Comptes Rendus
Article de recherche
Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system
[Transducteur cryogénique rf-vers-micro-ondes basé sur un système électromécanique sous biais dc]
Comptes Rendus. Physique, Volume 27 (2026), pp. 49-63

Cet article fait partie du numéro thématique Mesures quantiques coordonné par David Clément et al..  

We report a two-stage, heterodyne rf-to-microwave transducer that combines a tunable electrostatic pre-amplifier with a superconducting electromechanical cavity. A metalized Si3N4 membrane (3 MHz frequency) forms the movable plate of a vacuum-gap capacitor in a microwave LC resonator. A dc bias across the gap converts any small rf signal into a resonant electrostatic force proportional to the bias, providing a voltage-controlled gain that multiplies the cavity’s intrinsic electromechanical gain. In a flip-chip device with a 1.5 µm gap operated at 10 mK we observe dc-tunable anti-spring shifts, and rf-to-microwave transduction at 49 V bias, achieving a charge sensitivity of 87 µe/$\sqrt{\mathrm{Hz}}$ (0.9 nV/$\sqrt{\mathrm{Hz}}$). Extrapolation to sub-micron gaps and state-of-the-art $Q>10^8$ membrane resonators predicts sub-200 fV/$\sqrt{\mathrm{Hz}}$ sensitivity, establishing dc-biased electromechanics as a practical route towards quantum-grade rf electrometers and low-noise modular heterodyne links for superconducting microwave circuits and charge or voltage sensing.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file:

Nous présentons un transducteur hétérodyne rf-vers-micro-ondes à deux étages qui associe un préamplificateur électrostatique accordable à une cavité électromécanique supraconductrice. Une membrane métallisée de Si3N4 (fréquence 3 MHz) forme la plaque mobile d’un condensateur intégré dans un résonateur LC micro-ondes. Une tension constante appliquée au bornes du condensateur diminue la raideur du ressort de la membrane et convertit toute petite tension alternative en une force électrostatique résonnante proportionnelle à cette tension, fournissant un gain contrôlé en tension qui multiplie le gain électromécanique intrinsèque de la cavité. Dans un dispositif flip-chip à espacement de 1.5 µm fonctionnant à 10 mK, nous observons un déplacement des fréquences des modes mécaniques réglables en tension, et une transduction rf vers micro-ondes sous 49 V de polarisation, atteignant une sensibilité de charge de 87 µe/$\sqrt{\mathrm{Hz}}$ (0.9 nV/$\sqrt{\mathrm{Hz}}$). L’extrapolation à des gaps sub-micrométriques et à des résonateurs à membrane de facteur qualité $Q>10^8$ permettra d’atteindre une sensibilité inférieure à 200 fV/$\sqrt{\mathrm{Hz}}$, établissant l’électromécanique polarisée en continu comme une voie vers des électromètres rf atteignant la limite quantique de sensibilité, et des liaisons hétérodynes à faible bruit pour circuits micro-ondes supraconducteurs et détection de charge/tension.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.273
Keywords: RF-to-microwave transducer, electrometer, charge-sensor, quantum electromechanics
Mots-clés : Transducteur RF-vers-micro-ondes, électromètre, capteur de charge, électromécanique quantique

Himanshu Patange  1   ; Kyrylo Gerashchenko  1   ; Rémi Rousseau  1 , 2   ; Paul Manset  1   ; Léo Balembois  1   ; Thibault Capelle  3 , 4   ; Samuel Deléglise  1   ; Thibaut Jacqmin  1 , 5

1 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, 75005 Paris, France
2 Alice & Bob, 53 Bd du Général Martial Valin, 75015 Paris, France
3 Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
4 Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
5 Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2026__27_G1_49_0,
     author = {Himanshu Patange and Kyrylo Gerashchenko and R\'emi Rousseau and Paul Manset and L\'eo Balembois and Thibault Capelle and Samuel Del\'eglise and Thibaut Jacqmin},
     title = {Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system},
     journal = {Comptes Rendus. Physique},
     pages = {49--63},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {27},
     doi = {10.5802/crphys.273},
     language = {en},
}
TY  - JOUR
AU  - Himanshu Patange
AU  - Kyrylo Gerashchenko
AU  - Rémi Rousseau
AU  - Paul Manset
AU  - Léo Balembois
AU  - Thibault Capelle
AU  - Samuel Deléglise
AU  - Thibaut Jacqmin
TI  - Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system
JO  - Comptes Rendus. Physique
PY  - 2026
SP  - 49
EP  - 63
VL  - 27
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.273
LA  - en
ID  - CRPHYS_2026__27_G1_49_0
ER  - 
%0 Journal Article
%A Himanshu Patange
%A Kyrylo Gerashchenko
%A Rémi Rousseau
%A Paul Manset
%A Léo Balembois
%A Thibault Capelle
%A Samuel Deléglise
%A Thibaut Jacqmin
%T Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system
%J Comptes Rendus. Physique
%D 2026
%P 49-63
%V 27
%I Académie des sciences, Paris
%R 10.5802/crphys.273
%G en
%F CRPHYS_2026__27_G1_49_0
Himanshu Patange; Kyrylo Gerashchenko; Rémi Rousseau; Paul Manset; Léo Balembois; Thibault Capelle; Samuel Deléglise; Thibaut Jacqmin. Cryogenic rf-to-microwave transducer based on a dc-biased electromechanical system. Comptes Rendus. Physique, Volume 27 (2026), pp. 49-63. doi: 10.5802/crphys.273

[1] Robert G. Knobel; Andrew N. Cleland Nanometre-scale displacement sensing using a single electron transistor, Nature, Volume 424 (2003) no. 6946, pp. 291-293 | DOI

[2] R. J. Schoelkopf; P Wahlgren; A. A. Kozhevnikov; P Delsing; D. E. Prober The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer, Science, Volume 280 (1998) no. 5367, pp. 1238-1242 | DOI

[3] Miles P Blencowe; Martin N Wybourne Sensitivity of a micromechanical displacement detector based on the radio-frequency single-electron transistor, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3845-3847 | DOI

[4] Henrik Brenning; Sergey Kafanov; Tim Duty; Sergey Kubatkin; Per Delsing An ultrasensitive radio-frequency single-electron transistor working up to 4.2 K, J. Appl. Phys., Volume 100 (2006) no. 11, 114321 | DOI

[5] A Aassime; D Gunnarsson; K Bladh; P Delsing; R. J. Schoelkopf Radio-frequency single-electron transistor: Toward the shot-noise limit, Appl. Phys. Lett., Volume 79 (2001) no. 24, pp. 4031-4033 | DOI

[6] S. J. Angus; A. J. Ferguson; A. S. Dzurak; R. G. Clark A silicon radio-frequency single electron transistor, Appl. Phys. Lett., Volume 92 (2008) no. 11, 112103 | DOI

[7] Alexander N. Korotkov; Mikko A. Paalanen Charge sensitivity of radio frequency single-electron transistor, Appl. Phys. Lett., Volume 74 (1999) no. 26, pp. 4052-4054 | DOI

[8] M. C. Cassidy; A. S. Dzurak; R. G. Clark; K. D. Petersson; I. Farrer; D. A. Ritchie; C. G. Smith Single shot charge detection using a radio-frequency quantum point contact, Appl. Phys. Lett., Volume 91 (2007) no. 22, 222104 | DOI

[9] J. J. Viennot; M. R. Delbecq; M. C. Dartiailh; A. Cottet; T. Kontos Out-of-equilibrium charge dynamics in a hybrid circuit quantum electrodynamics architecture, Phys. Rev. B, Volume 89 (2014), 165404, 4 pages | DOI

[10] Wei Lu; Zhongqing Ji; Loren Pfeiffer; KW West; A. J. Rimberg Real-time detection of electron tunnelling in a quantum dot, Nature, Volume 423 (2003) no. 6938, pp. 422-425 | DOI

[11] Christian Volk; Anasua Chatterjee; Fabio Ansaloni; Charles M. Marcus; Ferdinand Kuemmeth Fast Charge Sensing of Si/SiGe Quantum Dots via a High-Frequency Accumulation Gate, Nano Lett., Volume 19 (2019) no. 8, pp. 5628-5633 | DOI

[12] M. F. Gonzalez-Zalba; S Barraud; A. J. Ferguson; A. C. Betz Probing the limits of gate-based charge sensing, Nat. Commun., Volume 6 (2015) no. 1, 6084, 8 pages | DOI

[13] B.-L. Najera-Santos; R. Rousseau; K. Gerashchenko; H. Patange; A. Riva; M. Villiers; T. Briant; P.-F. Cohadon; A. Heidmann; J. Palomo; M. Rosticher; H. le Sueur; A. Sarlette; W. C. Smith; Z. Leghtas; E. Flurin; T. Jacqmin; S. Deléglise High-Sensitivity ac-Charge Detection with a MHz-Frequency Fluxonium Qubit, Phys. Rev. X, Volume 14 (2024) no. 1, 011007, 18 pages | DOI

[14] Kyrylo Gerashchenko; Remi Rousseau; Léo Balembois; Himanshu Patange; Paul Manset; W. Clarke Smith; Zaki Leghtas; Emmanuel Flurin; Thibaut Jacqmin; Samuel Deléglise Probing the quantum motion of a macroscopic mechanical oscillator with a radio-frequency superconducting qubit (2025) | arXiv

[15] T. Faust; P. Krenn; S. Manus; Jörg P. Kotthaus; E. M. Weig Microwave Cavity‐Enhanced Transduction for Plug‐and‐Play Nanomechanics at Room Temperature, Nat. Commun., Volume 3 (2012), 728, 6 pages | DOI

[16] J. D. Teufel; T. Donner; Dale Li; J. W. Harlow; M. S. Allman; K. Cicak; A. J. Sirois; J. D. Whittaker; K. W. Lehnert; R. W. Simmonds Sideband cooling of micromechanical motion to the quantum ground state, Nature, Volume 475 (2011) no. 7356, pp. 359-363 | DOI

[17] T Rocheleau; T Ndukum; C Macklin; JB Hertzberg; A. A. Clerk; KC Schwab Preparation and detection of a mechanical resonator near the ground state of motion, Nature, Volume 463 (2010) no. 7277, pp. 72-75 | DOI

[18] Yannick Seis; Thibault Capelle; Eric C. Langman; Sampo Saarinen; Eric Planz; Albert Schliesser Ground state cooling of an ultracoherent electromechanical system, Nat. Commun., Volume 13 (2022) no. 1, 1507, 7 pages | DOI

[19] Jasper Chan; T. P. Mayer Alegre; Amir H Safavi-Naeini; Jeff T Hill; Alex Krause; Simon Gröblacher; Markus Aspelmeyer; Oskar Painter Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, Volume 478 (2011) no. 7367, pp. 89-92

[20] Massimiliano Rossi; David Mason; Junxin Chen; Yeghishe Tsaturyan; Albert Schliesser Measurement-based quantum control of mechanical motion, Nature, Volume 563 (2018) no. 7729, pp. 53-58 | DOI

[21] R. W. Peterson; T. P. Purdy; N. S. Kampel; R. W. Andrews; P.-L. Yu; Konrad W. Lehnert; C. A. Regal Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett., Volume 116 (2016) no. 6, 063601 | DOI

[22] Liu Qiu; Itay Shomroni; Paul Seidler; Tobias J Kippenberg Laser cooling of a nanomechanical oscillator to its zero-point energy, Phys. Rev. Lett., Volume 124 (2020) no. 17, 173601, 7 pages | DOI

[23] Andrea Cupertino; Dongil Shin; Leo Guo; Peter G Steeneken; Miguel A Bessa; Richard A Norte Centimeter-scale nanomechanical resonators with low dissipation, Nat. Commun., Volume 15 (2024) no. 1, 4255, 10 pages | DOI

[24] Mohammad J Bereyhi; Amirali Arabmoheghi; Alberto Beccari; Sergey A Fedorov; Guanhao Huang; Tobias J Kippenberg; Nils J Engelsen Perimeter modes of nanomechanical resonators exhibit quality factors exceeding 10 9 at room temperature, Phys. Rev. X, Volume 12 (2022) no. 2, 021036, 19 pages | DOI

[25] A. H. Ghadimi; S. A. Fedorov; N. J. Engelsen; M. J. Bereyhi; R. Schilling; D. J. Wilson; T. J. Kippenberg Elastic strain engineering for ultralow mechanical dissipation, Science, Volume 360 (2018) no. 6390, pp. 764-768 | DOI

[26] R. W. Andrews; R. W. Peterson; T. P. Purdy; K. Cicak; R. W. Simmonds; C. A. Regal; K. W. Lehnert Bidirectional and Efficient Conversion between Microwave and Optical Light, Nat. Phys., Volume 10 (2014) no. 4, pp. 321-326 | DOI

[27] Andrew P Higginbotham; P. S. Burns; M. D. Urmey; R. W. Peterson; N. S. Kampel; B. M. Brubaker; G Smith; Konrad W. Lehnert; C. A. Regal Harnessing electro-optic correlations in an efficient mechanical converter, Nat. Phys., Volume 14 (2018) no. 10, pp. 1038-1042 | DOI

[28] Tolga Bagci; Anders Simonsen; Silvan Schmid; Luis G Villanueva; Emil Zeuthen; Jürgen Appel; Jacob M Taylor; A Sørensen; Koji Usami; Albert Schliesser; E. S. Polzik Optical detection of radio waves through a nanomechanical transducer, Nature, Volume 507 (2014) no. 7490, pp. 81-85 | DOI

[29] Michael Forsch; Robin Stockill; Andreas Wallucks; Igor Marinković; Claudia Gärtner; Richard A. Norte; Andrea Fiore; Simon Gröblacher Microwave-to-Optics Conversion Using a Mechanical Oscillator in Its Quantum Ground State, Nat. Phys., Volume 16 (2020), pp. 69-74 | DOI

[30] Mohammad Mirhosseini; Alireza Sipahigil; Mahmoud Kalaee; Oskar Painter Superconducting Quantum Electromechanics Interface for Microwave‐to‐Optical Conversion, Nature, Volume 588 (2020), pp. 599-603 | DOI

[31] Quirin Unterreithmeier; E. M. Weig; Jörg P. Kotthaus Universal transduction scheme for nanomechanical systems based on dielectric forces, Nature, Volume 458 (2009), pp. 1001-1004 | DOI

[32] Jeremie J Viennot; Xizheng Ma; Konrad W Lehnert Phonon-number-sensitive electromechanics, Phys. Rev. Lett., Volume 121 (2018) no. 18, 183601, 6 pages | DOI

[33] I. Moaddel Haghighi; N. Malossi; R. Natali; G. Di Giuseppe; D. Vitali Sensitivity-bandwidth limit in a multi-mode opto-electro-mechanical transducer, Phys. Rev. Appl., Volume 9 (2018), 034031, 15 pages | DOI

[34] Michele Bonaldi; Antonio Borrielli; Giovanni Di Giuseppe; Nicola Malossi; Bruno Morana; Riccardo Natali; Paolo Piergentili; Pasqualina Maria Sarro; Enrico Serra; David Vitali Low Noise Opto-Electro-Mechanical Modulator for RF-to-Optical Transduction in Quantum Communications, Entropy, Volume 25 (2023) no. 7, 1087, 14 pages | DOI

[35] Y. Tsaturyan; A. Barg; E. S. Polzik; A. Schliesser Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nat. Nanotechnol., Volume 12 (2017) no. 8, pp. 776-783 | DOI

[36] Markus Aspelmeyer; Tobias J. Kippenberg; Florian Marquardt Cavity optomechanics, Rev. Mod. Phys., Volume 86 (2014) no. 4, pp. 1391-1452 | DOI

[37] Jacob M. Pate; Luis A. Martinez; Johnathon J. Thompson; Raymond Y. Chiao; Jay E. Sharping Electrostatic tuning of mechanical and microwave resonances in 3D superconducting radio frequency cavities, AIP Adv., Volume 8 (2018) no. 11, 115223, 7 pages | DOI

[38] Xin Zhou; Srisaran Venkatachalam; Ronghua Zhou; Hao Xu; Alok Pokharel; Andrew Fefferman; Mohammed Zaknoune; Eddy Collin High-Q Silicon Nitride Drum Resonators Strongly Coupled to Gates, Nano Lett., Volume 21 (2021) no. 13, pp. 5738-5744 | DOI

[39] Himanshu Patange RF Transduction in a DC-Biased Superconducting Electromechanical System, Ph. D. Thesis, Sorbonne Université (France) (2025)

[40] Xin Zhou; Dylan Cattiaux; Didier Theron; Eddy Collin Electric circuit model of microwave optomechanics, J. Appl. Phys., Volume 129 (2021) no. 11, 114502 | DOI

[41] P.-L. Yu; K. Cicak; N. S. Kampel; Y. Tsaturyan; T. P. Purdy; R. W. Simmonds; C. A. Regal A phononic bandgap shield for high-Q membrane microresonators, Appl. Phys. Lett., Volume 104 (2014) no. 2, 023510 | DOI

[42] S. A. Fedorov; N. J. Engelsen; A. H. Ghadimi; M. J. Bereyhi; R. Schilling; D. J. Wilson; T. J. Kippenberg Generalized dissipation dilution in strained mechanical resonators, Phys. Rev. B, Volume 99 (2019) no. 5, 054107, 8 pages | DOI

[43] S. M. Sze; Ming-Kwei Lee; Ming-Kwei Lee Semiconductor devices, physics and technology, John Wiley & Sons, 2012

[44] Sarang Mittal; Kazemi Adachi; Nicholas E Frattini; Maxwell D Urmey; Sheng-Xiang Lin; Alec L Emser; Cyril Metzger; L. G. Talamo; Sarah Dickson; David Carlson; S. B. Papp; C. A. Regal; K. W. Lehnert Annealing reduces Si 3 N 4 microwave-frequency dielectric loss in superconducting resonators, Phys. Rev. Appl., Volume 21 (2024) no. 5, 054044, 12 pages | DOI

[45] E. Ivanov; T. Capelle; M. Rosticher; J. Palomo; T. Briant; P.-F. Cohadon; A. Heidmann; T. Jacqmin; S. Deléglise Edge mode engineering for optimal ultracoherent silicon nitride membranes, Appl. Phys. Lett., Volume 117 (2020) no. 25, 254102 | DOI

[46] Edouard Ivanov; Thibault Capelle; Michael Rosticher; José Palomo; Tristan Briant; Pierre-Francois Cohadon; Antoine Heidmann; Thibaut Jacqmin; Samuel Deléglise Edge mode engineering for optimal ultracoherent SiN membrane designs, Zenodo (2020) https://zenodo.org/records/4055087 | DOI

[47] A. W. Leissa Vibration of plates (1969) no. NASA-SP-160 (special publication)

[48] Thibault Capelle Electromechanical cooling and parametric amplification of an ultrahigh-Q mechanical oscillator, Ph. D. Thesis, Sorbonne Université (France) (2020)

[49] Marius Villiers Dynamically Enhancing Qubit-Photon Interactions with Anti-Squeezing, Ph. D. Thesis, Sorbonne Université (France) (2023)

[50] M. L. Gorodetksy; A. Schliesser; G. Anetsberger; S. Deleglise; T. J. Kippenberg Determination of the vacuum optomechanical coupling rate using frequency noise calibration, Opt. Express, Volume 18 (2010) no. 22, pp. 23236-23246 | DOI

[51] Amir H Safavi-Naeini; Jasper Chan; Jeff T Hill; Simon Gröblacher; Haixing Miao; Yanbei Chen; Markus Aspelmeyer; Oskar Painter Laser noise in cavity-optomechanical cooling and thermometry, New J. Phys., Volume 15 (2013) no. 3, 035007, 35 pages | DOI

[52] V. Sudhir; D. J. Wilson; R. Schilling; H. Schütz; S. A. Fedorov; A. H. Ghadimi; A. Nunnenkamp; T. J. Kippenberg Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator, Phys. Rev. X, Volume 7 (2017), 011001, 14 pages | DOI

[53] Eric Planz; Xiang Xi; Thibault Capelle; Eric C. Langman; Albert Schliesser Membrane-in-the-middle optomechanics with a soft-clamped membrane at milliKelvin temperatures, Opt. Express, Volume 31 (2023) no. 25, pp. 41773-41782 | DOI

[54] Georg Enzian; Zihua Wang; Anders Simonsen; Jonas Mathiassen; Toke Vibel; Yeghishe Tsaturyan; Alexander Tagantsev; Albert Schliesser; Eugene S. Polzik Phononically shielded photonic-crystal mirror membranes for cavity quantum optomechanics, Opt. Express, Volume 31 (2023) no. 8, pp. 13040-13052 | DOI

Cité par Sources :

Commentaires - Politique