[Compression des observables de spin non linéaires par torsion à un axe en présence de décohérence : Une étude analytique]
Dans un ensemble d’atomes à deux niveaux descriptible par un spin collectif, on peut utiliser les états intriqués pour améliorer la sensibilité des mesures interférométriques. Bien que les états de spin non gaussiens puissent produire des améliorations quantiques plus importantes que les habituels état comprimés de spin, gaussiens, leur utilisation nécessite la mesure d’observables non linéaires en les trois composantes du spin collectif. Nous expliquons ici comment maximiser le gain quantique en utilisant des états non gaussiens surcomprimés produits par un hamiltonien non linéaire de torsion à un axe, et nous montrons que les techniques de mesure après intéraction, connues pour amplifier les signaux de sorties dans les protocoles quantiques de détermination de quantités physiques, sont efficaces pour mesurer les observables de spin non linéaires. En tenant compte des processus de décohérence pertinents pour les expériences de physique atomique, nous déterminons analytiquement le gain quantique optimal en fonction des paramètres de bruit pour un nombre d’atomes arbitraire.
In an ensemble of two-level atoms that can be described in terms of a collective spin, entangled states can be used to enhance the sensitivity of interferometric precision measurements. While non-Gaussian spin states can produce larger quantum enhancements than spin-squeezed Gaussian states, their use requires the measurement of observables that are nonlinear functions of the three components of the collective spin. In this paper we develop strategies that achieve the optimal quantum enhancements using non-Gaussian states produced by a nonlinear one-axis-twisting Hamiltonian, and show that measurement-after-interaction techniques, known to amplify the output signals in quantum parameter estimation protocols, are effective in measuring nonlinear spin observables. Including the presence of the relevant decoherence processes from atomic experiments, we determine analytically the quantum enhancement of non-Gaussian over-squeezed states as a function of the noise parameters for arbitrary atom numbers.
Révisé le :
Accepté le :
Publié le :
Mot clés : compression de spin, état non gaussiens, lois d’échelle, métrologie quantique, décohérence
Youcef Baamara 1 ; Alice Sinatra 1 ; Manuel Gessner 2, 1
@article{CRPHYS_2022__23_G1_1_0, author = {Youcef Baamara and Alice Sinatra and Manuel Gessner}, title = {Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: {An} analytical study}, journal = {Comptes Rendus. Physique}, pages = {1--26}, publisher = {Acad\'emie des sciences, Paris}, volume = {23}, year = {2022}, doi = {10.5802/crphys.103}, language = {en}, }
TY - JOUR AU - Youcef Baamara AU - Alice Sinatra AU - Manuel Gessner TI - Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study JO - Comptes Rendus. Physique PY - 2022 SP - 1 EP - 26 VL - 23 PB - Académie des sciences, Paris DO - 10.5802/crphys.103 LA - en ID - CRPHYS_2022__23_G1_1_0 ER -
%0 Journal Article %A Youcef Baamara %A Alice Sinatra %A Manuel Gessner %T Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study %J Comptes Rendus. Physique %D 2022 %P 1-26 %V 23 %I Académie des sciences, Paris %R 10.5802/crphys.103 %G en %F CRPHYS_2022__23_G1_1_0
Youcef Baamara; Alice Sinatra; Manuel Gessner. Squeezing of nonlinear spin observables by one axis twisting in the presence of decoherence: An analytical study. Comptes Rendus. Physique, Volume 23 (2022), pp. 1-26. doi : 10.5802/crphys.103. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.103/
[1] Quantum-mechanical noise in an interferometer, Phys. Rev. D, Volume 23 (1981) no. 8, pp. 1693-1708 | DOI
[2] Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A, Volume 46 (1992) no. 11, p. R6797-R6800 | DOI
[3] Optimal frequency measurements with maximally correlated states, Phys. Rev. A, Volume 54 (1996) no. 6, p. R4649-R4652 | DOI
[4] Advances in quantum metrology, Nature Photon., Volume 5 (2011), pp. 222-229 | DOI
[5] Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys., Volume 90 (2018) no. 3, 035005, 70 pages | DOI
[6] Squeezed spin states, Phys. Rev. A, Volume 47 (1993) no. 6, pp. 5138-5143 | DOI
[7] Entanglement, Nonlinear Dynamics, and the Heisenberg Limit, Phys. Rev. Lett., Volume 102 (2009) no. 10, 100401, 4 pages | DOI
[8] Fisher information and multiparticle entanglement, Phys. Rev. A, Volume 85 (2012) no. 2, 022321, 10 pages | DOI
[9] Multipartite entanglement and high-precision metrology, Phys. Rev. A, Volume 85 (2012) no. 2, 022322, 8 pages | DOI
[10] Quantum metrology from a quantum information science perspective, J. Phys. A, Math. Gen., Volume 47 (2014) no. 42, 424006 | DOI
[11] Metrological Detection of Multipartite Entanglement from Young Diagrams, Phys. Rev. Lett., Volume 126 (2021) no. 8, 080502, 6 pages | DOI
[12] Many-particle entanglement with Bose–Einstein condensates, Nature, Volume 409 (2001), pp. 63-66 | DOI
[13] Spin squeezing in a bimodal condensate: spatial dynamics and particle losses, Eur. Phys. J. B, Volume 68 (2009), pp. 365-381 | DOI
[14] Nonlinear atom interferometer surpasses classical precision limit, Nature, Volume 464 (2010), pp. 1165-1169 | DOI
[15] Atom chip based generation of entanglement for quantum metrology, Nature, Volume 464 (2010), p. 1170--1173 | DOI
[16] Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., Volume 104 (2010) no. 7, 073602, 4 pages | DOI
[17] Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing, Phys. Rev. Lett., Volume 109 (2012) no. 25, 253605, 5 pages | DOI
[18] Measurement noise 100 times lower than the quantum-projection limit using entangled atoms, Nature, Volume 529 (2016), pp. 505-508 | DOI
[19] Deterministic squeezed states with collective measurements and feedback, Phys. Rev. Lett., Volume 116 (2016) no. 9, 093602, 5 pages | DOI
[20] Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom, Nat. Commun., Volume 9 (2018) no. 1, 4955 | DOI
[21] Time-Reversal-Based Quantum Metrology with Many-Body Entangled States (2021) (https://arxiv.org/abs/2106.03754)
[22] SU(2) and SU(1,1) interferometers, Phys. Rev. A, Volume 33 (1986) no. 6, pp. 4033-4054 | DOI
[23] Approaching the Heisenberg Limit without Single-Particle Detection, Phys. Rev. Lett., Volume 116 (2016) no. 5, 053601, 5 pages | DOI
[24] Detecting Large Quantum Fisher Information with Finite Measurement Precision, Phys. Rev. Lett., Volume 116 (2016) no. 9, 090801, 5 pages | DOI
[25] Loschmidt echo for quantum metrology, Phys. Rev. A, Volume 94 (2016) no. 1, 010102(R), 5 pages | DOI
[26] Quantum phase magnification, Science, Volume 352 (2016) no. 6293, pp. 1552-1555 | DOI
[27] Optimal and Robust Quantum Metrology Using Interaction-Based Readouts, Phys. Rev. Lett., Volume 119 (2017) no. 19, 193601, 7 pages | DOI
[28] Using interaction-based readouts to approach the ultimate limit of detection-noise robustness for quantum-enhanced metrology in collective spin systems, Phys. Rev. A, Volume 98 (2018) no. 3, 030303(R), 7 pages | DOI
[29] Ramsey interferometry with generalized one-axis twisting echoes, Quantum, Volume 4 (2020), 268, 19 pages | DOI
[30] Improvement of Frequency Standards with Quantum Entanglement, Phys. Rev. Lett., Volume 79 (1997) no. 20, pp. 3865-3868 | DOI
[31] 14-qubit entanglement: Creation and coherence, Phys. Rev. Lett., Volume 106 (2011) no. 13, 130506, 4 pages | DOI
[32] The elusive Heisenberg limit in quantum-enhanced metrology, Nat. Commun., Volume 3 (2012), 1063 | DOI
[33] Mesoscopic quantum superpositions in bimodal Bose–Einstein condensates: Decoherence and strategies to counteract it, Phys. Rev. A, Volume 95 (2017) no. 6, 063609, 22 pages | DOI
[34] Fisher information and entanglement of non-Gaussian spin states, Science, Volume 345 (2014) no. 6195, pp. 424-427 | DOI
[35] Quantum spin dynamics and entanglement generation with hundreds of trapped ions, Science, Volume 352 (2016) no. 6291, pp. 1297-1301 | DOI
[36] Enhanced Magnetic Sensitivity with Non-Gaussian Quantum Fluctuations, Phys. Rev. Lett., Volume 122 (2019) no. 17, 173601, 6 pages | DOI
[37] Metrological characterisation of non-Gaussian entangled states of superconducting qubits (2021) | arXiv
[38] Metrological Nonlinear Squeezing Parameter, Phys. Rev. Lett., Volume 122 (2019) no. 9, 090503, 7 pages | DOI
[39] Scaling laws for the sensitivity enhancement of non-Gaussian spin states, Phys. Rev. Lett., Volume 127 (2021) no. 16, 160501, 7 pages | DOI
[40] Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature, Front. Phys., Volume 7 (2012), pp. 86-97 | DOI
[41] Twin Matter Waves for Interferometry Beyond the Classical Limit, Science, Volume 334 (2011) no. 6509, pp. 773-776 | DOI
[42] Statistical distance and the geometry of quantum states, Phys. Rev. Lett., Volume 72 (1994) no. 22, pp. 3439-3443 | DOI
[43] Optimum Spin Squeezing in Bose–Einstein Condensates with Particle Losses, Phys. Rev. Lett., Volume 100 (2008) no. 21, 210401, 4 pages | DOI
[44] Spin Squeezing in Finite-Temperature Bose–Einstein Condensates, Phys. Rev. Lett., Volume 107 (2011) no. 6, 060404, 5 pages | DOI
[45] Multiparticle Entanglement of Hot Trapped Ions, Phys. Rev. Lett., Volume 82 (1999) no. 9, pp. 1835-1838 | DOI
[46] Experimental Generation of Quantum Discord via Noisy Processes, Phys. Rev. Lett., Volume 111 (2013) no. 10, 100504, 5 pages | DOI
[47] Robust Asymptotic Entanglement under Multipartite Collective Dephasing, Phys. Rev. Lett., Volume 115 (2015) no. 1, 010404, 5 pages | DOI
[48] Unitary cavity spin squeezing by quantum erasure, Phys. Rev. A, Volume 85 (2012) no. 1, 013803, 9 pages | DOI
[49] Limits of atomic entanglement by cavity feedback: From weak to strong coupling, Eur. Phys. Lett., Volume 113 (2016) no. 3, 34005 | DOI
[50] Atom—Photon Interactions. Basic Process and Applications, John Wiley & Sons, 1998 | DOI
[51] The Theory of Open Quantum Systems, Oxford University Press, 2007 | DOI | Zbl
[52] Squeezing the collective spin of a dilute atomic ensemble by cavity feedback, Phys. Rev. A, Volume 81 (2010) no. 2, 021804, 4 pages | DOI
[53] Phase dynamics of Bose–Einstein condensates: Losses versus revivals, Eur. Phys. J. D, Volume 4 (1998), pp. 247-260 | DOI
[54] Monte-Carlo wave function method in quantum optics, J. Opt. Soc. Am. B., Volume 10 (1993) no. 3, pp. 524-538 | DOI
Cité par Sources :
Commentaires - Politique