Comptes Rendus
Article de recherche
Squeezing light with optomechanical and spin-light quantum interfaces
[Compression de la lumière avec des interfaces optomécaniques et lumière-spin quantiques]
Comptes Rendus. Physique, Volume 26 (2025), pp. 641-657

Cet article fait partie du numéro thématique Mesures quantiques coordonné par David Clément et al..  

We investigate squeezing of light through quantum-noise-limited interactions with two different material systems: an ultracold atomic spin ensemble and a micromechanical membrane. Both systems feature a light-matter quantum interface that we exploit, respectively, to generate polarization squeezing of light through Faraday interaction with the collective atomic spin precession, and ponderomotive quadrature squeezing of light through radiation pressure interaction with the membrane vibrations in an optical cavity. Both experiments are described in a common theoretical framework, highlighting the conceptual similarities between them. The observation of squeezing certifies light-matter coupling with large quantum cooperativity, a prerequisite for applications in quantum science and technology. In our experiments, we obtain a maximal cooperativity of Cqu = 10 for the spin and Cqu = 9 for the membrane. In particular, our results pave the way for hybrid quantum systems where spin and mechanical degrees of freedom are coherently coupled via light, enabling new protocols for quantum state transfer and entanglement generation over macroscopic distances.

Nous étudions la compression de la lumière à travers deux systèmes distincts limités par le bruit quantique : un ensemble de spins atomiques ultrafroids et une membrane micromécanique. Ces deux systèmes possèdent une interface quantique lumière-matière. Nous utilisons cette interface pour générer, d’une part, une compression de la polarisation de la lumière par interaction de Faraday grâce à la précession collective du spin atomique, et d’autre part, une compression des quadratures de la lumière via l’interaction de pression de radiation avec les vibrations de la membrane dans une cavité optique. Les deux expériences sont décrites dans un cadre théorique commun, mettant en évidence leurs similarités conceptuelles. L’observation de la compression atteste d’un couplage lumière-matière avec une grande coopérativité quantique, une condition essentielle pour les applications en science et les technologies quantiques. Dans nos expériences, nous obtenons une coopérativité maximale de Cqu = 10 pour le spin et Cqu = 9 pour la membrane. En particulier, nos résultats ouvrent la voie à des systèmes quantiques hybrides où les degrés de liberté spin et mécaniques sont couplés de manière cohérente via la lumière, permettant de nouveaux protocoles de transfert d’états quantiques et de génération d’intrication sur de grandes distances.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.265
Keywords: Hybrid quantum system, squeezing, atomic system, optomechanics, light-matter interaction
Mots-clés : Système quantique hybride, états comprimés, système atomique, optomécanique, interaction lumière-matière

Gian-Luca Schmid 1 ; Manel Bosch Aguilera 1 ; Chun Tat Ngai 1 ; Maryse Ernzer 1 ; Luiz Couto Correa Pinto Filho 2, 3 ; Dennis Høj 2 ; Ulrik Lund Andersen 2 ; Florian Goschin 4 ; Philipp Treutlein 1

1 Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
2 Center for Macroscopic Quantum States, bigQ, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
3 Danish Fundamental Metrology, 2970 Hørsholm, Denmark
4 Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_641_0,
     author = {Gian-Luca Schmid and Manel Bosch Aguilera and Chun Tat Ngai and Maryse Ernzer and Luiz Couto Correa Pinto Filho and Dennis H{\o}j and Ulrik Lund Andersen and Florian Goschin and Philipp Treutlein},
     title = {Squeezing light with optomechanical and spin-light quantum interfaces},
     journal = {Comptes Rendus. Physique},
     pages = {641--657},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     doi = {10.5802/crphys.265},
     language = {en},
}
TY  - JOUR
AU  - Gian-Luca Schmid
AU  - Manel Bosch Aguilera
AU  - Chun Tat Ngai
AU  - Maryse Ernzer
AU  - Luiz Couto Correa Pinto Filho
AU  - Dennis Høj
AU  - Ulrik Lund Andersen
AU  - Florian Goschin
AU  - Philipp Treutlein
TI  - Squeezing light with optomechanical and spin-light quantum interfaces
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 641
EP  - 657
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.265
LA  - en
ID  - CRPHYS_2025__26_G1_641_0
ER  - 
%0 Journal Article
%A Gian-Luca Schmid
%A Manel Bosch Aguilera
%A Chun Tat Ngai
%A Maryse Ernzer
%A Luiz Couto Correa Pinto Filho
%A Dennis Høj
%A Ulrik Lund Andersen
%A Florian Goschin
%A Philipp Treutlein
%T Squeezing light with optomechanical and spin-light quantum interfaces
%J Comptes Rendus. Physique
%D 2025
%P 641-657
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.265
%G en
%F CRPHYS_2025__26_G1_641_0
Gian-Luca Schmid; Manel Bosch Aguilera; Chun Tat Ngai; Maryse Ernzer; Luiz Couto Correa Pinto Filho; Dennis Høj; Ulrik Lund Andersen; Florian Goschin; Philipp Treutlein. Squeezing light with optomechanical and spin-light quantum interfaces. Comptes Rendus. Physique, Volume 26 (2025), pp. 641-657. doi: 10.5802/crphys.265

[1] Klemens Hammerer; Anders S. Sørensen; Eugene S. Polzik Quantum interface between light and atomic ensembles, Rev. Mod. Phys., Volume 82 (2010), pp. 1041-1093 | DOI

[2] R. J. Sewell; M. Koschorreck; M. Napolitano; B. Dubost; N. Behbood; M. W. Mitchell Magnetic sensitivity beyond the projection noise limit by spin squeezing, Phys. Rev. Lett., Volume 109 (2012) no. 25, 253605 | DOI

[3] Massimiliano Rossi; David Mason; Junxin Chen; Albert Schliesser Observing and verifying the quantum trajectory of a mechanical resonator, Phys. Rev. Lett., Volume 123 (2019) no. 16, 163601, 6 pages | DOI

[4] Luca Pezzè; Augusto Smerzi; Markus K Oberthaler; Roman Schmied; Philipp Treutlein Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys., Volume 90 (2018) no. 3, 035005 | DOI | MR

[5] Khabat Heshami; Duncan G. England; Peter C. Humphreys; Philip J. Bustard; Victor M. Acosta; Joshua Nunn; Benjamin J. Sussman Quantum memories: emerging applications and recent advances, J. Mod. Opt., Volume 63 (2016) no. 20, pp. 1-24 | DOI

[6] Rodrigo A. Thomas; Michał Parniak; Christoffer Østfeldt; Christoffer B. Møller; Christian Bærentsen; Yeghishe Tsaturyan; Albert Schliesser; Jürgen Appel; Emil Zeuthen; Eugene S. Polzik Entanglement between distant macroscopic mechanical and spin systems, Nat. Phys., Volume 17 (2021) no. 2, pp. 228-233 | DOI

[7] Markus Aspelmeyer; Tobias J. Kippenberg; Florian Marquardt Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014) no. 4, pp. 1391-1452 | DOI

[8] Warwick P. Bowen; Gerard J. Milburn Quantum optomechanics, CRC Press, 2016, xvii+357 pages | DOI | Zbl

[9] Stefano Mancini; Paolo Tombesi Quantum noise reduction by radiation pressure, Phys. Rev. A, Volume 49 (1994) no. 5, pp. 4055-4065 | DOI

[10] Claude Fabre; Michel Pinard; Sophie Bourzeix; Antoine Heidmann; Elisabeth Giacobino; Serge Reynaud Quantum-noise reduction using a cavity with a movable mirror, Phys. Rev. A, Volume 49 (1994) no. 2, pp. 1337-1343 | DOI

[11] Tom P. Purdy; Pen-Li Yu; Robert W. Peterson; Nir S. Kampel; Cindy A. Regal Strong optomechanical squeezing of light, Phys. Rev. X, Volume 3 (2013) no. 3, 031012, 8 pages | DOI

[12] Guanhao Huang; Alberto Beccari; Nils J. Engelsen; Tobias J. Kippenberg Room-temperature quantum optomechanics using an ultralow noise cavity, Nature, Volume 626 (2024) no. 7999, pp. 512-516 | DOI

[13] Amir H. Safavi-Naeini; Simon Gröblacher; Jeff T. Hill; Jasper Chan; Markus Aspelmeyer; Oskar Painter Squeezed light from a silicon micromechanical resonator, Nature, Volume 500 (2013) no. 7461, pp. 185-189 | DOI

[14] Andrei Militaru; Massimiliano Rossi; Felix Tebbenjohanns; Oriol Romero-Isart; Martin Frimmer; Lukas Novotny Ponderomotive squeezing of light by a levitated nanoparticle in free space, Phys. Rev. Lett., Volume 129 (2022) no. 5, 053602 | DOI

[15] Lorenzo Magrini; Victor A. Camarena-Chávez; Constanze Bach; Aisling Johnson; Markus Aspelmeyer Squeezed light from a levitated nanoparticle at room temperature, Phys. Rev. Lett., Volume 129 (2022) no. 5, 053601 | DOI

[16] Daniel W. C. Brooks; Thierry Botter; Sydney Schreppler; Thomas P. Purdy; Nathan Brahms; Dan M. Stamper-Kurn Non-classical light generated by quantum-noise-driven cavity optomechanics, Nature, Volume 488 (2012) no. 7412, pp. 476-480 | DOI

[17] Jun Jia; Valeriy Novikov; Tulio Brito Brasil; Emil Zeuthen; Jörg Helge Müller; Eugene S. Polzik Acoustic frequency atomic spin oscillator in the quantum regime, Nat. Commun., Volume 14 (2023) no. 1, 6396, 10 pages | DOI

[18] Christian Bærentsen; Sergey A. Fedorov; Christoffer Østfeldt; Mikhail V. Balabas; Emil Zeuthen; Eugene S. Polzik Squeezed light from an oscillator measured at the rate of oscillation, Nat. Commun., Volume 15 (2024) no. 1, 4146, 7 pages | DOI

[19] A. A. Clerk; M. H. Devoret; S. M. Girvin; Florian Marquardt; R. J. Schoelkopf Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., Volume 82 (2010), pp. 1155-1208 | DOI | MR | Zbl

[20] Thomas M. Karg; Baptiste Gouraud; Chun Tat Ngai; Gian-Luca Schmid; Klemens Hammerer; Philipp Treutlein Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart, Science, Volume 369 (2020) no. 6500, pp. 174-179 | DOI | MR | Zbl

[21] Maryse Ernzer Optical coherent feedback control of a mechanical oscillator, Ph. D. Thesis, University of Basel (Switzerland) (2023) | Zbl

[22] Ewold Verhagen; Samuel Deléglise; Stefan Weis; Albert Schliesser; Tobias J. Kippenberg Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature, Volume 482 (2012) no. 7383, pp. 63-67 | DOI

[23] C. W. Gardiner; P. Zoller Quantum noise, Springer Series in Synergetics, Springer, 2000, xxii+438 pages | DOI | MR | Zbl

[24] Jörg Helge Müller; Plamen Petrov; Daniel Oblak; Carlos L. Garrido Alzar; S. R. de Echaniz; Eugene S. Polzik Diffraction effects on light-atomic-ensemble quantum interface, Phys. Rev. A, Volume 71 (2005) no. 3, 033803 | DOI

[25] Ben Q. Baragiola; Leigh M. Norris; Enrique Montaño; Pascal G. Mickelson; Poul S. Jessen; Ivan H. Deutsch Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles, Phys. Rev. A, Volume 89 (2014) no. 3, 033850 | DOI

[26] Gian-Luca Schmid Hybrid atom-optomechanical system in the quantum regime, Ph. D. Thesis, University of Basel (Switzerland) (2025)

[27] Jiazhong Hu; Wenlan Chen; Zachary Vendeiro; Hao Zhang; Vladan Vuletić Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction, Phys. Rev. A, Volume 92 (2015) no. 6, 063816 | DOI

[28] Brian Julsgaard Entanglement and quantum interactions with macroscopic gas samples, Ph. D. Thesis, Aarhus University (Denmark) (2003)

[29] Rodrigo A. Thomas; Christoffer Østfeldt; Christian Bærentsen; Michał Parniak; Eugene S. Polzik Calibration of spin-light coupling by coherently induced Faraday rotation, Opt. Express, Volume 29 (2021) no. 15, pp. 23637-23653 | DOI

[30] Thomas M. Karg Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble, Ph. D. Thesis, University of Basel (Switzerland) (2020)

[31] Dennis Høj; Ulrich Busk Hoff; Ulrik Lund Andersen Ultracoherent nanomechanical resonators based on density phononic crystal engineering, Phys. Rev. X, Volume 14 (2024) no. 1, 011039, 15 pages | DOI

[32] Maryse Ernzer; Manel Bosch Aguilera; Matteo Brunelli; Gian-Luca Schmid; Thomas M. Karg; Christoph Bruder; Patrick P. Potts; Philipp Treutlein Optical coherent feedback control of a mechanical oscillator, Phys. Rev. X, Volume 13 (2023) no. 2, 021023, 17 pages | DOI

[33] Christoffer B. Møller; Rodrigo A. Thomas; Georgios Vasilakis; Emil Zeuthen; Yeghishe Tsaturyan; Mikhail V. Balabas; Kasper Jensen; Albert Schliesser; Klemens Hammerer; Eugene S. Polzik Quantum back-action-evading measurement of motion in a negative mass reference frame, Nature, Volume 547 (2017) no. 7662, pp. 191-195 | DOI

[34] Gian-Luca Schmid; Chun Tat Ngai; Maryse Ernzer; Manel Bosch Aguilera; Thomas M. Karg; Philipp Treutlein Coherent feedback cooling of a nanomechanical membrane with atomic spins, Phys. Rev. X, Volume 12 (2022) no. 1, 011020, 13 pages | DOI

[35] Thomas M. Karg; Baptiste Gouraud; Philipp Treutlein; Klemens Hammerer Remote Hamiltonian interactions mediated by light, Phys. Rev. A, Volume 99 (2019) no. 6, 063829 | DOI

Cité par Sources :

Commentaires - Politique