbl
[91] Classification of continuous phase transitions and stable phases. II. Four-dimensional order parameters, Phys. Rev. B, Volume 33 (1986), pp. 6210-6230 | DOI
[92] The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987
[93] On the Landau theory of structural phase transitions in layered perovskites (CHNH)MCl (M = Mn, Cd, Fe): comparison with experiments, J. Phys. I, Volume 1 (1991), pp. 743-758
[94] La Ferroélasticité, Ann. Telecom., Volume 29 (1974), pp. 249-270
[95] Elastic behavior near the metal-insulator transition of VO, Phys. Rev. B, Volume 60 (1999), pp. 13249-13252 | DOI
[96] Lattice dynamics in VO near the metal-insulator transition, Mater. Sci. Eng. A, Volume 370 (2004), pp. 449-452 | DOI
[97] Order parameter symmetries and free-energy expansions for purely ferro-elastic transitions, Phys. Rev. B, Volume 21 (1980), pp. 1139-1172 | DOI
[98] Ferro-elastic transitions with a modification of the crystal’s unit cell, Ferroelectrics, Volume 21 (1978), pp. 587-588 | DOI
[99] Domain structure and twinning in crystals of vanadium dioxides, J. Appl. Phys., Volume 38 (1967), pp. 4823-4829 | DOI
[100] et al. Interplay between Ferro-elastic and metal-insulator transitions in strained quasi-two-dimensional VO nanoplatelets, Nano Lett., Volume 10 (2010), pp. 2003-2011 | DOI
[101] et al. Mesoscopic metal-insulator transition at Ferro-elastic domain walls in VO, ACS Nano, Volume 4 (2010), pp. 4412-4419 | DOI
[102] et al. Mott transition in VO revealed by infrared spectroscopy and nano-imaging, Science, Volume 318 (2007), pp. 1750-1753 | DOI
[103] Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO, Phys. Rev. Lett., Volume 113 (2014), 216402 | DOI
[104] Metallic diluted dimerization in VO tweeds, Adv. Mater., Volume 33 (2021), 2004374 | DOI
[105] Renormalization-group study of fixed points and of their stability for phase transitions with four-component order parameters, Phys. Rev. B, Volume 31 (1985), pp. 7171-7196 | DOI | MR
[106] Cluster calculations of the electronic d-states in VO, J. Phys. Lett., Volume 36 (1975), p. L-157–L-160 | DOI
[107] et al. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO, VO and VO, Phys. Rev. B, Volume 41 (1990), pp. 4993-5009 | DOI
[108] Optical properties of VO films at the phase transition: influence of substrate and electronic correlations, J. Appl. Phys., Volume 120 (2016), 075102 | DOI
[109] Anisotropy of the electrical conductivity in VO single crystals, Solid State Commun., Volume 3 (1965), pp. 275-277 | DOI
[110] Optical Properties of VO between 0.25 and 5 eV, Phys. Rev., Volume 172 (1968), pp. 788-798 | DOI
[111] Dynamical singlets and correlation-assisted Peierls transition in VO, Phys. Rev. Lett., Volume 94 (2005), 026404 | DOI
[112] Electronic structure and lattice instability of metallic VO, Phys. Rev. B, Volume 16 (1977), pp. 3338-3351 | DOI
[113] Fermi surface topology in a metallic phase of VO thin films grown on TiO (001) substrates, Sci. Rep., Volume 8 (2018), 17906 | DOI
[114] Evidence for strong Coulomb correlations in the metallic phase of vanadium dioxide, JETP Lett., Volume 93 (2011), pp. 70-74 | DOI
[115] Vanadium dioxide: A Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI
[116] Effects of strain on the electronic structure of VO, Phys. Rev. B, Volume 81 (2010), 115117 | DOI
[117] Photoemission study of the metal-insulator transition in VO/TiO (001): Evidence for strong electron-electron and electron-phonon interaction, Phys. Rev. B, Volume 69 (2004), 165104 | DOI
[118] Effective band structure in the insulating phase versus strong dynamical correlations in metallic VO, Phys. Rev. B, Volume 78 (2008), 115103 | DOI
[119] et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO, Phys. Rev. Lett., Volume 97 (2006), 116402 | DOI
[120] Resistivity of the high temperature metallic phase of VO, Phys. Rev. B, Volume 48 (1993), pp. 4359-4363 | DOI
[121] Correlated metallic state of vanadium dioxide, Phys. Rev. B, Volume 74 (2006), 205118 | DOI
[122] et al. Orbital-assisted metal-insulator transition in VO, Phys. Rev. Lett., Volume 95 (2005), 196404 | DOI
[123] Electron spin resonance in VCrO, J. Phys. C: Solid State Phys., Volume 8 (1975), pp. 2267-2273
[124] Effective band structure of correlated materials: the case of VO, J. Phys.: Condens. Matter, Volume 19 (2007), 365206
[125] et al. Measurement of collective excitations in VO by resonant inelastic x-ray scattering, Phys. Rev., Volume 94 (2016), 161119(R)
[126] Electrodynamics of the vanadium oxides VO and VO, Phys. Rev. B, Volume 77 (2008), 115121 | DOI
[127] Insulating phases of vanadium dioxide are Mott–Hubbard insulators, Phys. Rev. B, Volume 95 (2017), 075125 | DOI
[128] NMR studies of VO and VWO, J. Phys. Soc. Japan, Volume 52 (1983), pp. 3953-3959
[129] Magnetic susceptibility of a chain of spins with antiferromagnetic interaction, Sov. Phys. Solid State, Volume 11 (1969), pp. 921-924 (Fiz. Tverd. Tela 11, 1132)
[130] alternating chain using multi-precision methods, Phys. Rev. B, Volume 59 (1999), pp. 11384-11397 | DOI
[131] Thermodynamics of spin antiferromagnetic uniform and alternating-exchange Heisenberg chains, Phys. Rev. B, Volume 61 (2000), pp. 9558-9606 | DOI
[132] Magnetic excitation spectrum of dimerized antiferromagnetic chains, Phys. Rev. B, Volume 54 (1996), p. 9624-9627(R) | DOI
[133] Double gap and solitonic excitations in the spin-Peierls chain CuGeO, Phys. Rev. Lett., Volume 78 (1997), pp. 1560-1963 | DOI
[134] Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)PF, Phys. Rev. B, Volume 96 (2017), 035127 | DOI
[135] Spin–Peierls transition in quasi-one-dimensional crystals, Usp. Fiz. Nauk, Volume 131 (1980), pp. 495-510 | DOI
[136] The spin-Peierls transition, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 3, Plenum Publishing Coorporation, 1983, pp. 353-415 | DOI
[137] Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, (o-MeTTF)NO, IUCrJ, Volume 5 (2018), pp. 361-372 | DOI
[138] Microscopic interactions in CuGeO and organic Spin-Peierls systems deduced from their pre-transitional lattice fluctuations, Eur. Phys. J. B, Volume 20 (2001), pp. 321-333 (Eur. Phys. J. B, 24, 415) | DOI
[139] Theory of vanadium dioxide, Synth. Met., Volume 41–43 (1991), pp. 3527-3530 | DOI
[140] Magnetic-field-induced insulator–metal transition in W-doped VO at 500 T, Nat. Commun., Volume 11 (2020), 3591 | DOI
[141] Magnetic susceptibility and phase diagram of CuGeSiO single crystals, Phys. Rev. B, Volume 57 (1998), pp. 3444-3453 | DOI
[142] Spin-Peierls lattice fluctuations and disorders in CuGeO3 and its solid solutions, Eur. Phys. J. B, Volume 38 (2004), pp. 581-598 | DOI
[143] Probing phase transition in VO with the novel observation of low-frequency collective spin excitation, Sci. Rep., Volume 10 (2020), 1977 | DOI
[144] Diffuse x-ray scattering due to the lattice instability near the metal-semiconductor transition in VO, Phys. Rev. B, Volume 17 (1978), pp. 2494-2496 | DOI
[145] Structural instabilities, Highly Conducting Quasi-One-Dimensional Organic Crystals, chapter 3 (E. Comwell, ed.) (Semiconductors and Semimetals), Volume 27, Academic Press Inc., 1988, pp. 87-214
[146] Direct observation of the soft mode at a semiconductor-metal phase transition in vanadium dioxide, Phys. Solid State, Volume 36 (1994), pp. 1136-1139
[147] et al. Metallization of vanadium dioxide driven by large phonon entropy, Nature, Volume 515 (2014), pp. 535-539 | DOI
[148] André Guinier: Local order in condensed matter, C. R. Phys., Volume 20 (2019), pp. 725-745 | DOI
[149] Désordre Linéaire dans les Cristaux (cas du Silicium, du Quartz, et des Pérovskites Ferroélectriques), Acta Cryst. A, Volume 26 (1970), pp. 244-254 | DOI
[150] Lattice dynamics of rutile, Phys. Rev. B, Volume 3 (1971), pp. 3457-3472 | DOI
[151] The influence of structural disorder and phonon on metal-to-insulator transition of VO, Sci. Rep., Volume 7 (2017), 14802 | DOI
[152] Thickness dependence of electronic structures in VO ultrathin films: Suppression of the cooperative Mott–Peierls transition, Phys. Rev. B, Volume 102 (2020), 115114 | DOI
[153] Temperature variation of the ultrasonic attenuation and phase velocity in VO and VO crystals, J. Phys. (France) Lett., Volume 38 (1977), p. L25-L28 | DOI
[154] Complex quasi-two-dimensional crystalline order embedded in VO and other crystals, Phys. Rev. Lett., Volume 119 (2017), 045501 | DOI
[155] Neutron and X ray studies of the quasi-one-dimensional conductor KMoO, Mol. Cryst. Liq. Cryst., Volume 121 (1985), pp. 111-115 | DOI
[156] Evidence for the weak coupling scenario of the Peierls transition in the blue bronze, Phys. Rev. Mater., Volume 3 (2019), 055001
[157] Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions in VO and NbO, Phys. Rev. B, Volume 31 (1985), pp. 4809-4814 | DOI
[158] Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO, Phys. Rev. B, Volume 87 (2013), 195106
[159] Raman spectrum of semiconducting and metallic VO, Phys. Rev. Lett., Volume 27 (1971), pp. 727-730 | DOI
[160] Spectrum of Raman scattering of light and phase transition in VO, Sov. Phys. Solid State, Volume 19 (1977), pp. 110-114
[161] Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition, Phys. Solid State, Volume 37 (1995), pp. 1971-1978
[162] Raman scattering in VO, Physica B, Volume 316 (2002), pp. 600-602 | DOI
[163] Electron-electron correlations in Raman spectra of VO, Phys. Solid State, Volume 55 (2013), pp. 164-174 | DOI
[164] Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze KMoO, Phys. Rev. B, Volume 43 (1991), pp. 8421-8430 | DOI
[165] Structural fluctuations in NbO at high temperatures, Phys. Rev. B, Volume 17 (1978), pp. 2196-2205 | DOI
[166] et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science, Volume 355 (2017), pp. 371-374 | DOI
[167] The chain structure of BaTiO et KNbO, Solid State Commun., Volume 6 (1968), pp. 715-719 | DOI
[168] A note on the theory of barium titanate, J. Phys. Soc. Japan, Volume 16 (1961), pp. 1685-1689 | DOI
[169] High-pressure study of X-ray diffuse scattering in ferroelectric perovskites, Phys. Rev. Lett., Volume 99 (2007), 117601 | DOI
[170] Momentum dependent electron-phonon coupling in charge density wave systems, Phys. Rev. B, Volume 103 (2021), 115135
[171] Peierls transition in two-dimensional metallic monophosphate tungsten Bronzes, Solid State Sci., Volume 4 (2002), pp. 387-396 | DOI
[172] Electron correlations and electron-lattice interactions in the metal-insulator, ferro-elastic transition in VO: A thermodynamical study, Phys. Rev. B, Volume 22 (1980), pp. 5284-5301 | DOI
[173] Unraveling the Mott–Peierls intrigue in Vanadium dioxide, Phys. Rev. Res., Volume 2 (2020), 013298
[174] Order-disorder type of Peierls instability in BaVS, Phys. Rev. B, Volume 103 (2021), 014306 | DOI
[175] Local-phonon model of strong electron-phonon interactions in A15 compounds and other strong-coupling superconductors, Phys. Rev. B, Volume 29 (1984), pp. 6165-6186
[176] Metal-insulator transition in incommensurate Peierls chains by extinction of the Frohlich conductivity, J. Phys. Colloq., Volume 44 (1983), p. C3-1573–C3-1577 | DOI
[177] Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides, Phys. Rev. B, Volume 85 (2012), 165142
[178] The origin of the transition entropy in vanadium dioxide, Phys. Rev. B, Volume 99 (2019), 064113 | DOI
[179] Electronic entropy contribution to the metal insulator transition in VO, Phys. Rev. B, Volume 102 (2020), 165138 | DOI
[180] The chain structure and phase transition of BaTiO and KNbO, Solid State Commun., Volume 7 (1969), pp. 305-308 | DOI
[181] Donor–anion interactions in quarter-filled low-dimensional organic conductors, Mater. Horiz., Volume 5 (2018), pp. 590-640 | DOI
[182] Structural and electronic control of the metal to insulator transition and local orderings in the -(BEDT-TTF)2X organic conductors, J. Phys.: Condens. Matter, Volume 27 (2015), 465702
[183] Nanoscale electrodynamics of strongly correlated quantum materials, Rep. Prog. Phys., Volume 80 (2017), 014501
[184] et al. Mesoscopic structural phase progression in photo-excited VO revealed by time-resolved x-ray diffraction microscopy, Sci. Rep., Volume 6 (2016), 21999
[185] et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI
[186] Evidence for a structurally-driven insulator-to-metal transition in VO: a view from the ultrafast timescale, Phys. Rev. B, Volume 70 (2004), 161102(R) | DOI
[187] Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO, Phys. Rev. Lett., Volume 99 (2007), 116401 | DOI
[188] et al. Monoclinic and correlated metal phase in VO as evidence of the Mott transition: coherent phonon analysis, Phys. Rev. Lett., Volume 97 (2006), 266401
[189] The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514
[190] et al. Mott transition in chain structure of strained VO films revealed by coherent phonons, Sci. Rep., Volume 7 (2017), 16038 | DOI
[191] Superconducting dome underlying bipolaronic insulating state in charge doped TiO epitaxial films, J. Phys. Soc. Japan, Volume 90 (2021), 023705 | DOI
Cité par Sources :
Commentaires - Politique