[Aspects principaux de la transition métal–isolant du dioxyde de vanadium VO
Le dioxyde de vanadium présente une transition métal–isolant (TMI) du premier ordre à 340 K (
Vanadium dioxide exhibits a first order metal to insulator transition (MIT) at 340 K (
Révisé le :
Accepté le :
Publié le :
Mots-clés : Dioxyde de vanadium, Transition métal–isolant, Localisation de charge de Mott–Hubbard, Transitions de Peierls et de spin-Peierls, Instabilités structurales corrélées à une dimension, Couplage électron–phonon
Jean-Paul Pouget 1

@article{CRPHYS_2021__22_1_37_0, author = {Jean-Paul Pouget}, title = {Basic aspects of the metal{\textendash}insulator transition in vanadium dioxide {VO}$_{2}$: a critical review}, journal = {Comptes Rendus. Physique}, pages = {37--87}, publisher = {Acad\'emie des sciences, Paris}, volume = {22}, number = {1}, year = {2021}, doi = {10.5802/crphys.74}, language = {en}, }
TY - JOUR AU - Jean-Paul Pouget TI - Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review JO - Comptes Rendus. Physique PY - 2021 SP - 37 EP - 87 VL - 22 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crphys.74 LA - en ID - CRPHYS_2021__22_1_37_0 ER -
Jean-Paul Pouget. Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 37-87. doi : 10.5802/crphys.74. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.74/
[1] Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., Volume 40 (1968), pp. 714-736 | DOI
[2] The metal-nonmetal transition, Rep. Prog. Phys., Volume 33 (1970), pp. 881-940 | DOI
[3] Theory of semiconductor-to-metal transitions, Phys. Rev., Volume 155 (1967), pp. 826-840 | DOI
[4] Role of phonons and band structure in metal-insulator phase transition, Phys. Rev. Lett., Volume 25 (1970), pp. 376-380 | DOI
[5] The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Phys., Volume 17 (2016), pp. 332-356 | DOI
[6] Metal-non-metal transitions in narrow band materials; crystal structure versus correlation, Philos. Mag., Volume 21 (1970), pp. 881-895 | DOI
[7] Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), pp. 1039-1263 | DOI
[8] Transition Metal Compounds, Cambridge University Press, Cambridge, 2014 | DOI
[9] Contribution à l’étude de la magnéto-chimie du vanadium, J. Phys. Radium, Volume 8 (1927), pp. 473-480 | DOI
[10] Weitere beitr age zur kenntnis der vanadinoxyde, Z. Anorg. Allg. Chem., Volume 242 (1939), pp. 63-69 | DOI
[11] High-temperature heat contents of V
[12] Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., Volume 3 (1959), pp. 34-36 | DOI
[13] Magnetismus, leitfähigkeit und reflexionsspektren von vanadindioxyd und vanadindioxyd-titandioxyd-mischkristallen, Z. Anorg. Allg. Chem., Volume 297 (1958), pp. 1-13 | DOI
[14] Note on a phase transition in VO
[15] On the MoO
[16] Studies on vanadium oxides II. The crystal structure of vanadium dioxide, Acta Chem. Scand., Volume 10 (1956), pp. 623-628 | DOI
[17] The phase transition in VO
[18] Phase diagram and magnetism of V
[19] The two components of the crystallographic transition in VO
[20] Metal-insulator phase transition in VO
[21] Metal-insulator transitions in pure and doped VO
[22] Contribution to the study of the metal-insulator transition in the V
[23] Heat capacity of vanadium oxides at low temperature, Phys. Rev. B, Volume 7 (1973), pp. 326-332 | DOI
[24] Metal-insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), pp. 4383-4395 | DOI
[25] VO
[26] Comment on “VO
[27] Synthesis of vanadium dioxide thin films and nanostructures, J. Appl. Phys., Volume 128 (2020), 231101 | DOI
[28] Recent progress on vanadium dioxide nanostructures and devices: fabrication, properties, applications and perspectives, Nanomaterials, Volume 11 (2021), 338
[29] Recent progress on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI
[30] Recent progress in the phase transition mechanism and modulation of vanadium dioxide materials, NPG Asia Mater., Volume 10 (2018), pp. 581-605 | DOI
[31] Metal to insulator phase-transition in V
[32] Structural instability of the rutile compounds and its relevance to the metal-insulator transition of VO
[33] The metal-insulator transitions of VO
[34] X-ray diffraction of metallic VO
[35] Structural aspects of the metal-insulator transitions in Cr-doped VO
[36] A Refinement of the Structure of VO
[37] Contribution à l’étude structurale des phases V
[38] Dimerization of a linear Heisenberg chain in the insulating phases of V
[39] Diagramme de phase du système V
[40] Le système V
[41] Phase transitions and semiconductor-metal transition in V
[42] Structural aspects of the metal-insulator transitions in V
[43] Magnetic and structural properties of stoichiometric and non-stoichiometric (V, Al) O
[44] Occupation switching of d orbitals in vanadium dioxide probed via hyperfine interactions, Phys. Rev. B, Volume 101 (2020), 245123 | DOI
[45] Etude par résonance magnétique nucléaire de la transition métal-isolant de VO
[46] A study of magnetic resonance, Hitachi Rev. (Japan), Volume 17 (1968), pp. 204-211
[47] Nuclear magnetic resonance in polycrystalline VO
[48] Electrical, magnetic and thermal studies of V
[49] A new phase appearing in metal-semiconductor transition in VO
[50] Die rutilphase (V
[51] Contribution à l’étude des systèmes VO
[52] Phase transitions and conductivity anomalies in solid solutions of VO
[53] On the phase transformation of VO
[54] Sur quelques nouvelles phases à caractère non-stæchiométrique dans les systèmes V
[55] Contribution to the study of the metal-insulator transition in the V
[56] A D.T.A. study of the semiconductor-metallic transition in V
[57] Electrical and magnetic properties of V
[58] Metal-insulator transition in epitaxial V
[59] Electrical, magnetic and thermal studies on the V
[60] Insulator to correlated metal transition in V
[61] Electrical, magnetic and thermal studies of the V
[62] Contribution to the study of the metal-insulator transition in the V
[63] Transitions métal-isolant dans V
[64] Propriétés physiques et structurales de la phase Cr
[65] Doping-based stabilization of the M
[66] Phase diagram of V
[67] et al. Metal-nonmetal transition in Fe and Al doped VO
[68] The phase transition M
[69] Experimental study of the electronic and lattice contributions to the VO
[70] Spinodal decomposition in the TiO
[71] Vanadium-vanadium bonds in the V
[72] Propriétés magnétiques et electriques de lâoxyfluorure de formule VO
[73] Influence of non stoichiometry on the phase transitions in Ga-, Al-, and Fe-doped VO
[74] Propriétés structurales, magnétiques, et electriques de 1’oxyfluorure Cr
[75] et al. Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects, Phys. Rev. B, Volume 91 (2015), 205123 | DOI
[76] Role of defects in the metal-insulator transition in VO
[77] Electron Localization Induced by Uniaxial Stress in Pure VO
[78] Measurement of a solid-state triple point at the metal-insulator transition of VO
[79] et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI
[80] Strain and temperature dependence of the insulating phases of VO
[81] et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy, Nat. Phys., Volume 9 (2013), pp. 661-666 | DOI
[82] Large modification of the metal-insulator transition in strained VO
[83] et al. Pressure—temperature phase diagram of vanadium dioxide, Nano Lett., Volume 17 (2017), pp. 2512-2516 | DOI
[84] Evidence of a pressure-induced metallization process in monoclinic VO
[85] Pressure-induced phase transitions and metallization in VO
[86] Anisotropic compression in the high-pressure regime of pure and chromium-doped vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 184108 | DOI
[87] et al. High-pressure phases of VO
[88] Symmetry considerations and the vanadium dioxide phase transition, Phys. Rev. B, Volume 1 (1970), pp. 2557-2568 | DOI
[89] et al. Symmetry relationship and strain-induced transitions between insulating M
[90] On the theory of phase transitions represented by four-component order parameters, Sov. Phys. Crystallogr., Volume 25 (1980), pp. 527-532 | MR | Zbl
[91] Classification of continuous phase transitions and stable phases. II. Four-dimensional order parameters, Phys. Rev. B, Volume 33 (1986), pp. 6210-6230 | DOI
[92] The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987
[93] On the Landau theory of structural phase transitions in layered perovskites (CH
[94] La Ferroélasticité, Ann. Telecom., Volume 29 (1974), pp. 249-270
[95] Elastic behavior near the metal-insulator transition of VO
[96] Lattice dynamics in VO
[97] Order parameter symmetries and free-energy expansions for purely ferro-elastic transitions, Phys. Rev. B, Volume 21 (1980), pp. 1139-1172 | DOI
[98] Ferro-elastic transitions with a modification of the crystal’s unit cell, Ferroelectrics, Volume 21 (1978), pp. 587-588 | DOI
[99] Domain structure and twinning in crystals of vanadium dioxides, J. Appl. Phys., Volume 38 (1967), pp. 4823-4829 | DOI
[100] et al. Interplay between Ferro-elastic and metal-insulator transitions in strained quasi-two-dimensional VO
[101] et al. Mesoscopic metal-insulator transition at Ferro-elastic domain walls in VO
[102] et al. Mott transition in VO
[103] Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO
[104] Metallic diluted dimerization in VO
[105] Renormalization-group study of fixed points and of their stability for phase transitions with four-component order parameters, Phys. Rev. B, Volume 31 (1985), pp. 7171-7196 | DOI | MR
[106] Cluster calculations of the electronic d-states in VO
[107] et al. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO
[108] Optical properties of VO
[109] Anisotropy of the electrical conductivity in VO
[110] Optical Properties of VO
[111] Dynamical singlets and correlation-assisted Peierls transition in VO
[112] Electronic structure and lattice instability of metallic VO
[113] Fermi surface topology in a metallic phase of VO
[114] Evidence for strong Coulomb correlations in the metallic phase of vanadium dioxide, JETP Lett., Volume 93 (2011), pp. 70-74 | DOI
[115] Vanadium dioxide: A Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI
[116] Effects of strain on the electronic structure of VO
[117] Photoemission study of the metal-insulator transition in VO
[118] Effective band structure in the insulating phase versus strong dynamical correlations in metallic VO
[119] et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO
[120] Resistivity of the high temperature metallic phase of VO
[121] Correlated metallic state of vanadium dioxide, Phys. Rev. B, Volume 74 (2006), 205118 | DOI
[122] et al. Orbital-assisted metal-insulator transition in VO
[123] Electron spin resonance in V
[124] Effective band structure of correlated materials: the case of VO
[125] et al. Measurement of collective excitations in VO
[126] Electrodynamics of the vanadium oxides VO
[127] Insulating phases of vanadium dioxide are Mott–Hubbard insulators, Phys. Rev. B, Volume 95 (2017), 075125 | DOI
[128] NMR studies of VO
[129] Magnetic susceptibility of a chain of spins with antiferromagnetic interaction, Sov. Phys. Solid State, Volume 11 (1969), pp. 921-924 (Fiz. Tverd. Tela 11, 1132)
[130]
[131] Thermodynamics of spin
[132] Magnetic excitation spectrum of dimerized antiferromagnetic chains, Phys. Rev. B, Volume 54 (1996), p. 9624-9627(R) | DOI
[133] Double gap and solitonic excitations in the spin-Peierls chain CuGeO
[134] Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)
[135] Spin–Peierls transition in quasi-one-dimensional crystals, Usp. Fiz. Nauk, Volume 131 (1980), pp. 495-510 | DOI
[136] The spin-Peierls transition, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 3, Plenum Publishing Coorporation, 1983, pp. 353-415 | DOI
[137] Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, (o-Me
[138] Microscopic interactions in CuGeO
[139] Theory of vanadium dioxide, Synth. Met., Volume 41–43 (1991), pp. 3527-3530 | DOI
[140] Magnetic-field-induced insulator–metal transition in W-doped VO
[141] Magnetic susceptibility and phase diagram of CuGe
[142] Spin-Peierls lattice fluctuations and disorders in CuGeO3 and its solid solutions, Eur. Phys. J. B, Volume 38 (2004), pp. 581-598 | DOI
[143] Probing phase transition in VO
[144] Diffuse x-ray scattering due to the lattice instability near the metal-semiconductor transition in VO
[145] Structural instabilities, Highly Conducting Quasi-One-Dimensional Organic Crystals, chapter 3 (E. Comwell, ed.) (Semiconductors and Semimetals), Volume 27, Academic Press Inc., 1988, pp. 87-214
[146] Direct observation of the soft mode at a semiconductor-metal phase transition in vanadium dioxide, Phys. Solid State, Volume 36 (1994), pp. 1136-1139
[147] et al. Metallization of vanadium dioxide driven by large phonon entropy, Nature, Volume 515 (2014), pp. 535-539 | DOI
[148] André Guinier: Local order in condensed matter, C. R. Phys., Volume 20 (2019), pp. 725-745 | DOI
[149] Désordre Linéaire dans les Cristaux (cas du Silicium, du Quartz, et des Pérovskites Ferroélectriques), Acta Cryst. A, Volume 26 (1970), pp. 244-254 | DOI
[150] Lattice dynamics of rutile, Phys. Rev. B, Volume 3 (1971), pp. 3457-3472 | DOI
[151] The influence of structural disorder and phonon on metal-to-insulator transition of VO
[152] Thickness dependence of electronic structures in VO
[153] Temperature variation of the ultrasonic attenuation and phase velocity in VO
[154] Complex quasi-two-dimensional crystalline order embedded in VO
[155] Neutron and X ray studies of the quasi-one-dimensional conductor K
[156] Evidence for the weak coupling scenario of the Peierls transition in the blue bronze, Phys. Rev. Mater., Volume 3 (2019), 055001
[157] Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions in VO
[158] Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO
[159] Raman spectrum of semiconducting and metallic VO
[160] Spectrum of Raman scattering of light and phase transition in VO
[161] Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition, Phys. Solid State, Volume 37 (1995), pp. 1971-1978
[162] Raman scattering in VO
[163] Electron-electron correlations in Raman spectra of VO
[164] Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K
[165] Structural fluctuations in NbO
[166] et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science, Volume 355 (2017), pp. 371-374 | DOI
[167] The chain structure of BaTiO
[168] A note on the theory of barium titanate, J. Phys. Soc. Japan, Volume 16 (1961), pp. 1685-1689 | DOI
[169] High-pressure study of X-ray diffuse scattering in ferroelectric perovskites, Phys. Rev. Lett., Volume 99 (2007), 117601 | DOI
[170] Momentum dependent electron-phonon coupling in charge density wave systems, Phys. Rev. B, Volume 103 (2021), 115135
[171] Peierls transition in two-dimensional metallic monophosphate tungsten Bronzes, Solid State Sci., Volume 4 (2002), pp. 387-396 | DOI
[172] Electron correlations and electron-lattice interactions in the metal-insulator, ferro-elastic transition in VO
[173] Unraveling the Mott–Peierls intrigue in Vanadium dioxide, Phys. Rev. Res., Volume 2 (2020), 013298
[174] Order-disorder type of Peierls instability in BaVS
[175] Local-phonon model of strong electron-phonon interactions in A15 compounds and other strong-coupling superconductors, Phys. Rev. B, Volume 29 (1984), pp. 6165-6186
[176] Metal-insulator transition in incommensurate Peierls chains by extinction of the Frohlich conductivity, J. Phys. Colloq., Volume 44 (1983), p. C3-1573–C3-1577 | DOI
[177] Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides, Phys. Rev. B, Volume 85 (2012), 165142
[178] The origin of the transition entropy in vanadium dioxide, Phys. Rev. B, Volume 99 (2019), 064113 | DOI
[179] Electronic entropy contribution to the metal insulator transition in VO
[180] The chain structure and phase transition of BaTiO
[181] Donor–anion interactions in quarter-filled low-dimensional organic conductors, Mater. Horiz., Volume 5 (2018), pp. 590-640 | DOI
[182] Structural and electronic control of the metal to insulator transition and local orderings in the
[183] Nanoscale electrodynamics of strongly correlated quantum materials, Rep. Prog. Phys., Volume 80 (2017), 014501
[184] et al. Mesoscopic structural phase progression in photo-excited VO
[185] et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI
[186] Evidence for a structurally-driven insulator-to-metal transition in VO
[187] Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO
[188] et al. Monoclinic and correlated metal phase in VO
[189] The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514
[190] et al. Mott transition in chain structure of strained VO
[191] Superconducting dome underlying bipolaronic insulating state in charge doped Ti
Cité par Sources :
Commentaires - Politique