[Compression de la lumière avec des interfaces optomécaniques et lumière-spin quantiques]
We investigate squeezing of light through quantum-noise-limited interactions with two different material systems: an ultracold atomic spin ensemble and a micromechanical membrane. Both systems feature a light-matter quantum interface that we exploit, respectively, to generate polarization squeezing of light through Faraday interaction with the collective atomic spin precession, and ponderomotive quadrature squeezing of light through radiation pressure interaction with the membrane vibrations in an optical cavity. Both experiments are described in a common theoretical framework, highlighting the conceptual similarities between them. The observation of squeezing certifies light-matter coupling with large quantum cooperativity, a prerequisite for applications in quantum science and technology. In our experiments, we obtain a maximal cooperativity of Cqu = 10 for the spin and Cqu = 9 for the membrane. In particular, our results pave the way for hybrid quantum systems where spin and mechanical degrees of freedom are coherently coupled via light, enabling new protocols for quantum state transfer and entanglement generation over macroscopic distances.
Nous étudions la compression de la lumière à travers deux systèmes distincts limités par le bruit quantique : un ensemble de spins atomiques ultrafroids et une membrane micromécanique. Ces deux systèmes possèdent une interface quantique lumière-matière. Nous utilisons cette interface pour générer, d’une part, une compression de la polarisation de la lumière par interaction de Faraday grâce à la précession collective du spin atomique, et d’autre part, une compression des quadratures de la lumière via l’interaction de pression de radiation avec les vibrations de la membrane dans une cavité optique. Les deux expériences sont décrites dans un cadre théorique commun, mettant en évidence leurs similarités conceptuelles. L’observation de la compression atteste d’un couplage lumière-matière avec une grande coopérativité quantique, une condition essentielle pour les applications en science et les technologies quantiques. Dans nos expériences, nous obtenons une coopérativité maximale de Cqu = 10 pour le spin et Cqu = 9 pour la membrane. En particulier, nos résultats ouvrent la voie à des systèmes quantiques hybrides où les degrés de liberté spin et mécaniques sont couplés de manière cohérente via la lumière, permettant de nouveaux protocoles de transfert d’états quantiques et de génération d’intrication sur de grandes distances.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Système quantique hybride, états comprimés, système atomique, optomécanique, interaction lumière-matière
Gian-Luca Schmid 1 ; Manel Bosch Aguilera 1 ; Chun Tat Ngai 1 ; Maryse Ernzer 1 ; Luiz Couto Correa Pinto Filho 2, 3 ; Dennis Høj 2 ; Ulrik Lund Andersen 2 ; Florian Goschin 4 ; Philipp Treutlein 1
CC-BY 4.0
@article{CRPHYS_2025__26_G1_641_0,
author = {Gian-Luca Schmid and Manel Bosch Aguilera and Chun Tat Ngai and Maryse Ernzer and Luiz Couto Correa Pinto Filho and Dennis H{\o}j and Ulrik Lund Andersen and Florian Goschin and Philipp Treutlein},
title = {Squeezing light with optomechanical and spin-light quantum interfaces},
journal = {Comptes Rendus. Physique},
pages = {641--657},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {26},
doi = {10.5802/crphys.265},
language = {en},
}
TY - JOUR AU - Gian-Luca Schmid AU - Manel Bosch Aguilera AU - Chun Tat Ngai AU - Maryse Ernzer AU - Luiz Couto Correa Pinto Filho AU - Dennis Høj AU - Ulrik Lund Andersen AU - Florian Goschin AU - Philipp Treutlein TI - Squeezing light with optomechanical and spin-light quantum interfaces JO - Comptes Rendus. Physique PY - 2025 SP - 641 EP - 657 VL - 26 PB - Académie des sciences, Paris DO - 10.5802/crphys.265 LA - en ID - CRPHYS_2025__26_G1_641_0 ER -
%0 Journal Article %A Gian-Luca Schmid %A Manel Bosch Aguilera %A Chun Tat Ngai %A Maryse Ernzer %A Luiz Couto Correa Pinto Filho %A Dennis Høj %A Ulrik Lund Andersen %A Florian Goschin %A Philipp Treutlein %T Squeezing light with optomechanical and spin-light quantum interfaces %J Comptes Rendus. Physique %D 2025 %P 641-657 %V 26 %I Académie des sciences, Paris %R 10.5802/crphys.265 %G en %F CRPHYS_2025__26_G1_641_0
Gian-Luca Schmid; Manel Bosch Aguilera; Chun Tat Ngai; Maryse Ernzer; Luiz Couto Correa Pinto Filho; Dennis Høj; Ulrik Lund Andersen; Florian Goschin; Philipp Treutlein. Squeezing light with optomechanical and spin-light quantum interfaces. Comptes Rendus. Physique, Volume 26 (2025), pp. 641-657. doi: 10.5802/crphys.265
[1] Quantum interface between light and atomic ensembles, Rev. Mod. Phys., Volume 82 (2010), pp. 1041-1093 | DOI
[2] Magnetic sensitivity beyond the projection noise limit by spin squeezing, Phys. Rev. Lett., Volume 109 (2012) no. 25, 253605 | DOI
[3] Observing and verifying the quantum trajectory of a mechanical resonator, Phys. Rev. Lett., Volume 123 (2019) no. 16, 163601, 6 pages | DOI
[4] Quantum metrology with nonclassical states of atomic ensembles, Rev. Mod. Phys., Volume 90 (2018) no. 3, 035005 | DOI | MR
[5] Quantum memories: emerging applications and recent advances, J. Mod. Opt., Volume 63 (2016) no. 20, pp. 1-24 | DOI
[6] Entanglement between distant macroscopic mechanical and spin systems, Nat. Phys., Volume 17 (2021) no. 2, pp. 228-233 | DOI
[7] Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014) no. 4, pp. 1391-1452 | DOI
[8] Quantum optomechanics, CRC Press, 2016, xvii+357 pages | DOI | Zbl
[9] Quantum noise reduction by radiation pressure, Phys. Rev. A, Volume 49 (1994) no. 5, pp. 4055-4065 | DOI
[10] Quantum-noise reduction using a cavity with a movable mirror, Phys. Rev. A, Volume 49 (1994) no. 2, pp. 1337-1343 | DOI
[11] Strong optomechanical squeezing of light, Phys. Rev. X, Volume 3 (2013) no. 3, 031012, 8 pages | DOI
[12] Room-temperature quantum optomechanics using an ultralow noise cavity, Nature, Volume 626 (2024) no. 7999, pp. 512-516 | DOI
[13] Squeezed light from a silicon micromechanical resonator, Nature, Volume 500 (2013) no. 7461, pp. 185-189 | DOI
[14] Ponderomotive squeezing of light by a levitated nanoparticle in free space, Phys. Rev. Lett., Volume 129 (2022) no. 5, 053602 | DOI
[15] Squeezed light from a levitated nanoparticle at room temperature, Phys. Rev. Lett., Volume 129 (2022) no. 5, 053601 | DOI
[16] Non-classical light generated by quantum-noise-driven cavity optomechanics, Nature, Volume 488 (2012) no. 7412, pp. 476-480 | DOI
[17] Acoustic frequency atomic spin oscillator in the quantum regime, Nat. Commun., Volume 14 (2023) no. 1, 6396, 10 pages | DOI
[18] Squeezed light from an oscillator measured at the rate of oscillation, Nat. Commun., Volume 15 (2024) no. 1, 4146, 7 pages | DOI
[19] Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., Volume 82 (2010), pp. 1155-1208 | DOI | MR | Zbl
[20] Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart, Science, Volume 369 (2020) no. 6500, pp. 174-179 | DOI | MR | Zbl
[21] Optical coherent feedback control of a mechanical oscillator, Ph. D. Thesis, University of Basel (Switzerland) (2023) | Zbl
[22] Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode, Nature, Volume 482 (2012) no. 7383, pp. 63-67 | DOI
[23] Quantum noise, Springer Series in Synergetics, Springer, 2000, xxii+438 pages | DOI | MR | Zbl
[24] Diffraction effects on light-atomic-ensemble quantum interface, Phys. Rev. A, Volume 71 (2005) no. 3, 033803 | DOI
[25] Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles, Phys. Rev. A, Volume 89 (2014) no. 3, 033850 | DOI
[26] Hybrid atom-optomechanical system in the quantum regime, Ph. D. Thesis, University of Basel (Switzerland) (2025)
[27] Entangled collective-spin states of atomic ensembles under nonuniform atom-light interaction, Phys. Rev. A, Volume 92 (2015) no. 6, 063816 | DOI
[28] Entanglement and quantum interactions with macroscopic gas samples, Ph. D. Thesis, Aarhus University (Denmark) (2003)
[29] Calibration of spin-light coupling by coherently induced Faraday rotation, Opt. Express, Volume 29 (2021) no. 15, pp. 23637-23653 | DOI
[30] Strong light-mediated coupling between a membrane oscillator and an atomic spin ensemble, Ph. D. Thesis, University of Basel (Switzerland) (2020)
[31] Ultracoherent nanomechanical resonators based on density phononic crystal engineering, Phys. Rev. X, Volume 14 (2024) no. 1, 011039, 15 pages | DOI
[32] Optical coherent feedback control of a mechanical oscillator, Phys. Rev. X, Volume 13 (2023) no. 2, 021023, 17 pages | DOI
[33] Quantum back-action-evading measurement of motion in a negative mass reference frame, Nature, Volume 547 (2017) no. 7662, pp. 191-195 | DOI
[34] Coherent feedback cooling of a nanomechanical membrane with atomic spins, Phys. Rev. X, Volume 12 (2022) no. 1, 011020, 13 pages | DOI
[35] Remote Hamiltonian interactions mediated by light, Phys. Rev. A, Volume 99 (2019) no. 6, 063829 | DOI
Cité par Sources :
Commentaires - Politique
