Comptes Rendus
Article de recherche
Basic aspects of the metal–insulator transition in vanadium dioxide VO2: a critical review
[Aspects principaux de la transition métal–isolant du dioxyde de vanadium VO2 : une revue critique]
Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 37-87.

Le dioxyde de vanadium présente une transition métal–isolant (TMI) du premier ordre à 340 K (=TMI) d’une structure rutile (R) à une structure monoclinique (M1). Le mécanisme de cette transition interprétée comme étant due soit à une instabilité de Peierls soit à une instabilité de Mott–Hubbard reste très controversé depuis près d’un demi-siècle. Cependant depuis une vingtaine d’années l’étude des propriétés chimiques et physiques de VO2 et de ses alliages suscite un renouveau d’intérêt par la possibilité d’applications provenant de l’obtention de dispositifs s’appuyant sur la réalisation de films minces. Nous décrivons dans cette revue les propriétés structurales, électroniques et magnétiques des différentes phases métallique (R) et isolantes (M1, T et M2) de VO2, de ses solutions solides et des modifications sous contrainte. Nous présentons de façon synthétique les divers diagrammes de phase et leur analyse par symétrie. Ce travail conduit à relativiser certaines interprétations du passé et à souligner en particulier le rôle particulièrement important des interactions électron–électron dans les différentes phases de VO2 et des fluctuations structurales dans le mécanisme de la TMI. Dans ce cadre nous montrons que la transition de phase est annoncée de façon surprenante par des corrélations structurales d’anisotropie unidimensionnelle (1D) révélant un ordre local en chaine du V issu d’une instabilité sous-jacente de la structure rutile. A celles-ci correspond une dynamique critique inattendue de type relaxation (ou ordre-désordre). Nous décrivons comment le couplage bidimensionnel (2D) de ces fluctuations 1D forme localement des chaines zig-zag de V4+ et des paires V–V, conduisant aux phases isolantes M2 et M1. Ces phases présentent une forte anisotropie électronique avec de substantielles corrélations électron–électron conduisant à un découplage spin–charge. Le fondamental de type spin-Peierls de la phase M1 est analysé à partir d’un mécanisme de dimérisation, en phase T, des chaines d’Heisenberg de spin 1/2 formées par les zig-zags de V4+ dans la phase M2. Cette revue résume de façon critique les résultats principaux de l’abondante littérature concernant les aspects fondamentaux de la TMI de VO2. Elle est complétée par d’anciens résultats jamais publiés. Les interprétations proposées se placent dans un cadre conceptuel relativement large se révélant pertinent pour l’interprétation des propriétés physiques d’autres classes de matériaux.

Vanadium dioxide exhibits a first order metal to insulator transition (MIT) at 340 K (TMI) from a rutile (R) structure to a monoclinic (M1) structure. The mechanism of this transition interpreted as due either to a Peierls instability or to a Mott–Hubbard instability is controversial since half a century. However, in the last twenty years the study of chemical and physical properties of VO2 and of its alloys, benefits of a renewed interest due to possible applications coming from the realization of devices made of thin films. We describe in this review the structural, electronic and magnetic properties of the different metallic (R) and insulating (M1, T, M2) phases of VO2, of its solid solutions and under constraint. We present in a synthetic manner the various phase diagrams and their symmetry analysis. This work allows us to revisit older interpretation and to emphasize in particular the combined role of electron–electron interactions in the various phase of VO2 and of structural fluctuations in the MIT mechanism. In this framework we show that the phase transition is surprisingly announced by anisotropic one-dimensional (1D) structural fluctuations revealing chain like correlations between the V due to an incipient instability of the rutile structure. This leads to an unexpected critical dynamics of the order–disorder (or relaxation) type. We describe how the two-dimensional (2D) coupling between these 1D fluctuations, locally forming uniform V4+ zig-zag chains and V–V pairs, stabilizes the M2 and M1 insulating phases. These phases exhibit a 1D electronic anisotropy where substantial electron–electron correlations conduct to a spin–charge decoupling. The spin-Peierls ground state of M1 is analyzed via a mechanism of dimerization, in the T phase, of the spin 1/2 V4+ zig-zag Heisenberg chains formed in the M2 phase. This review summarizes in a critical manner the main results of the large literature on fundamental aspects of the MIT of VO2. It is completed by unpublished old results. Interpretations are also placed in a large conceptual frame which is also relevant to interpret physical properties of other classes of materials.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.74
Keywords: Vanadium dioxide, Metal–insulator transition, Mott–Hubbard charge localization, Spin-Peierls and Peierls transitions, Chain-like structural instability, Electron–phonon coupling
Mots-clés : Dioxyde de vanadium, Transition métal–isolant, Localisation de charge de Mott–Hubbard, Transitions de Peierls et de spin-Peierls, Instabilités structurales corrélées à une dimension, Couplage électron–phonon

Jean-Paul Pouget 1

1 Laboratoire de physique des solides, CNRS UMR 8502, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2021__22_1_37_0,
     author = {Jean-Paul Pouget},
     title = {Basic aspects of the metal{\textendash}insulator transition in vanadium dioxide {VO}$_{2}$: a critical review},
     journal = {Comptes Rendus. Physique},
     pages = {37--87},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {22},
     number = {1},
     year = {2021},
     doi = {10.5802/crphys.74},
     language = {en},
}
TY  - JOUR
AU  - Jean-Paul Pouget
TI  - Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review
JO  - Comptes Rendus. Physique
PY  - 2021
SP  - 37
EP  - 87
VL  - 22
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.74
LA  - en
ID  - CRPHYS_2021__22_1_37_0
ER  - 
%0 Journal Article
%A Jean-Paul Pouget
%T Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review
%J Comptes Rendus. Physique
%D 2021
%P 37-87
%V 22
%N 1
%I Académie des sciences, Paris
%R 10.5802/crphys.74
%G en
%F CRPHYS_2021__22_1_37_0
Jean-Paul Pouget. Basic aspects of the metal–insulator transition in vanadium dioxide VO$_{2}$: a critical review. Comptes Rendus. Physique, Volume 22 (2021) no. 1, pp. 37-87. doi : 10.5802/crphys.74. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.74/

[1] D. Adler Mechanisms for metal-nonmetal transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., Volume 40 (1968), pp. 714-736 | DOI

[2] N. F. Mott; Z. Zinamon The metal-nonmetal transition, Rep. Prog. Phys., Volume 33 (1970), pp. 881-940 | DOI

[3] D. Adler; H. Brooks Theory of semiconductor-to-metal transitions, Phys. Rev., Volume 155 (1967), pp. 826-840 | DOI

[4] D. C. Mattis; W. D. Langer Role of phonons and band structure in metal-insulator phase transition, Phys. Rev. Lett., Volume 25 (1970), pp. 376-380 | DOI

[5] J. P. Pouget The Peierls instability and charge density wave in one-dimensional electronic conductors, C. R. Phys., Volume 17 (2016), pp. 332-356 | DOI

[6] Z. Zinamon; N. F. Mott Metal-non-metal transitions in narrow band materials; crystal structure versus correlation, Philos. Mag., Volume 21 (1970), pp. 881-895 | DOI

[7] M. Imada; A. Fujimori; Y. Tokura Metal-insulator transitions, Rev. Mod. Phys., Volume 70 (1998), pp. 1039-1263 | DOI

[8] D. I. Khomskii Transition Metal Compounds, Cambridge University Press, Cambridge, 2014 | DOI

[9] N. Perrakis Contribution à l’étude de la magnéto-chimie du vanadium, J. Phys. Radium, Volume 8 (1927), pp. 473-480 | DOI

[10] E. Hoschek; W. Klemm Weitere beitr age zur kenntnis der vanadinoxyde, Z. Anorg. Allg. Chem., Volume 242 (1939), pp. 63-69 | DOI

[11] O. A. Cook High-temperature heat contents of V2O3, V2O4, and V2O5, J. Am. Chem. Soc., Volume 69 (1947), pp. 331-333

[12] F. J. Morin Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., Volume 3 (1959), pp. 34-36 | DOI

[13] W. Rüdorff; G. Walter; J. Stadler Magnetismus, leitfähigkeit und reflexionsspektren von vanadindioxyd und vanadindioxyd-titandioxyd-mischkristallen, Z. Anorg. Allg. Chem., Volume 297 (1958), pp. 1-13 | DOI

[14] W. Westman Note on a phase transition in VO2, Acta Chem. Scand., Volume 15 (1961), p. 217 | DOI

[15] A. Magnéli; G. Andersson On the MoO2 structure type, Acta Chem. Scand., Volume 9 (1955), pp. 1378-1381 | DOI

[16] G. Andersson Studies on vanadium oxides II. The crystal structure of vanadium dioxide, Acta Chem. Scand., Volume 10 (1956), pp. 623-628 | DOI

[17] K. Kosuge The phase transition in VO2, J. Phys. Soc. Japan, Volume 22 (1967), pp. 551-557 | DOI

[18] K. Kosuge; T. Takada; S. Kachi Phase diagram and magnetism of V2O3–V2O5 system, J. Phys. Soc. Japan, Volume 18 (1963), pp. 318-319 | DOI

[19] J. B. Goodenough The two components of the crystallographic transition in VO2, J. Solid State Chem., Volume 3 (1971), pp. 490-500 | DOI

[20] J. P. Pouget; H. Launois Metal-insulator phase transition in VO2, J. Phys. Colloq., Volume 37 (1976), p. C4-49–C4-57 | DOI

[21] G. Villeneuve; P. Hagenmuller Metal-insulator transitions in pure and doped VO2, Localization and Metal-Insulator Transitions (H. Fritzsche; D. Adler, eds.), Springer, Boston, MA, 1985, pp. 39-52 | DOI

[22] J. P. Pouget; P. Lederer; D. S. Schreiber; H. Launois; D. Wohlleben; A. Casalot; G. Villeneuve Contribution to the study of the metal-insulator transition in the V1-xNbxO2 system: II Magnetic properties, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1961-1967 | DOI

[23] D. B. McWhan; J. P. Remeika; J. P. Maita; H. Okinaka; K. Kosuge; S. Kachi Heat capacity of vanadium oxides at low temperature, Phys. Rev. B, Volume 7 (1973), pp. 326-332 | DOI

[24] A. Zylbersztejn; N. F. Mott Metal-insulator transition in vanadium dioxide, Phys. Rev. B, Volume 11 (1975), pp. 4383-4395 | DOI

[25] R. M. Wentzcovitch; W. W. Schulz; P. B. Allen VO2: Peierls or Mott–Hubbard? A view from band theory, Phys. Rev. Lett., Volume 72 (1994), pp. 3389-3391 | DOI

[26] T. M. Rice; H. Launois; J. P. Pouget Comment on “VO2: Peierls or Mott–Hubbard? A View from Band Theory”, Phys. Rev. Lett., Volume 73 (1994), 3042

[27] V. Devthade; S. Lee Synthesis of vanadium dioxide thin films and nanostructures, J. Appl. Phys., Volume 128 (2020), 231101 | DOI

[28] Y. Zhang; W. Xiong; W. Chen; Y. Zheng Recent progress on vanadium dioxide nanostructures and devices: fabrication, properties, applications and perspectives, Nanomaterials, Volume 11 (2021), 338

[29] K. Liu; S. Lee; O. Delaire; J. Wu Recent progress on physics and applications of vanadium dioxide, Mater. Today, Volume 21 (2018), pp. 875-896 | DOI

[30] S. Shao; X. Cao; H. Luo; P. Jin Recent progress in the phase transition mechanism and modulation of vanadium dioxide materials, NPG Asia Mater., Volume 10 (2018), pp. 581-605 | DOI

[31] R. Comès; P. Felix; M. Lambert; G. Villeneuve Metal to insulator phase-transition in V0,90Nb0,10O2 explained by local pairing of vanadium atoms, Acta Cryst. A, Volume 30 (1974), pp. 55-60

[32] Z. Hiroi Structural instability of the rutile compounds and its relevance to the metal-insulator transition of VO2, Prog. Solid State Chem., Volume 43 (2015), pp. 47-69 | DOI

[33] V. Eyert The metal-insulator transitions of VO2: A band theoretical approach, Ann. Phys. (Leipzig), Volume 11 (2002), pp. 650-702 | DOI | Zbl

[34] D. B. Mc Whan; M. Marezio; J. P. Remeika; P. D. Dernier X-ray diffraction of metallic VO2, Phys. Rev. B, Volume 14 (1974), pp. 490-495 | DOI

[35] M. Marezio; D. B. Mcwhan; J. P. Remeika; P. D. Dernier Structural aspects of the metal-insulator transitions in Cr-doped VO2, Phys. Rev. B, Volume 5 (1972), pp. 2541-2551 | DOI

[36] J. M. Longo; P. Kierkegaard A Refinement of the Structure of VO2, Acta Chem. Scand., Volume 24 (1970), pp. 420-426 | DOI

[37] G. Villeneuve; M. Drillon; P. Hagenmuller Contribution à l’étude structurale des phases V1-xCrxO2, Mater. Res. Bull., Volume 8 (1973), pp. 1111-1122

[38] J. P. Pouget; H. Launois; T. M. Rice; P. Dernier; A. Gossard; G. Villeneuve; P. Hagenmuller Dimerization of a linear Heisenberg chain in the insulating phases of V1-xCrxO2, Phys. Rev. B, Volume 10 (1974), pp. 1801-1815 | DOI

[39] M. Drillon; G. Villeneuve Diagramme de phase du système V1-xAlxO2, Mater. Res. Bull., Volume 9 (1974), pp. 1199-1208

[40] E. Pollert; G. Villeneuve; F. Ménil; P. Hagenmuller Le système V1-xFexO2: propriétés structurales et magnétiques, Mater. Res. Bull., Volume 11 (1976), pp. 159-166

[41] W. Brückner; U. Gerlach; W. Moldenhauer; H. P. Brückner; N. Mattern; H. Oppermann; E. Wolf Phase transitions and semiconductor-metal transition in V1-xGaxO2, single crystals, Phys. Status Solidi (a), Volume 38 (1976), p. K13-K16 | DOI

[42] M. Ghedira; H. Vincent; M. Marezio; J. C. Launay Structural aspects of the metal-insulator transitions in V0.985Al0.015O2, J. Solid State Chem., Volume 22 (1977), pp. 423-438 | DOI

[43] G. Villeneuve; M. Drillon; P. Hagenmuller; M. Nygren; J. P. Pouget; F. Carmona; P. Delhaes Magnetic and structural properties of stoichiometric and non-stoichiometric (V, Al) O2 alloys, J. Phys. C: Solid State Phys., Volume 10 (1977), pp. 3621-3631 | DOI

[44] Y. Shimizu; T. Jin-no; F. Iwase; M. Itoh; Y. Ueda Occupation switching of d orbitals in vanadium dioxide probed via hyperfine interactions, Phys. Rev. B, Volume 101 (2020), 245123 | DOI

[45] J. P. Pouget Etude par résonance magnétique nucléaire de la transition métal-isolant de VO2 et ses alliages, Ph. D. Thesis, Université Paris-Sud, France (1974)

[46] J. Umeda; K. Narita; H. Kusumoto A study of magnetic resonance, Hitachi Rev. (Japan), Volume 17 (1968), pp. 204-211

[47] J. Umeda; H. Kusumoto; K. Narita Nuclear magnetic resonance in polycrystalline VO2, J. Chem. Phys., Volume 42 (1965), pp. 1458-1459 | DOI

[48] T. Hörlin; T. Niklewski; M. Nygren Electrical, magnetic and thermal studies of V1-xTixO2 (0x0.06), Acta Chem. Scand. A, Volume 30 (1976), pp. 619-624 | DOI

[49] J. Umeda; S. Ashida; H. Kusumoto; K. Narita A new phase appearing in metal-semiconductor transition in VO2, J. Phys. Soc. Japan, Volume 21 (1966), pp. 1461-1462 | DOI

[50] W. Rüdorf; J. Märklin Die rutilphase (V1-xNbx)O2, Z. Anorg. Allg. Chem., Volume 334 (1964), pp. 142-149

[51] H. Trarieux; J. C. Bernier; A. Michel Contribution à l’étude des systèmes VO2–NbVO4 et VO2–TaVO4, Ann. Chim. (France), Volume 4 (1969), pp. 183-194

[52] C. N. R. Rao; M. Natarajan; G. V. Subba; R. E. Loehman Phase transitions and conductivity anomalies in solid solutions of VO2 with TiO2, NbO2 and MoO2, J. Phys. Chem. Solids, Volume 32 (1971), pp. 1147-1150 | DOI

[53] T. Mitsuishi On the phase transformation of VO2, Japan J. Appl. Phys., Volume 6 (1967), pp. 1060-1071 | DOI

[54] J. Galy; A. Casalot; J. Darriet; P. Hagenmuller Sur quelques nouvelles phases à caractère non-stæchiométrique dans les systèmes V2O5–VO2–M2O3 (M:Al, Cr et Fe), Bull. Soc. Chim. France, Volume 1 (1967), pp. 227-234

[55] G. Villeneuve; A. Bordet; A. Casalot; J. P. Pouget; H. Launois; P. Lederer Contribution to the study of the metal-insulator transition in the V1-xNbxO2 system: I—Crystallographic and Transport properties, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1953-1959 | DOI

[56] M. Nygren; M. Israelsson A D.T.A. study of the semiconductor-metallic transition in V1-xWxO2, 0x0.067, Mater. Res. Bull., Volume 4 (1969), pp. 881-887 | DOI

[57] T. Hörlin; T. Niklewski; M. Nygren Electrical and magnetic properties of V1-xWxO2, 0x0.06, Mater. Res. Bull., Volume 7 (1972), pp. 1515-1524

[58] K. Shibuya; M. Kawasaki; Y. Tokura Metal-insulator transition in epitaxial V1-xWxO2 (0x0.33) thin films, Appl. Phys. Lett., Volume 96 (2010), 022102 | DOI

[59] T. Hörlin; T. Niklewski; M. Nygren Electrical, magnetic and thermal studies on the V1-xMoxO2 system with 0x0.20, Mater. Res. Bull., Volume 8 (1973), pp. 179-190

[60] K. L. Holman; T. M Mcqueen; A. J. Williams; T. Klimczuk; P. W. Stephens; H. W. Zandbergen; Q. Xu; F. Ronning; R. J. Cava Insulator to correlated metal transition in V1-xMoxO2, Phys. Rev. B, Volume 79 (2009), 245114 | DOI

[61] O. Sävborg; M. Nygren Electrical, magnetic and thermal studies of the V1-xRexO2 system with 0x0.15, Phys. Status Solidi (a), Volume 43 (1977), pp. 645-652 | DOI

[62] P. Lederer; H. Launois; J. P. Pouget; A. Casalot; G. Villeneuve Contribution to the study of the metal-insulator transition in the V1-xNbxO2 system: III—Theoretical discussion, J. Phys. Chem. Solids, Volume 33 (1972), pp. 1969-1978 | DOI

[63] G. Villeneuve Transitions métal-isolant dans V1-x NbxO2 et V1-x Crx O2 : aspects structuraux, magnétiques et électriques, Ph. D. Thesis, Université de Bordeaux I, France (1974)

[64] G. Villeneuve; A. Bordet; A. Casalot; P. Hagenmuller Propriétés physiques et structurales de la phase CrxV1-xO2, Mater. Res. Bull., Volume 6 (1971), pp. 119-130 | DOI

[65] E. Strelcov; A. Tselev; I. Ivanov; J. D. Budai; J. Zhang; J. Z. Tischler; I. Kravchenko; S. V. Kalinin; A. Kolmakov Doping-based stabilization of the M2 phase in free-standing VO2 nanostructures at room temperature, Nano Lett., Volume 12 (2012), pp. 6198-6205 | DOI

[66] K. Kosuge; S. Kachi Phase diagram of V1-xFexO2 in the 0x0.25 region, Mater. Res. Bull., Volume 11 (1976), pp. 255-262 | DOI

[67] W. Brückner; U. Gerlach; W. Moldenhauer; H. P. Brückner; B. Thuss et al. Metal-nonmetal transition in Fe and Al doped VO2, J. Phys. Colloq., Volume 37 (1976), p. C4-63–C4-68 | DOI

[68] W. Brückner; H. P. Brückner; U. Gerlach; B. Thuss; G. Fosterling The phase transition M1T in V1-xGaxO2, Phys. Status Solidi (a), Volume 38 (1976), pp. 93-102

[69] F. Pintchovski; W. S. Glaunsinger; A. Navrotsky Experimental study of the electronic and lattice contributions to the VO2 transition, J. Phys. Chem. Solids, Volume 39 (1978), pp. 941-949 | DOI

[70] Z. Hiroi; H. Hayamizu; T. Yoshida; Y. Muraoka; Y. Okamoto; J. Yamaura; K. Ueda Spinodal decomposition in the TiO2–VO2 system, Chem Mater., Volume 25 (2013), pp. 2202-2210 | DOI

[71] T. Hörlin; T. Niklewski; M. Nygren Vanadium-vanadium bonds in the V1-xTixO2 system, J. Phys. Colloq., Volume 37 (1976), p. C4-69–C4-73 | DOI

[72] M. Bayard; M. Pouchard; P. Hagenmuller; A. Wold Propriétés magnétiques et electriques de l’oxyfluorure de formule VO2-xFx, Solid State Chem., Volume 12 (1975), pp. 41-50 | DOI

[73] W. Brückner; U. Gerlach; H. P. Brückner; W Moldenhauer; H. Oppermann Influence of non stoichiometry on the phase transitions in Ga-, Al-, and Fe-doped VO2, Phys. Status Solidi (a), Volume 42 (1977), pp. 295-303 | DOI

[74] M. Bayard; M. Pouchard; P. Hagenmuller Propriétés structurales, magnétiques, et electriques de 1’oxyfluorure CrxV1-xO2-xFx, Solid State Chem., Volume 12 (1975), pp. 31-40 | DOI

[75] J. G. Ramirez; T. Saerbeck; S. Wang; J. Trastoy; M. Malnou; J. Lesueur et al. Effect of disorder on the metal-insulator transition of vanadium oxides: Local versus global effects, Phys. Rev. B, Volume 91 (2015), 205123 | DOI

[76] D. Wickramaratne; N. Bernstein; I. I. Mazin Role of defects in the metal-insulator transition in VO2 and V2O3, Phys. Rev. B, Volume 99 (2019), 214103 | DOI

[77] J. P. Pouget; H. Launois; J. P. D’Haenens; P. Merenda; T. M. Rice Electron Localization Induced by Uniaxial Stress in Pure VO2, Phys. Rev. Lett., Volume 35 (1975), pp. 873-875 | DOI

[78] J. H. Park; J. M. Coy; T. K. Kasirga; C. Huang; Z. Fei; S. Hunter; D. H. Cobden Measurement of a solid-state triple point at the metal-insulator transition of VO2, Nature, Volume 500 (2013), pp. 431-434 | DOI

[79] J. Cao; Y. Gu; W. Fan; L. Q. Chen; D. F. Ogletree; K. Chen et al. Extended mapping and exploration of the vanadium dioxide stress-temperature phase diagram, Nano Lett., Volume 10 (2010), pp. 2667-2673 | DOI

[80] J. M. Atkin; B. Berweger; E. K. Chavez; M. B. Raschke; J. Cao; W. Fan; J. Wu Strain and temperature dependence of the insulating phases of VO2 near the metal-insulator transition, Phys. Rev. B, Volume 85 (2012), 020101(R) | DOI

[81] N. B. Aetukuri; A. X. Gray; M. Drouard; M. Cossale; L. Gao; A. H. Reid et al. Control of the metal–insulator transition in vanadium dioxide by modifying orbital occupancy, Nat. Phys., Volume 9 (2013), pp. 661-666 | DOI

[82] Y. Muraoka; Y. Ueda; Z. Hiroi Large modification of the metal-insulator transition in strained VO2 films grown on TiO2 substrates, J. Phys. Chem. Solids, Volume 63 (2002), pp. 965-967 | DOI

[83] Y. Chen; S. Zhang; F. Ke; C. Ko; S. Lee; K. Liu; B. Chen et al. Pressure—temperature phase diagram of vanadium dioxide, Nano Lett., Volume 17 (2017), pp. 2512-2516 | DOI

[84] E. Arcangeletti; L. Baldassarre; D. Di Castro; S. Lupi; L. Malavasi; C. Marini; A. Perucchi; P. Postorino Evidence of a pressure-induced metallization process in monoclinic VO2, Phys. Rev. Lett., Volume 98 (2007), 196406 | DOI

[85] L. Bai; Q. Li; S. A. Corr; Y. Meng; C. Park; S. V. Sinogeikin; C. Ko; J. Wu; G. Shen Pressure-induced phase transitions and metallization in VO2, Phys. Rev. B, Volume 91 (2015), 104110

[86] M. Mitrano; B. Maroni; C. Marini; M. Hanfland; B. Joseph; P. Postorino; L. Malavasi Anisotropic compression in the high-pressure regime of pure and chromium-doped vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 184108 | DOI

[87] V. Balédent; T. T. F. Cerqueira; R. Sarmiento-Pérez; A. Shukla; C. Bellin; M. Marsi; J.-P. Itié et al. High-pressure phases of VO2 from the combination of Raman scattering and ab initio structural search, Phys. Rev. B, Volume 97 (2018), 024107 | DOI

[88] J. R. Brews Symmetry considerations and the vanadium dioxide phase transition, Phys. Rev. B, Volume 1 (1970), pp. 2557-2568 | DOI

[89] A. Tselev; I. A. Luk’yanchuk; I. N. Ivanov; J. D. Budai; J. Z. Tischler; E. Strelcov et al. Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide, Nano Lett., Volume 10 (2010), pp. 4409-4416 | DOI

[90] Y. M. Gufan; V. P. Popov On the theory of phase transitions represented by four-component order parameters, Sov. Phys. Crystallogr., Volume 25 (1980), pp. 527-532 | MR | Zbl

[91] J. S. Kim; H. T. Stokes; D. M. Hatch Classification of continuous phase transitions and stable phases. II. Four-dimensional order parameters, Phys. Rev. B, Volume 33 (1986), pp. 6210-6230 | DOI

[92] J. C. Toledano; P. Toledano The Landau Theory of Phase Transitions, World Scientific, Singapore, 1987

[93] M. Couzi On the Landau theory of structural phase transitions in layered perovskites (CH3NH3)2MCl4 (M = Mn, Cd, Fe): comparison with experiments, J. Phys. I, Volume 1 (1991), pp. 743-758

[94] J. C. Toledano La Ferroélasticité, Ann. Telecom., Volume 29 (1974), pp. 249-270

[95] D. Maurer; A. Leue; R. Heichele; V. Müller Elastic behavior near the metal-insulator transition of VO2, Phys. Rev. B, Volume 60 (1999), pp. 13249-13252 | DOI

[96] P. Schilbe; D. Maurer Lattice dynamics in VO2 near the metal-insulator transition, Mater. Sci. Eng. A, Volume 370 (2004), pp. 449-452 | DOI

[97] J. C. Toledano; P. Toledano Order parameter symmetries and free-energy expansions for purely ferro-elastic transitions, Phys. Rev. B, Volume 21 (1980), pp. 1139-1172 | DOI

[98] P. Toledano; J. C. Toledano Ferro-elastic transitions with a modification of the crystal’s unit cell, Ferroelectrics, Volume 21 (1978), pp. 587-588 | DOI

[99] P. J. Fillingham Domain structure and twinning in crystals of vanadium dioxides, J. Appl. Phys., Volume 38 (1967), pp. 4823-4829 | DOI

[100] A. Tselev; E. Strelcov; I. A. Luk’yanchuk; J. D. Budai; J. Z. Tischler; I. N. Ivanov et al. Interplay between Ferro-elastic and metal-insulator transitions in strained quasi-two-dimensional VO2 nanoplatelets, Nano Lett., Volume 10 (2010), pp. 2003-2011 | DOI

[101] A. Tselev; V. Meunier; E. Strelcov; W. A. Shelton; I. A. Luk’yanchuk; K. Jones et al. Mesoscopic metal-insulator transition at Ferro-elastic domain walls in VO2, ACS Nano, Volume 4 (2010), pp. 4412-4419 | DOI

[102] M. M. Qazilbash; M. Brehm; B.-G. Chae; P.-C. Ho; G. O. Andreev; B.-J. Kim; S. J. Yun; A. V. Balatsky et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging, Science, Volume 318 (2007), pp. 1750-1753 | DOI

[103] J. Laverock; S. Kittiwatanakul; A. A. Zakharov; Y. R. Niu; B. Chen; S. A. Wolf; J. W. Lu; K. E. Smith Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2, Phys. Rev. Lett., Volume 113 (2014), 216402 | DOI

[104] F. Sandiumenge; L. Rodríguez; M. Pruneda; C. Magén; J. Santiso; G. Catalan Metallic diluted dimerization in VO2 tweeds, Adv. Mater., Volume 33 (2021), 2004374 | DOI

[105] J. C. Toledano; L. Michel; P. Toledano; E. Brézin Renormalization-group study of fixed points and of their stability for phase transitions with four-component order parameters, Phys. Rev. B, Volume 31 (1985), pp. 7171-7196 | DOI | MR

[106] C. Sommers; R. de Groot; D. Kaplan; A. Zylbersztejn Cluster calculations of the electronic d-states in VO2, J. Phys. Lett., Volume 36 (1975), p. L-157–L-160 | DOI

[107] S. Shin; S. Suga; M. Taniguchi; M. Fujisawa; H. Kanzaki; A. Fujimori et al. Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13 and V2O3, Phys. Rev. B, Volume 41 (1990), pp. 4993-5009 | DOI

[108] T. Peterseim; M. Dressel; M. Dietrich; A. Polity Optical properties of VO2 films at the phase transition: influence of substrate and electronic correlations, J. Appl. Phys., Volume 120 (2016), 075102 | DOI

[109] P. F. Bongers Anisotropy of the electrical conductivity in VO2 single crystals, Solid State Commun., Volume 3 (1965), pp. 275-277 | DOI

[110] H. W. Verleur; A. S. Barker; C. N. Berglund Optical Properties of VO2 between 0.25 and 5 eV, Phys. Rev., Volume 172 (1968), pp. 788-798 | DOI

[111] S. Biermann; A. Poteryaev; A. I. Lichtenstein; A. Georges Dynamical singlets and correlation-assisted Peierls transition in VO2, Phys. Rev. Lett., Volume 94 (2005), 026404 | DOI

[112] M. Gupta; A. J. Freeman; D. E. Ellis Electronic structure and lattice instability of metallic VO2, Phys. Rev. B, Volume 16 (1977), pp. 3338-3351 | DOI

[113] Y. Muraoka; H. Hiroki; Y. Yao; T. Wakita; K. Terashima; T. Yokoya; H. Kumigashira; M. Oshima Fermi surface topology in a metallic phase of VO2 thin films grown on TiO2 (001) substrates, Sci. Rep., Volume 8 (2018), 17906 | DOI

[114] A. Belozerov; A. Poteryaev; V. Anisimov Evidence for strong Coulomb correlations in the metallic phase of vanadium dioxide, JETP Lett., Volume 93 (2011), pp. 70-74 | DOI

[115] C. Weber; D. O. O’Regan; N. D. M. Hine; M. C. Payne; G. Kotliar; P. B. Littlewood Vanadium dioxide: A Peierls–Mott insulator stable against disorder, Phys. Rev. Lett., Volume 108 (2012), 256402 | DOI

[116] B. Lazarovits; K. Kim; K. Haule; G. Kotliar Effects of strain on the electronic structure of VO2, Phys. Rev. B, Volume 81 (2010), 115117 | DOI

[117] K. Okazaki; H. Wadati; A. Fujimori; M. Onoda; Y. Muraoka; Z. Hiroi Photoemission study of the metal-insulator transition in VO2/TiO2 (001): Evidence for strong electron-electron and electron-phonon interaction, Phys. Rev. B, Volume 69 (2004), 165104 | DOI

[118] J. M. Tomczak; F. Aryasetiawan; S. Biermann Effective band structure in the insulating phase versus strong dynamical correlations in metallic VO2, Phys. Rev. B, Volume 78 (2008), 115103 | DOI

[119] T. C. Koethe; Z. Hu; M. W. Haverkort; C. Schüßler-Langeheine; F. Venturini; N. B. Brookes et al. Transfer of spectral weight and symmetry across the metal-insulator transition in VO2, Phys. Rev. Lett., Volume 97 (2006), 116402 | DOI

[120] P. B. Allen; R. M. Wentzcovitch; W. W. Schulz; P. C. Canfield Resistivity of the high temperature metallic phase of VO2, Phys. Rev. B, Volume 48 (1993), pp. 4359-4363 | DOI

[121] M. M. Qazilbash; K. S. Burch; D. Whisler; D. Shrekenhamer; B. G. Chae; H. T. Kim; D. N. Basov Correlated metallic state of vanadium dioxide, Phys. Rev. B, Volume 74 (2006), 205118 | DOI

[122] M. W. Haverkort; Z. Hu; A. Tanaka; W. Reichelt; S. V. Streltsov; M. A. Korotin et al. Orbital-assisted metal-insulator transition in VO2, Phys. Rev. Lett., Volume 95 (2005), 196404 | DOI

[123] J. P. D’Haenens; D. Kaplan; P. Meranda Electron spin resonance in V1-xCrxO2, J. Phys. C: Solid State Phys., Volume 8 (1975), pp. 2267-2273

[124] J. M. Tomczak; S. Biermann Effective band structure of correlated materials: the case of VO2, J. Phys.: Condens. Matter, Volume 19 (2007), 365206

[125] H. He; A. X. Gray; P. Granitzka; J. W. Jeong; N. P. Aetukuri; R. Kukreja; L. Miao; S. A. Breitweiser et al. Measurement of collective excitations in VO2 by resonant inelastic x-ray scattering, Phys. Rev., Volume 94 (2016), 161119(R)

[126] M. M. Qazilbash; A. A. Schafgans; K. S. Burch; S. J. Yun; B. G. Chae; B. J. Kim; H. T. Kim; D. N. Basov Electrodynamics of the vanadium oxides VO2 and V2O3, Phys. Rev. B, Volume 77 (2008), 115121 | DOI

[127] T. J. Huffman; C. Hendriks; E. J. Walter; J. Yoon; H. Ju; R. Smith; G. L. Carr; H. Krakauer; M. M. Qazilbash Insulating phases of vanadium dioxide are Mott–Hubbard insulators, Phys. Rev. B, Volume 95 (2017), 075125 | DOI

[128] K. Takanashi; H. Yasuoka; Y. Ueda; K. Kosuge NMR studies of VO2 and V1-xWxO2, J. Phys. Soc. Japan, Volume 52 (1983), pp. 3953-3959

[129] L. N. Bulaevskii Magnetic susceptibility of a chain of spins with antiferromagnetic interaction, Sov. Phys. Solid State, Volume 11 (1969), pp. 921-924 (Fiz. Tverd. Tela 11, 1132)

[130] T. Barnes; J. Riera; D. A. Tennant S=1/2 alternating chain using multi-precision methods, Phys. Rev. B, Volume 59 (1999), pp. 11384-11397 | DOI

[131] D. C. Johnston; R. K. Kremer; M. Troyer; X. Wang; A. Klümper; S. L. Bud’ko; A. F. Panchula; P. C. Canfield Thermodynamics of spin S=1/2 antiferromagnetic uniform and alternating-exchange Heisenberg chains, Phys. Rev. B, Volume 61 (2000), pp. 9558-9606 | DOI

[132] G. S. Uhrig; H. J. Schulz Magnetic excitation spectrum of dimerized antiferromagnetic chains, Phys. Rev. B, Volume 54 (1996), p. 9624-9627(R) | DOI

[133] M. Aïn; J. E. Lorenzo; L. P. Regnault; G. Dhalenne; A. Revcolevschi; B. Hennion; Th. Jolicoeur Double gap and solitonic excitations in the spin-Peierls chain CuGeO3, Phys. Rev. Lett., Volume 78 (1997), pp. 1560-1963 | DOI

[134] J. P. Pouget; P. Foury-Leylekian; S. Petit; B. Hennion; C. Coulon; C. Bourbonnais Inelastic neutron scattering investigation of magnetostructural excitations in the spin-Peierls organic system (TMTTF)2PF6, Phys. Rev. B, Volume 96 (2017), 035127 | DOI

[135] A. I. Buzdin; L. N. Bulaevskii Spin–Peierls transition in quasi-one-dimensional crystals, Usp. Fiz. Nauk, Volume 131 (1980), pp. 495-510 | DOI

[136] J. W. Bray; L. V. Interrante; I. S. Jacobs; J. C. Bonner The spin-Peierls transition, Extended Linear Chain Compounds (J. S. Miller, ed.), Volume 3, Plenum Publishing Coorporation, 1983, pp. 353-415 | DOI

[137] O. Jeannin; E. W. Reinheimer; P. Foury-Leylekian; J.-P. Pouget; P. Auban-Senzier; E. Trzop; E. Collet; M. Fourmigué Decoupling anion-ordering and spin-Peierls transitions in a strongly one-dimensional organic conductor with a chessboard structure, (o-Me2TTF)2NO3, IUCrJ, Volume 5 (2018), pp. 361-372 | DOI

[138] J. P. Pouget Microscopic interactions in CuGeO3 and organic Spin-Peierls systems deduced from their pre-transitional lattice fluctuations, Eur. Phys. J. B, Volume 20 (2001), pp. 321-333 (Eur. Phys. J. B24, 415) | DOI

[139] J. Shi; R. Bruinsma; A. R. Bishop Theory of vanadium dioxide, Synth. Met., Volume 41–43 (1991), pp. 3527-3530 | DOI

[140] Y. H. Matsuda; D. Nakamura; A. Ikeda; S. Takeyama; Y. Suga; H. Nakahara; Y. Muraoka Magnetic-field-induced insulator–metal transition in W-doped VO2 at 500 T, Nat. Commun., Volume 11 (2020), 3591 | DOI

[141] B. Grenier; J.-P. Renard; P. Veillet; C. Paulsen; R. Calemczuk; G. Dhalenne; A. Revcolevschi Magnetic susceptibility and phase diagram of CuGe1-xSixO3 single crystals, Phys. Rev. B, Volume 57 (1998), pp. 3444-3453 | DOI

[142] J.-P. Pouget; S. Ravy; J. P. Schoeffel; G. Dhalenne; A. Revcolevschi Spin-Peierls lattice fluctuations and disorders in CuGeO3 and its solid solutions, Eur. Phys. J. B, Volume 38 (2004), pp. 581-598 | DOI

[143] R. Basu; V. Srihari; M. Sardar; S. K. Srivastava; S. Bera; S. Dhara Probing phase transition in VO2 with the novel observation of low-frequency collective spin excitation, Sci. Rep., Volume 10 (2020), 1977 | DOI

[144] H. Terauchi; J. B. Cohen Diffuse x-ray scattering due to the lattice instability near the metal-semiconductor transition in VO2, Phys. Rev. B, Volume 17 (1978), pp. 2494-2496 | DOI

[145] J. P. Pouget Structural instabilities, Highly Conducting Quasi-One-Dimensional Organic Crystals, chapter 3 (E. Comwell, ed.) (Semiconductors and Semimetals), Volume 27, Academic Press Inc., 1988, pp. 87-214

[146] R. R. Andronenko; I. N. Goncharuk; V. Y. Davydov; F. A. Chudnovskii; E. B. Shadrin Direct observation of the soft mode at a semiconductor-metal phase transition in vanadium dioxide, Phys. Solid State, Volume 36 (1994), pp. 1136-1139

[147] J. D. Budai; J. Hong; M. E. Manley; E. D. Specht; C. D. Li; J. Z. Tischler et al. Metallization of vanadium dioxide driven by large phonon entropy, Nature, Volume 515 (2014), pp. 535-539 | DOI

[148] J. P. Pouget; A. M. Levelut; J. F. Sadoc André Guinier: Local order in condensed matter, C. R. Phys., Volume 20 (2019), pp. 725-745 | DOI

[149] R. Comès; M. Lambert; A. Guinier Désordre Linéaire dans les Cristaux (cas du Silicium, du Quartz, et des Pérovskites Ferroélectriques), Acta Cryst. A, Volume 26 (1970), pp. 244-254 | DOI

[150] J. G. Traylor; H. G. Smith; R. M. Nicklow; M. K. Wilkinson Lattice dynamics of rutile, Phys. Rev. B, Volume 3 (1971), pp. 3457-3472 | DOI

[151] I.-H. Hwang; Z. Jin; C.-I. Park; S.-W. Han The influence of structural disorder and phonon on metal-to-insulator transition of VO2, Sci. Rep., Volume 7 (2017), 14802 | DOI

[152] D. Shiga; B. E. Yang; N. Hasegawa; T. Kanda; R. Tokunaga; K. Yoshimatsu; R. Yukawa; M. Kitamura; K. Horiba; H. Kumigashira Thickness dependence of electronic structures in VO2 ultrathin films: Suppression of the cooperative Mott–Peierls transition, Phys. Rev. B, Volume 102 (2020), 115114 | DOI

[153] J. Y. Prieur; P. Seznec; S. Ziolkiewicz Temperature variation of the ultrasonic attenuation and phase velocity in VO2 and V2O3 crystals, J. Phys. (France) Lett., Volume 38 (1977), p. L25-L28 | DOI

[154] T. Lovorn; S. K. Sarker Complex quasi-two-dimensional crystalline order embedded in VO2 and other crystals, Phys. Rev. Lett., Volume 119 (2017), 045501 | DOI

[155] J. P. Pouget; C. Escribe-Filippini; B. Hennion; R. Currat; A. H. Moudden; R. Moret; J. Marcus; C. Schlenker Neutron and X ray studies of the quasi-one-dimensional conductor K0.3MoO3, Mol. Cryst. Liq. Cryst., Volume 121 (1985), pp. 111-115 | DOI

[156] B. Guster; M. Pruneda; P. Ordejón; E. Canadell; J.-P. Pouget Evidence for the weak coupling scenario of the Peierls transition in the blue bronze, Phys. Rev. Mater., Volume 3 (2019), 055001

[157] F. Gervais; W. Kress Lattice dynamics of oxides with rutile structure and instabilities at the metal-semiconductor phase transitions in VO2 and NbO2, Phys. Rev. B, Volume 31 (1985), pp. 4809-4814 | DOI

[158] S. Kim; K. Kim; C.-J. Kang; B. I. Min Correlation-assisted phonon softening and the orbital-selective Peierls transition in VO2, Phys. Rev. B, Volume 87 (2013), 195106

[159] R. Srivasrava; L. L. Chase Raman spectrum of semiconducting and metallic VO2, Phys. Rev. Lett., Volume 27 (1971), pp. 727-730 | DOI

[160] A. G. Aronov; D. N. Mirliri; I. I. Reshina; F. A. Chudnovskii Spectrum of Raman scattering of light and phase transition in VO2, Sov. Phys. Solid State, Volume 19 (1977), pp. 110-114

[161] V. S. Vikhnin; N. Goncharuk; V. Yu. Davydov; F. A. Chudnovskii; E. B. Shadrin Raman spectra of the high-temperature phase of vanadium dioxide and model of structural transformations near the metal-semiconductor phase transition, Phys. Solid State, Volume 37 (1995), pp. 1971-1978

[162] P. Schilbe Raman scattering in VO2, Physica B, Volume 316 (2002), pp. 600-602 | DOI

[163] N. Goncharuk; A. V. Ilinskiy; O. E. Kvashenkina; E. B. Shadrin Electron-electron correlations in Raman spectra of VO2, Phys. Solid State, Volume 55 (2013), pp. 164-174 | DOI

[164] J. P. Pouget; B. Hennion; C. Escribe-Filippini; M. Sato Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K0.3MoO3, Phys. Rev. B, Volume 43 (1991), pp. 8421-8430 | DOI

[165] R. Pynn; J. D. Axe; P. M. Raccah Structural fluctuations in NbO2 at high temperatures, Phys. Rev. B, Volume 17 (1978), pp. 2196-2205 | DOI

[166] L. Lee; K. Hippalgaonkar; F. Yang; J. Hong; C. Ko; J. Suh; K. Liu; K. Wang; J. J. Urban; X. Zhang et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science, Volume 355 (2017), pp. 371-374 | DOI

[167] R. Comès; M. Lambert; A. Guinier The chain structure of BaTiO3 et KNbO3, Solid State Commun., Volume 6 (1968), pp. 715-719 | DOI

[168] H. Takahashi A note on the theory of barium titanate, J. Phys. Soc. Japan, Volume 16 (1961), pp. 1685-1689 | DOI

[169] S. Ravy; J.-P. Itié; A. Polian; M. Hanfland High-pressure study of X-ray diffuse scattering in ferroelectric perovskites, Phys. Rev. Lett., Volume 99 (2007), 117601 | DOI

[170] J.-P. Pouget; E. Canadell; B. Guster Momentum dependent electron-phonon coupling in charge density wave systems, Phys. Rev. B, Volume 103 (2021), 115135

[171] P. Foury-Leylekian; J.-P. Pouget Peierls transition in two-dimensional metallic monophosphate tungsten Bronzes, Solid State Sci., Volume 4 (2002), pp. 387-396 | DOI

[172] D. Paquet; P. Leroux-Hugon Electron correlations and electron-lattice interactions in the metal-insulator, ferro-elastic transition in VO2: A thermodynamical study, Phys. Rev. B, Volume 22 (1980), pp. 5284-5301 | DOI

[173] F. Gandi; A. Amaricci; F. Fabrizio Unraveling the Mott–Peierls intrigue in Vanadium dioxide, Phys. Rev. Res., Volume 2 (2020), 013298

[174] V. Ilakovac; A. Girard; V. Balédent; P. Foury-Leylekian; B. Winkler; I. Kupčić; H. Berger; A. Bosak; J.-P. Pouget Order-disorder type of Peierls instability in BaVS3, Phys. Rev. B, Volume 103 (2021), 014306 | DOI

[175] C. C. Yu; P. W. Anderson Local-phonon model of strong electron-phonon interactions in A15 compounds and other strong-coupling superconductors, Phys. Rev. B, Volume 29 (1984), pp. 6165-6186

[176] P. Y. Le Daeron; S. Aubry Metal-insulator transition in incommensurate Peierls chains by extinction of the Frohlich conductivity, J. Phys. Colloq., Volume 44 (1983), p. C3-1573–C3-1577 | DOI

[177] L. P. Gor’kov Strong electron-lattice coupling as the mechanism behind charge density wave transformations in transition-metal dichalcogenides, Phys. Rev. B, Volume 85 (2012), 165142

[178] T. A. Mellan; H. Wang; U. Schwingenschlögl; R. Grau-Crespo The origin of the transition entropy in vanadium dioxide, Phys. Rev. B, Volume 99 (2019), 064113 | DOI

[179] J. Paras; A. Allanore Electronic entropy contribution to the metal insulator transition in VO2, Phys. Rev. B, Volume 102 (2020), 165138 | DOI

[180] M. Lambert; R. Comès The chain structure and phase transition of BaTiO3 and KNbO3, Solid State Commun., Volume 7 (1969), pp. 305-308 | DOI

[181] J. P. Pouget; P. Alemany; E. Canadell Donor–anion interactions in quarter-filled low-dimensional organic conductors, Mater. Horiz., Volume 5 (2018), pp. 590-640 | DOI

[182] P. Alemany; J. P. Pouget; E. Canadell Structural and electronic control of the metal to insulator transition and local orderings in the θ-(BEDT-TTF)2X organic conductors, J. Phys.: Condens. Matter, Volume 27 (2015), 465702

[183] M. Liu; A. J. Sternbach; A. J. Basov Nanoscale electrodynamics of strongly correlated quantum materials, Rep. Prog. Phys., Volume 80 (2017), 014501

[184] Y. Zhu; Z. Cai; P. Chen; Q. Zhang; M. J. Highland; I. W. Jung; D. A. Walko et al. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy, Sci. Rep., Volume 6 (2016), 21999

[185] T. L. Cocker; L. V. Titova; S. Fourmaux; G. Holloway; H.-C. Bandulet; D. Brassard et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide, Phys. Rev. B, Volume 85 (2012), 155120 | DOI

[186] A. Cavalleri; Dekorsy Th.; H. H. Chong; J. C. Kieffer; R. W. Schoenlein Evidence for a structurally-driven insulator-to-metal transition in VO2: a view from the ultrafast timescale, Phys. Rev. B, Volume 70 (2004), 161102(R) | DOI

[187] C. Kübler; H. Ehrke; R. Huber; R. Lopez; A. Halabica; R. F. Haglund Jr; A. Leitenstorfer Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2, Phys. Rev. Lett., Volume 99 (2007), 116401 | DOI

[188] H.-T. Kim; Y. W. Lee; B.-J. Kim; B.-G. Chae; S. J. Yun; K.-Y. Kang; K.-J. Han et al. Monoclinic and correlated metal phase in VO2 as evidence of the Mott transition: coherent phonon analysis, Phys. Rev. Lett., Volume 97 (2006), 266401

[189] Z. Tao; F. Zhou; T.-R. T. Han; D. Torres; T. Wang; N. Sepulveda; K. Chang; M. Young; R. R. Lunt; C.-Y. Ruan The nature of photoinduced phase transition and metastable states in vanadium dioxide, Sci. Rep., Volume 6 (2016), 38514

[190] T. V. Slusar; J.-C. Cho; H.-R. Lee; J.-W. Kim; S. J. Yoo et al. Mott transition in chain structure of strained VO2 films revealed by coherent phonons, Sci. Rep., Volume 7 (2017), 16038 | DOI

[191] T. Soma; T. Kobayashi; K. Yoshimatsu; A. Ohtomo Superconducting dome underlying bipolaronic insulating state in charge doped Ti4O7 epitaxial films, J. Phys. Soc. Japan, Volume 90 (2021), 023705 | DOI

Cité par Sources :

Commentaires - Politique