[Aspects principaux de la transition métal–isolant du dioxyde de vanadium VO
Vanadium dioxide exhibits a first order metal to insulator transition (MIT) at 340 K (
Le dioxyde de vanadium présente une transition métal–isolant (TMI) du premier ordre à 340 K (
Révisé le :
Accepté le :
Publié le :
Mots-clés : Dioxyde de vanadium, Transition métal–isolant, Localisation de charge de Mott–Hubbard, Transitions de Peierls et de spin-Peierls, Instabilités structurales corrélées à une dimension, Couplage électron–phonon
Jean-Paul Pouget 1

@article{CRPHYS_2021__22_1_37_0, author = {Jean-Paul Pouget}, title = {Basic aspects of the metal{\textendash}insulator transition in vanadium dioxide {VO}$_{2}$: a critical review}, journal = {Comptes Rendus. Physique}, pages = {37--87}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {1}, year = {2021}, doi = {10.5802/crphys.74}, language = {en}, }
TY - JOUR AU - Jean-Paul Pouget TI - Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review JO - Comptes Rendus. Physique PY - 2021 SP - 37 EP - 87 VL - 22 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crphys.74 LA - en ID - CRPHYS_2021__22_1_37_0 ER -
Jean-Paul Pouget. Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 37-87. doi : 10.5802/crphys.74. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.74/
[1] Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., Volume 40 (1968), pp. 714-736 | DOI
[2] The metal-nonmetal transition, Rep. Prog. Phys., Volume 33 (1970), pp. 881-940 | DOI
[3] Theory of semiconductor-to-metal transitions, Phys. Rev., Volume 155 (1967), pp. 826-840 | DOI
[4] Role of phonons and band structure in metal-insulator phase transition, Phys. Rev. Lett., Volume 25 (1970), pp. 376-380 | DOI
[5] The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Phys., Volume 17 (2016), pp. 332-356 | DOI
[6] Metal-non-metal transitions in narrow band materials; crystal structure versus correlation, Philos. Mag., Volume 21 (1970), pp. 881-895 | DOI
[7] Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), pp. 1039-1263 | DOI
[8] Transition Metal Compounds, Cambridge University Press, Cambridge, 2014 | DOI
[9] Contribution à l’étude de la magnéto-chimie du vanadium, J. Phys. Radium, Volume 8 (1927), pp. 473-480 | DOI
[10] Weitere beitr age zur kenntnis der vanadinoxyde, Z. Anorg. Allg. Chem., Volume 242 (1939), pp. 63-69 | DOI
[11] High-temperature heat contents of V
[12] Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., Volume 3 (1959), pp. 34-36 | DOI
[13] Magnetismus, leitfähigkeit und reflexionsspektren von vanadindioxyd und vanadindioxyd-titandioxyd-mischkristallen, Z. Anorg. Allg. Chem., Volume 297 (1958), pp. 1-13 | DOI
[14] Note on a phase transition in VO
[15] On the MoO
[16] Studies on vanadium oxides II. The crystal structure of vanadium dioxide, Acta Chem. Scand., Volume 10 (1956), pp. 623-628 | DOI
[17] The phase transition in VO
[18] Phase diagram and magnetism of V
[19] The two components of the crystallographic transition in VO
[20] Metal-insulator phase transition in VO
[21] Metal-insulator transitions in pure and doped VO
[22] Contribution to the study of the metal-insulator transition in the V
[23] Heat capacity of vanadium oxides at low temperature, Phys. Rev. B, Volume 7 (1973), pp. 326-332 | DOI
[24] Metal-insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), pp. 4383-4395 | DOI
[25] VO
[26] Comment on “VO
[27] Synthesis of vanadium dioxide thin films and nanostructures, J. Appl. Phys., Volume 128 (2020), 231101 | DOI
[28] Recent progress on vanadium dioxide nanostructures and devices: fabrication, properties, applications and perspectives, Nanomaterials, Volume 11 (2021), 338
[29] Recent progress on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI
[30] Recent progress in the phase transition mechanism and modulation of vanadium dioxide materials, NPG Asia Mater., Volume 10 (2018), pp. 581-605 | DOI
[31] Metal to insulator phase-transition in V
[32] Structural instability of the rutile compounds and its relevance to the metal-insulator transition of VO
[33] The metal-insulator transitions of VO
[34] X-ray diffraction of metallic VO
[35] Structural aspects of the metal-insulator transitions in Cr-doped VO
[36] A Refinement of the Structure of VO
[37] Contribution à l’étude structurale des phases V
[38] Dimerization of a linear Heisenberg chain in the insulating phases of V
[39] Diagramme de phase du système V
[40] Le système V
[41] Phase transitions and semiconductor-metal transition in V
[42] Structural aspects of the metal-insulator transitions in V
[43] Magnetic and structural properties of stoichiometric and non-stoichiometric (V, Al) O
[44] Occupation switching of d orbitals in vanadium dioxide probed via hyperfine interactions, Phys. Rev. B, Volume 101 (2020), 245123 | DOI
[45] Etude par résonance magnétique nucléaire de la transition métal-isolant de VO
[46] A study of magnetic resonance, Hitachi Rev. (Japan), Volume 17 (1968), pp. 204-211
[47] Nuclear magnetic resonance in polycrystalline VO
[48] Electrical, magnetic and thermal studies of V
[49] A new phase appearing in metal-semiconductor transition in VO
[50] Die rutilphase (V
[51] Contribution à l’étude des systèmes VO
[52] Phase transitions and conductivity anomalies in solid solutions of VO
[53] On the phase transformation of VO
[54] Sur quelques nouvelles phases à caractère non-stæchiométrique dans les systèmes V
[55] Contribution to the study of the metal-insulator transition in the V
[56] A D.T.A. study of the semiconductor-metallic transition in V
[57] Electrical and magnetic properties of V
[58] Metal-insulator transition in epitaxial V
[59] Electrical, magnetic and thermal studies on the V
[60] Insulator to correlated metal transition in V
[61] Electrical, magnetic and thermal studies of the V
[62] Contribution to the study of the metal-insulator transition in the V
[63] Transitions métal-isolant dans V
[64] Propriétés physiques et structurales de la phase Cr
[65] Doping-based stabilization of the M
[66] Phase diagram of V
[67] et al. Metal-nonmetal transition in Fe and Al doped VO
[68] The phase transition M
[69] Experimental study of the electronic and lattice contributions to the VO
[70] Spinodal decomposition in the TiO
[71] Vanadium-vanadium bonds in the V
[72] Propriétés magnétiques et electriques de lâoxyfluorure de formule VO
[73] Influence of non stoichiometry on the phase transitions in Ga-, Al-, and Fe-doped VO
[74] Propriétés structurales, magnétiques, et electriques de 1’oxyfluorure Cr
[75] et al. Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects, Phys. Rev. B, Volume 91 (2015), 205123 | DOI
[76] Role of defects in the metal-insulator transition in VO
[77] Electron Localization Induced by Uniaxial Stress in Pure VO
[78] Measurement of a solid-state triple point at the metal-insulator transition of VO
[79] et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI
[80] Strain and temperature dependence of the insulating phases of VO
[81] et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy, Nat. Phys., Volume 9 (2013), pp. 661-666 | DOI
[82] Large modification of the metal-insulator transition in strained VO
[83] et al. Pressure—temperature phase diagram of vanadium dioxide, Nano Lett., Volume 17 (2017), pp. 2512-2516 | DOI
[84] Evidence of a pressure-induced metallization process in monoclinic VO
[85] Pressure-induced phase transitions and metallization in VO
[86] Anisotropic compression in the high-pressure regime of pure and chromium-doped vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 184108 | DOI
[87] et al. High-pressure phases of VO
[88] Symmetry considerations and the vanadium dioxide phase transition, Phys. Rev. B, Volume 1 (1970), pp. 2557-2568 | DOI
[89] et al. Symmetry relationship and strain-induced transitions between insulating M
[90] On the theory of phase transitions represented by four-component order parameters, Sov. Phys. Crystallogr., Volume 25 (1980), pp. 527-532 | MR | Zbl
[91] Classification of continuous phase transitions and stable phases. II. Four-dimensional order parameters, Phys. Rev. B, Volume 33 (1986), pp. 6210-6230 | DOI
[92] The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987
[93] On the Landau theory of structural phase transitions in layered perovskites (CH
[94] La Ferroélasticité, Ann. Telecom., Volume 29 (1974), pp. 249-270
[95] Elastic behavior near the metal-insulator transition of VO
[96] Lattice dynamics in VO
[97] Order parameter symmetries and free-energy expansions for purely ferro-elastic transitions, Phys. Rev. B, Volume 21 (1980), pp. 1139-1172 | DOI
[98] Ferro-elastic transitions with a modification of the crystal’s unit cell, Ferroelectrics, Volume 21 (1978), pp. 587-588 | DOI
[99] Domain structure and twinning in crystals of vanadium dioxides, J. Appl. Phys., Volume 38 (1967), pp. 4823-4829 | DOI
[100] et al. Interplay between Ferro-elastic and metal-insulator transitions in strained quasi-two-dimensional VO
[101] et al. Mesoscopic metal-insulator transition at Ferro-elastic domain walls in VO
[102] et al. Mott transition in VO
[103] Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO
[104] Metallic diluted dimerization in VO
[105] Renormalization-group study of fixed points and of their stability for phase transitions with four-component order parameters, Phys. Rev. B, Volume 31 (1985), pp. 7171-7196 | DOI | MR
[106] Cluster calculations of the electronic d-states in VO
[107] et al. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO
[108] Optical properties of VO
[109] Anisotropy of the electrical conductivity in VO
[110] Optical Properties of VO
[111] Dynamical singlets and correlation-assisted Peierls transition in VO
[112] Electronic structure and lattice instability of metallic VO
[113] Fermi surface topology in a metallic phase of VO
[114] Evidence for strong Coulomb correlations in the metallic phase of vanadium dioxide, JETP Lett., Volume 93 (2011), pp. 70-74 | DOI
[115] Vanadium dioxide: A Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI
[116] Effects of strain on the electronic structure of VO
[117] Photoemission study of the metal-insulator transition in VO
[118] Effective band structure in the insulating phase versus strong dynamical correlations in metallic VO
[119] et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO
[120] Resistivity of the high temperature metallic phase of VO
[121] Correlated metallic state of vanadium dioxide, Phys. Rev. B, Volume 74 (2006), 205118 | DOI
[122] et al. Orbital-assisted metal-insulator transition in VO
[123] Electron spin resonance in V
[124] Effective band structure of correlated materials: the case of VO
[125] et al. Measurement of collective excitations in VO
[126] Electrodynamics of the vanadium oxides VO
[127] Insulating phases of vanadium dioxide are Mott–Hubbard insulators, Phys. Rev. B, Volume 95 (2017), 075125 | DOI
[128] NMR studies of VO
[129] Magnetic susceptibility of a chain of spins with antiferromagnetic interaction, Sov. Phys. Solid State, Volume 11 (1969), pp. 921-924 (Fiz. Tverd. Tela 11, 1132)
[130]
[131] Thermodynamics of spin
[132] Magnetic excitation spectrum of dimerized antiferromagnetic chains, Phys. Rev. B, Volume 54 (1996), p. 9624-9627(R) | DOI
[133] Double gap and solitonic excitations in the spin-Peierls chain CuGeO
[134] Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)
[135] Spin–Peierls transition in quasi-one-dimensional crystals, Usp. Fiz. Nauk, Volume 131 (1980), pp. 495-510 | DOI
[136] The spin-Peierls transition, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 3, Plenum Publishing Coorporation, 1983, pp. 353-415 | DOI
[137] Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, (o-Me
[138] Microscopic interactions in CuGeO
[139] Theory of vanadium dioxide, Synth. Met., Volume 41–43 (1991), pp. 3527-3530 | DOI
[140] Magnetic-field-induced insulator–metal transition in W-doped VO
[141] Magnetic susceptibility and phase diagram of CuGe
[142] Spin-Peierls lattice fluctuations and disorders in CuGeO3 and its solid solutions, Eur. Phys. J. B, Volume 38 (2004), pp. 581-598 | DOI
[143] Probing phase transition in VO
[144] Diffuse x-ray scattering due to the lattice instability near the metal-semiconductor transition in VO
[145] Structural instabilities, Highly Conducting Quasi-One-Dimensional Organic Crystals, chapter 3 (E. Comwell, ed.) (Semiconductors and Semimetals), Volume 27, Academic Press Inc., 1988, pp. 87-214
[146] Direct observation of the soft mode at a semiconductor-metal phase transition in vanadium dioxide, Phys. Solid State, Volume 36 (1994), pp. 1136-1139
[147] et al. Metallization of vanadium dioxide driven by large phonon entropy, Nature, Volume 515 (2014), pp. 535-539 | DOI
[148] André Guinier: Local order in condensed matter, C. R. Phys., Volume 20 (2019), pp. 725-745 | DOI
[149] Désordre Linéaire dans les Cristaux (cas du Silicium, du Quartz, et des Pérovskites Ferroélectriques), Acta Cryst. A, Volume 26 (1970), pp. 244-254 | DOI
[150] Lattice dynamics of rutile, Phys. Rev. B, Volume 3 (1971), pp. 3457-3472 | DOI
[151] The influence of structural disorder and phonon on metal-to-insulator transition of VO
[152] Thickness dependence of electronic structures in VO
[153] Temperature variation of the ultrasonic attenuation and phase velocity in VO
[154] Complex quasi-two-dimensional crystalline order embedded in VO
[155] Neutron and X ray studies of the quasi-one-dimensional conductor K
[156] Evidence for the weak coupling scenario of the Peierls transition in the blue bronze, Phys. Rev. Mater., Volume 3 (2019), 055001
[157] Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions in VO
[158] Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO
[159] Raman spectrum of semiconducting and metallic VO
[160] Spectrum of Raman scattering of light and phase transition in VO
[161] Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition, Phys. Solid State, Volume 37 (1995), pp. 1971-1978
[162] Raman scattering in VO
[163] Electron-electron correlations in Raman spectra of VO
[164] Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K
[165] Structural fluctuations in NbO
[166] et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science, Volume 355 (2017), pp. 371-374 | DOI
[167] The chain structure of BaTiO
[168] A note on the theory of barium titanate, J. Phys. Soc. Japan, Volume 16 (1961), pp. 1685-1689 | DOI
[169] High-pressure study of X-ray diffuse scattering in ferroelectric perovskites, Phys. Rev. Lett., Volume 99 (2007), 117601 | DOI
[170] Momentum dependent electron-phonon coupling in charge density wave systems, Phys. Rev. B, Volume 103 (2021), 115135
[171] Peierls transition in two-dimensional metallic monophosphate tungsten Bronzes, Solid State Sci., Volume 4 (2002), pp. 387-396 | DOI
[172] Electron correlations and electron-lattice interactions in the metal-insulator, ferro-elastic transition in VO
[173] Unraveling the Mott–Peierls intrigue in Vanadium dioxide, Phys. Rev. Res., Volume 2 (2020), 013298
[174] Order-disorder type of Peierls instability in BaVS
[175] Local-phonon model of strong electron-phonon interactions in A15 compounds and other strong-coupling superconductors, Phys. Rev. B, Volume 29 (1984), pp. 6165-6186
[176] Metal-insulator transition in incommensurate Peierls chains by extinction of the Frohlich conductivity, J. Phys. Colloq., Volume 44 (1983), p. C3-1573–C3-1577 | DOI
[177] Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides, Phys. Rev. B, Volume 85 (2012), 165142
[178] The origin of the transition entropy in vanadium dioxide, Phys. Rev. B, Volume 99 (2019), 064113 | DOI
[179] Electronic entropy contribution to the metal insulator transition in VO
[180] The chain structure and phase transition of BaTiO
[181] Donor–anion interactions in quarter-filled low-dimensional organic conductors, Mater. Horiz., Volume 5 (2018), pp. 590-640 | DOI
[182] Structural and electronic control of the metal to insulator transition and local orderings in the
[183] Nanoscale electrodynamics of strongly correlated quantum materials, Rep. Prog. Phys., Volume 80 (2017), 014501
[184] et al. Mesoscopic structural phase progression in photo-excited VO
[185] et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI
[186] Evidence for a structurally-driven insulator-to-metal transition in VO
[187] Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO
[188] et al. Monoclinic and correlated metal phase in VO
[189] The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514
[190] et al. Mott transition in chain structure of strained VO
[191] Superconducting dome underlying bipolaronic insulating state in charge doped Ti
- Solid-State Dewetting of Tungsten-Doped Vanadium Dioxide Nanoparticles: Implications for Thermochromic Coatings, ACS Applied Nano Materials, Volume 8 (2025) no. 19, p. 9972 | DOI:10.1021/acsanm.5c01247
- Hybrid Plasmonic Nanorods/VO2 Photodetectors Sensitive to Short‐Wave Infrared Photons with Fast Response, Advanced Electronic Materials (2025) | DOI:10.1002/aelm.202500172
- Revealing Resistive Switching of Phase Transitions in an Al‐Doped Single Crystal of VO2 by DC and Pulsed Electrical Measurements, Advanced Physics Research, Volume 4 (2025) no. 2 | DOI:10.1002/apxr.202400112
- Photoinduced hidden monoclinic metallic phase of VO2 driven by local nucleation, Nature Communications, Volume 16 (2025) no. 1 | DOI:10.1038/s41467-024-55760-3
- Nature of electronic phase transitions in substituted α−(BEDT−TTF)2I3 studied by generalized ellipsometry, Physical Review B, Volume 111 (2025) no. 19 | DOI:10.1103/physrevb.111.195142
- Low Hysteresis Vanadium Dioxide Integrated on Silicon Using Complementary Metal‐Oxide Semiconductor Compatible Oxide Buffer Layer, Small Science, Volume 5 (2025) no. 2 | DOI:10.1002/smsc.202400398
- Three‐Dimensional Imaging of the Structural Phase Transition in a Single Vanadium Dioxide Nanocrystal, physica status solidi (a), Volume 222 (2025) no. 3 | DOI:10.1002/pssa.202400503
- Atomically Resolved Phase Coexistence in VO2 Thin Films, ACS Nano, Volume 18 (2024) no. 21, p. 13496 | DOI:10.1021/acsnano.3c10745
- Hydrogen‐Associated Multiple Electronic Phase Transitions for d‐Orbital Transitional Metal Oxides: Progress, Application, and Beyond, Advanced Functional Materials, Volume 34 (2024) no. 28 | DOI:10.1002/adfm.202316536
- Enhancing luminous transmittance and hysteresis width of VO2-based thermochromic coatings by combining GLAD and RGPP approaches, Construction and Building Materials, Volume 419 (2024), p. 135472 | DOI:10.1016/j.conbuildmat.2024.135472
- Structures, Phase Stability, Amorphization, and Decomposition of V6O13 at High Pressures and Temperatures: Synthesis of Rutile-Related V0.92O2, Crystal Growth Design, Volume 24 (2024) no. 13, p. 5582 | DOI:10.1021/acs.cgd.4c00363
- Raman scattering of TixV1‐xO2 thin films on (110) rutile TiO2 in the low and high temperature phase adjacent to the metal–insulator transition, Journal of Raman Spectroscopy, Volume 55 (2024) no. 8, p. 923 | DOI:10.1002/jrs.6684
- Recent Advances of VO2 in Sensors and Actuators, Nanomaterials, Volume 14 (2024) no. 7, p. 582 | DOI:10.3390/nano14070582
- Two insulator-insulator transitions in Al-doped VO 2 single crystals, Phase Transitions, Volume 97 (2024) no. 11-12, p. 780 | DOI:10.1080/01411594.2024.2445670
- Effect of Ar pressure on phase transition characteristics and charge transport mechanism in VO2 films grown by RF sputtering of V2O5, Physica Scripta, Volume 99 (2024) no. 5, p. 055939 | DOI:10.1088/1402-4896/ad3692
- Molecular orbital formation and metastable short-range ordered structure in VO2, Physical Review B, Volume 109 (2024) no. 10 | DOI:10.1103/physrevb.109.l100101
- Anomalous temperature dependence of phonon lifetimes in metallic VO2, Physical Review B, Volume 109 (2024) no. 9 | DOI:10.1103/physrevb.109.094122
- Single-site DFT+DMFT for vanadium dioxide using bond-centered orbitals, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.033122
- Structural approach to charge density waves in low-dimensional systems: electronic instability and chemical bonding, Reports on Progress in Physics, Volume 87 (2024) no. 2, p. 026501 | DOI:10.1088/1361-6633/ad124f
- Challenges for density functional theory in simulating metal–metal singlet bonding: A case study of dimerized VO2, The Journal of Chemical Physics, Volume 160 (2024) no. 13 | DOI:10.1063/5.0180315
- Evaluation of V1-xCrxO2 Thin Films Fabricated by MOD, IEEJ Transactions on Fundamentals and Materials, Volume 143 (2023) no. 3, p. 91 | DOI:10.1541/ieejfms.143.91
- Preparation and characterization of VO2/Cu-Zr NPs/VO2 composite films with enhanced thermochromic properties, Journal of Alloys and Compounds, Volume 967 (2023), p. 171654 | DOI:10.1016/j.jallcom.2023.171654
- Non-thermal to thermal electric field effects induced by DC and current pulses in pure and doped VO2 single crystals, Journal of Applied Physics, Volume 133 (2023) no. 23 | DOI:10.1063/5.0142659
- High-pressure ilmenite-type MnVO3: crystal and spin structures in the itinerant-localized regimes, Journal of Materials Chemistry C, Volume 11 (2023) no. 27, p. 9238 | DOI:10.1039/d3tc01541f
- VO2 under hydrostatic pressure: Isostructural phase transition close to a critical endpoint, Physical Review B, Volume 108 (2023) no. 14 | DOI:10.1103/physrevb.108.144106
- Insulator-to-metal transition in low-dimensional NbS3 under pressure, Physical Review B, Volume 108 (2023) no. 21 | DOI:10.1103/physrevb.108.214109
- Exploiting Phase Transitions in Catalysis: Adsorption of CO on doped VO2‐Polymorphs, ChemPhysChem, Volume 23 (2022) no. 20 | DOI:10.1002/cphc.202200131
- Magnetic-Field-Induced Insulator Metal Transition of W-doped VO2 Observed by Electromagnetic Flux Compression at ISSP, Journal of the Physical Society of Japan, Volume 91 (2022) no. 10 | DOI:10.7566/jpsj.91.101008
- The optimization and role of Ti surface doping in thermochromic VO2 film, Optical Materials, Volume 133 (2022), p. 112960 | DOI:10.1016/j.optmat.2022.112960
- Influence of germanium substitution on the structural and electronic stability of the competing vanadium dioxide phases, Physical Review Research, Volume 4 (2022) no. 4 | DOI:10.1103/physrevresearch.4.043129
- Unifying the order and disorder dynamics in photoexcited VO2, Proceedings of the National Academy of Sciences, Volume 119 (2022) no. 28 | DOI:10.1073/pnas.2122534119
- Realization of high luminous transmittance and solar modulation ability of VO2 films by multistep deposition and in-situ annealing method, Surfaces and Interfaces, Volume 30 (2022), p. 101882 | DOI:10.1016/j.surfin.2022.101882
- Geometric Frustration Suppresses Long-Range Structural Distortions in NbxV1–xO2, The Journal of Physical Chemistry C, Volume 126 (2022) no. 4, p. 2049 | DOI:10.1021/acs.jpcc.1c08392
- Strong strain gradients and phase coexistence at the metal-insulator transition in VO2 epitaxial films, Acta Materialia, Volume 220 (2021), p. 117336 | DOI:10.1016/j.actamat.2021.117336
- Basic aspects of the charge density wave instability of transition metal trichalcogenides NbSe3 and monoclinic-TaS3, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 48, p. 485401 | DOI:10.1088/1361-648x/ac238a
- Controlled grain-size thermochromic VO2 coatings by the fast oxidation of sputtered vanadium or vanadium oxide films deposited at glancing angles, Surfaces and Interfaces, Volume 27 (2021), p. 101581 | DOI:10.1016/j.surfin.2021.101581
Cité par 36 documents. Sources : Crossref
Commentaires - Politique