Plan
Comptes Rendus

Plant biology and pathology
Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess
[Variations des activités enzymatiques anti-oxydantes et lignifiantes dans les racines de tournesol (Helianthus annuus L.) traitées par un excès de cuivre]
Comptes Rendus. Biologies, Volume 326 (2003) no. 7, pp. 639-644.

Résumés

Treatment with 50 μM CuSO4 for five days caused significant decrease in dry-matter production and protein level of ten-day-old sunflower seedling roots. An increase of lipoperoxidation product rate was also observed. The involvement of some enzyme activities in the sunflower root defence against Cu-induced oxidative stress was studied. Copper treatment induced several changes in antioxidant enzymes. SOD (superoxide dismutase, EC 1.15.1.1) activity was reduced but CAT (catalase, EC 1.11.1.6) and GPX (guaiacol peroxidase, EC 1.11.1.7) activities were significantly enhanced. The lignifying peroxidase activities, assayed using coniferyl alcohol and syringaldazine, were also stimulated. Analysis by native gel electrophoresis of syringaldazine peroxidase activity showed the stimulation of an isoform (A2) and the induction of another one (A1) under cupric stress conditions. On the other hand, the activity of PAL (phenylalanine ammonia lyase, EC 4.3.1.5), which plays an important role in plant defence, was also activated. The possible mechanisms by which Cu-induced growth delay and changes in enzymatic activities involved in plant defence processes are discussed.

Des jeunes plantules de tournesol (Helianthus annuus L.) cultivées sur un milieu nutritif de base en conditions contrôlées et âgées de 10 jours sont traitées par une dose de 50 μmol l−1 de CuSO4 pendant cinq jours. Les effets du stress métallique sont déterminés, au niveau des racines, sur la croissance, la teneur en protéines totales, la lipoperoxydation membranaire et les activités de certaines enzymes impliquées dans la défense contre les stress abiotiques. Concernant la croissance, l'application de 50 μmol l−1 de CuSO4 dans le milieu de culture se traduit par une nette réduction de la biomasse sèche racinaire, estimée à 41 % par rapport aux témoins. La longueur des racines traitées ainsi que leur teneur en eau sont également réduites de 20 % et de 53 %, respectivement. L'effet du stress cuprique se manifeste encore par une diminution de 53 % de la teneur des protéines totales solubles et une stimulation significative de la production de MDA (malondialdéhyde), un des produits majeurs de la lipoperoxydation membranaire. Parallèlement à ces perturbations, des modulations de quelques activités enzymatiques ont été notées. En effet, les racines traitées présentent une importante stimulation de l'activité de la CAT (catalase, EC 1.11.1.11) et la GPX (gaı̈acol peroxydase, EC 1.11.1.7) (267 % et 163 %, respectivement par rapport aux témoins). Quant à la SOD (superoxyde dismutase, EC 1.15.1.1), son activité se trouve plutôt inhibée dans les extraits de racines traitées par le cuivre en excès. L'étude a porté aussi sur l'activité de certaines enzymes impliquées dans le processus de lignification : les peroxydases lignifiantes et la PAL (phénylalanine ammonia-lyase, EC 4.3.1.5), l'enzyme clé de la voie de biosynthèse des phénylpropanoı̈des, aboutissant à la formation des monolignols. L'activité des peroxydases lignifiantes a été testée par leurs substrats spécifiques : l'alcool coniférylique et la syringaldazine. Le dosage de l'alcool coniférylique peroxydase montre une stimulation importante de son activité (245 %). De même, la révélation de l'activité de la syringaldazine peroxydase par électrophorèse native sur gel de polyacrylamide a montré la stimulation d'un isoforme (A2) et l'induction d'un autre isoforme (A1). Cette stimulation de l'activité des peroxydases lignifiantes a été accompagnée, en outre, d'une activation de la PAL dans les racines traitées par le cuivre. L'ensemble des modifications des activités enzymatiques étudiées est discuté en relation avec le retard de croissance enregistré dans les racines de tournesol traitées par 50 μmol l−1 de CuSO4.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0691(03)00157-4
Keywords: catalase, peroxidases, Helianthus annuus L., PAL, SOD
Mots-clés : catalase, Helianthus annuus L., PAL, peroxydases, SOD

Hager Jouili 1 ; Ezzedine El Ferjani 1

1 Laboratoire de biologie et physiologie cellulaires, faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia
@article{CRBIOL_2003__326_7_639_0,
     author = {Hager Jouili and Ezzedine El Ferjani},
     title = {Changes in antioxidant and lignifying enzyme activities in sunflower roots {(\protect\emph{Helianthus} annuus} {L.)} stressed with copper excess},
     journal = {Comptes Rendus. Biologies},
     pages = {639--644},
     publisher = {Elsevier},
     volume = {326},
     number = {7},
     year = {2003},
     doi = {10.1016/S1631-0691(03)00157-4},
     language = {en},
}
TY  - JOUR
AU  - Hager Jouili
AU  - Ezzedine El Ferjani
TI  - Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess
JO  - Comptes Rendus. Biologies
PY  - 2003
SP  - 639
EP  - 644
VL  - 326
IS  - 7
PB  - Elsevier
DO  - 10.1016/S1631-0691(03)00157-4
LA  - en
ID  - CRBIOL_2003__326_7_639_0
ER  - 
%0 Journal Article
%A Hager Jouili
%A Ezzedine El Ferjani
%T Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess
%J Comptes Rendus. Biologies
%D 2003
%P 639-644
%V 326
%N 7
%I Elsevier
%R 10.1016/S1631-0691(03)00157-4
%G en
%F CRBIOL_2003__326_7_639_0
Hager Jouili; Ezzedine El Ferjani. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. Comptes Rendus. Biologies, Volume 326 (2003) no. 7, pp. 639-644. doi : 10.1016/S1631-0691(03)00157-4. https://comptes-rendus.academie-sciences.fr/biologies/articles/10.1016/S1631-0691(03)00157-4/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

The aim of this study is to investigate the possible relationship between the toxic effect of copper and the changes of some enzyme activities involved in defence mechanisms.

In plants, excess of copper can easily catalyse the generation of harmful free radicals [1] and might therefore cause oxidative stress [2]. This injurious effect may be alleviated by enzymatic reactions scavenging oxygen free radicals and including SOD, CAT and peroxidases. The activities of these enzymes are increased by copper excess treatment [3,4].

Copper can also affect membrane properties by oxidation of membrane lipids [5]. The injurious membrane effect can however be estimated from the increase of MDA, one of lipid peroxidation product [2].

Moreover, increased activities of lignifying peroxidases and PAL are known to be related to environmental injury in both biotic and abiotic stimuli [6]. In plants, lignifying peroxidases were involved in polymerization of hydroxy cinnamyl alcohols to lignin. PAL is responsible for the conversion of l-phenylalanine to trans-cinnamic acid, a key intermediate in the pathway of lignin production.

In the present study, we investigated the changes of SOD, CAT, GPX, CAPX (coniferyl alcohol peroxidase), SPX (syringaldazine peroxidase) and PAL activities in sunflower roots exposed to cupric stress.

2 Materials and methods

2.1 Plant material and growth conditions

Sunflower seeds (Helianthus annuus L.) were germinated and grown in a controlled chamber, as previously described by Mazhoudi et al. [7]. Ten-day-old seedlings, previously grown on a non-contamined nutrient medium, were treated for five days by addition of 50 μM CuSO4 on the nutrient solution.

2.2 Malondialdehyde determination

Lipid peroxidation was measured as the amount of MDA determined by the thiobarbituric acid (TBA) reaction, as described by Heath and Packer [8]. The assay was carried out according to Baccouche et al. [9].

2.3 Enzyme preparations and assays

Plant material was extracted in 50 mM potassium phosphate buffer (pH 7.0) containing 5 mM sodium ascorbate and 0.2 mM EDTA. The homogenate was centrifuged at 13 000 g for 15 min. The resulting supernatant was used for assays of CAT, SOD and peroxidases. CAT and SOD activities were determined as described by Aebi [10] and Polle et al. [11], guaiacol peroxidase and coniferyl alcohol peroxidase were assayed, respectively, according to Fielding and Hall [12] and Sato et al. [13].

For determination of PAL activity, fresh material was homogenized in 100 mM borate buffer (pH 8.8) containing 0.5 mM EDTA and 17 mM β-mercaptoethanol. The homogenate was centrifuged at 20 000 g for 20 min and the supernatant was immediately assayed for PAL activity. The reaction mixture (3 ml), containing 100 mM borate buffer (pH 8.8), 20 mM l-phenylalanine and 200 μl of extract, was incubated at 40° for 1 h. Production of cinnamic acid was measured as an increase in absorbance at 290 nm.

2.4 Electrophoretic analysis

Anionic isoperoxidases were separated on 10% polyacrylamide gel electrophoresis. The syringaldazine isoperoxidases were stained by incubation of the gel with a solution of syringaldazine as described by Tadeo and Primo-Millo [14].

2.5 Protein determination

Protein content was determined according to Bradford [15] using bovine serum albumin as standard.

2.6 Statistical analysis

The results presented are the mean values±standard errors obtained from at least five replicates. Significant differences between treated and control plants are determined using ANOVA test (P<0.05).

3 Results

3.1 Seedling growth, water content and protein level

Under 50 μM CuSO4, sunflower roots showed a reduced length (Fig. 1A) and a delay of ramification. Also, matter production and water content were reduced by 41% and 53%, respectively, in treated roots compared to the control (Fig. 1B and  1C). The amount of total protein has decreased by 53% in Cu treatment conditions (Fig. 2A).

Fig. 1

Root length (A), dry weight (B) and water content (C) from 10-day-old sunflower seedlings grown in control nutrient medium (□) or supplemented with 50 μM CuSO4 (■) for five days. The values given are the means of ten experiments. Standard errors are indicated by vertical bars.

Fig. 2

Total protein content (A) and MDA level (B) in roots from 10-day-old sunflower seedlings grown in control nutrient medium (□) or supplemented with 50 μM CuSO4 (■) for five days. The values given are the means of five experiments. Standard errors are indicated by vertical bars.

3.2 Lipid peroxidation

An increase in the level of lipid peroxidation products, measured as thiobarbituric acid reactive metabolites, was observed in sunflower roots after copper treatment. The MDA content was increased by 22% in treated roots compared to the control (Fig. 2B).

3.3 Enzyme activities

The catalase and guaiacol peroxidase activities were significantly enhanced by copper treatment (Fig. 3A and  3B). By contrast, data showed a notable reduction of superoxide dismutase activity in treated roots compared with control (Fig. 3C).

Fig. 3

CAT (A), GPX (B) and SOD (C) activities in roots from 10-day-old sunflower seedlings grown in control nutrient medium (□) or supplemented with 50 μM CuSO4 (■) for five days. The values given are the means of five experiments. Standard errors are indicated by vertical bars.

Fig. 4A showed that coniferyl alcohol peroxidase activity was strongly enhanced (245% increase over the control). In the same way, PAL activity has increased in treated roots with respect to control (Fig. 4B).

Fig. 4

CAPX (A) and PAL (B) activities in roots from 10-day-old sunflower seedlings grown in control nutrient medium (□) or supplemented with 50 μM CuSO4 (■) for five days. The values given are the means of five experiments. Standard errors are indicated by vertical bars.

Native gel electrophoretic analysis of syringaldazine peroxidase activity in control roots showed only one isoform (A2). In treated roots, the isoform A2 was increased and another putative isoform A1 is displayed and seems to be induced, or its amount increased (Fig. 5).

Fig. 5

Native PAGE of syringaldazine peroxidase isozymes in root extracts from 10-day-old sunflower seedlings grown in control nutrient medium (control) or supplemented with 50 μM CuSO4 (Cu) for five days. The same protein amount (75 μg) is deposed in each lane.

4 Discussion

In the present work, we have examined the effect of copper excess on growth and several physiological processes in roots of sunflower seedlings.

A significant reduction of dry matter production, root length and water content are observed in roots exposed to copper treatment (41, 33 and 53%, respectively, Fig. 1). In fact, copper has been identified as being a powerful inhibitor at high levels [2,7,16,17]. Our findings indicate again a significant decrease in protein level by cupric stress (53%, Fig. 2A). This reduction of protein amount could be related to the ability of Cu to interfere with thiol groups of a wide range of enzymes [16] and might therefore produce disorder in protein metabolism. Moreover, cupric ion is considered as an efficient generator of toxic oxygen species that caused protein degradation [18].

Our results also show an increase in the MDA level in roots of Cu-treated sunflower seedlings compared with controls (Fig. 2B). Lipid peroxidation was already demonstrated in roots [5] and leaf segments [19] treated by excess of copper. In fact, it is well known that copper initiates the lipoperoxidation process, which generates free radicals and is recognized to affect membrane integrity [1], leading to the alteration of ion transports [20].

These damaging membrane effects could explain, in part, the reduction of water content in treated sunflower roots (Fig. 1C) affecting cellular turgor and thereafter cell enlargement. So, growth delay could be related to the inhibition of cellular turgor, the reduction of total protein amount and to the generated free radicals by lipoperoxidation.

Generally, it is known that growth inhibition, noted in plants under heavy metals uptake, is related to some physiological process alterations owing to generated oxidative stress. Such damages could be mitigated and repaired by antioxidative enzymes like CAT, SOD and peroxidases.

In fact, our results show a stimulation of CAT and guaiacol peroxidase activities in treated roots. De Vos et al. [5] and Wecks and Clijsters [2] also reported an increase in the capacity of CAT by toxic concentrations of Cu in roots. Copper-induced guaiacol peroxidase activity was also shown by Mazhoudi et al. [7] and Chen et al. [21]. In the case of SOD, the inhibition of its activity after copper treatment (Fig. 3C) is confirmed by Palma et al. [22] and Wecks and Clijsters [2]. Thus, it seems that in sunflower treated roots CAT and guaiacol peroxidase take part in defence mechanisms against oxidative stress caused by copper, while SOD does not.

Finally, we have examined the effect of cupric stress on lignifying peroxidases (coniferyl alcohol and syringaldazine peroxidases) and PAL. Lignifying peroxidases were assayed using specific electron donors, coniferyl alcohol and syringaldazine. It appears that copper enhances coniferyl alcohol peroxidase activity (Fig. 3B). Qualitative and quantitative changes in isoenzymatic profile of syringaldazine peroxidase were investigated (Fig. 5). Our findings show a stimulation of isoform A2 and an induction of isoform A1. In the same way, Chen et al. [21] reported that copper excess induced lignifying peroxidase activities in radish roots, which are correlated with growth reduction. Thus, we can also propose that, in sunflower roots, growth reduction could be caused by Cu-enhanced lignifying peroxidase activities.

PAL, a key intermediate of phenylpropanoid pathway, is also activated by cupric stress (Fig. 4B). It was shown that PAL is generally stimulated in plant tissues exposed to several environmental stresses [6]. The same authors indicated that PAL enhancement in these stress conditions is due to H2O2 generation, which occurs as primary reaction in response to stress. So, it seems that, in sunflower roots, the enhancement of PAL activity could be related to the implication of this enzyme in the plant response to cupric stress.

In conclusion, activities of antioxidant enzymes, lignifying peroxidases and PAL increased when sunflower roots were treated with 50 μM CuSO4. This indicates that sunflower roots mobilize several enzymatic defence processes in order to mitigate Cu-stress damages.


Bibliographie

[1] B. Halliwell; J.M.C. Gutteridge Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J., Volume 219 (1984), pp. 1-14

[2] J.E.J. Weckx; H.M.M. Clijsters Oxidative damage and defence mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper, Physiol. Plant., Volume 96 (1996), pp. 506-512

[3] F. Van Assche; H.M.M. Clijsters Effects of metals on enzyme activity in plants, Plant Cell Environ., Volume 13 (1990), pp. 195-206

[4] K. Asada Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plant, Physiol. Plant., Volume 85 (1992), pp. 235-241

[5] C.H.R. De Vos; W.M. Ten Bookum; R. Voojs; H. Schat; L.J. De Kok Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus, Plant Physiol. Biochem., Volume 31 (1993), pp. 151-158

[6] S. Dorey; M. Kopp; P. Geoffroy; B. Friting; S. Kauffman Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction. Phenylalanine ammonia lyase stimulation salicylic acid accumulation, or scopoletin consumption in cultured tobacco cells treated with elicitin, Plant Physiol., Volume 121 (1999), pp. 163-171

[7] S. Mazhoudi; A. Chaoui; M.H. Ghorbal; E. El Ferjani Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.), Plant Sci., Volume 127 (1997), pp. 129-137

[8] R.L. Heath; L. Packer Photoperoxidation in isolated chloroplast. I. Kinetics and stoiciometry of fatty acid peroxidation, Arch. Biochem. Biophys., Volume 125 (1968), pp. 189-198

[9] S. Baccouch; A. Chaoui; E. El Ferjani Nickel induced oxidative damage and antioxidative responses in Zea mays shoots, Plant Physiol. Biochem., Volume 36 (1998), pp. 689-694

[10] H. Aebi Catalase in vitro, Methods Enzymol., Volume 105 (1984), pp. 121-126

[11] A. Polle; B. Krings; H. Rennenberg Superoxide dismutase activity in needles of Norwegian spruce trees (Picea abies L.), Plant Physiol., Volume 90 (1989), pp. 1310-1315

[12] J.L. Fielding; J.L. Hall A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum, J. Exp. Bot., Volume 29 (1978), pp. 969-981

[13] Y. Sato; M. Sugiyama; A. Komamine; H. Fukuda Separation and characterization of the isoenzymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation, Planta, Volume 196 (1995), pp. 141-147

[14] F.R. Tadeo; E. Primo-Millo Peroxidase activity changes and lignin deposition during the senescence process in Citrus stigmas and styles, Plant Sci., Volume 68 (1990), pp. 47-56

[15] M.M. Bradford A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., Volume 72 (1976), pp. 248-254

[16] J.C. Fernandes; F.S. Henriques Biochemical, physiological and structural effects of excess copper in plants, Bot. Rev., Volume 57 (1990), pp. 246-273

[17] B. Mocquot; J. Vangrosveld; H.M.M. Clijsters; M. Mench Copper toxicity in young maize (Zea mays L.) plants, Plant and Soil, Volume 182 (1996), pp. 287-300

[18] J.M. Palma; L.M. Sandalio; F.J. Corpas; M.C. Romero-Puertas; I. McCarthy; L.A. del Rı́o Plant proteases, protein degradation and oxidative stress: role of peroxisomes, Plant Physiol. Biochem., Volume 40 (2002), pp. 521-530

[19] C.M. Luna; C.A. Gonzalez; V.S. Trippi Oxidative damage caused by excess of copper in oat leaves, Plant Cell Physiol., Volume 35 (1994), pp. 11-15

[20] L.F. De Filippis The effect of heavy metal compounds on the permeability of Chlorella cells, Z. Pflanzenphysiol., Volume 92 (1979), pp. 39-49

[21] E.L. Chen; Y.A. Chen; L.M. Chen; Z.H. Liu Effect of copper on peroxidase activity and lignin content in Raphanus sativus, Plant Physiol. Biochem., Volume 40 (2002), pp. 439-444

[22] J.M. Palma; M. Gómez; J.L.A. Yánez del Rı́o Increased levels of peroxisomal active oxygen-related enzymes in copper tolerant pea plants, Plant Physiol., Volume 85 (1987), pp. 570-574


Cité par

  • Shuiqing Deng; Lan Pan; Tong Ke; Jingwei Liang; Rongjing Zhang; Hui Chen; Ming Tang; Wentao Hu Rhizophagus Irregularis regulates flavonoids metabolism in paper mulberry roots under cadmium stress, Mycorrhiza, Volume 34 (2024) no. 4, p. 317 | DOI:10.1007/s00572-024-01155-7
  • Wei-Lin Huang; Hui Yang; Xu-Feng Chen; Fei Lu; Rong-Rong Xie; Lin-Tong Yang; Xin Ye; Zeng-Rong Huang; Li-Song Chen The Ameliorative Effect of Coumarin on Copper Toxicity in Citrus sinensis: Insights from Growth, Nutrient Uptake, Oxidative Damage, and Photosynthetic Performance, Plants, Volume 13 (2024) no. 24, p. 3584 | DOI:10.3390/plants13243584
  • Changliang Du; Lingling Li; Junhong Xie; Zechariah Effah; Zhuzhu Luo; Linlin Wang Long-Term Conservation Tillage Increases Yield and Water Use Efficiency of Spring Wheat (Triticum aestivum L.) by Regulating Substances Related to Stress on the Semi-Arid Loess Plateau of China, Agronomy, Volume 13 (2023) no. 5, p. 1301 | DOI:10.3390/agronomy13051301
  • B. Palani Kumar; Mythili Ravichandran; M. Varshini; V. Sowntharya; Freya Joan Carvalho; Sakthivel Venkatesh; R. Dineshkumar; Manickam Gayathri The enterprising approach of the cyanobacteria and explore its biostimulatory response on Trigonella foenum-graecum (Fabales: Fabaceae), Biomass Conversion and Biorefinery (2023) | DOI:10.1007/s13399-023-05096-7
  • Satveer Kaur; Vandita Tiwari; Anita Kumari; Era Chaudhary; Anjali Sharma; Usman Ali; Monika Garg Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture, Journal of Biotechnology, Volume 361 (2023), p. 12 | DOI:10.1016/j.jbiotec.2022.11.009
  • Bok‐Rye Lee; Sang‐Hyun Park; Muchamad Muchlas; Van Hien La; Md Al Mamun; Dong‐Won Bae; Tae‐Hwan Kim Differential response of phenylpropanoid pathway as linked to hormonal change in two Brassica napus cultivars contrasting drought tolerance, Physiologia Plantarum, Volume 175 (2023) no. 6 | DOI:10.1111/ppl.14115
  • Ying Wang; Huanyan Luo; He Peng; Xitong Wang; Fei Xu; Heng Xu Coprinus comatus endophytic bacteria characteristics and mechanisms for the cadmium resistance, Environmental Science and Pollution Research, Volume 29 (2022) no. 1, p. 584 | DOI:10.1007/s11356-021-15381-5
  • Anastasia Tugbaeva; Alexander Ermoshin; Hada Wuriyanghan; Maria Maleva; Galina Borisova; Irina Kiseleva Copper Stress Enhances the Lignification of Axial Organs in Zinnia elegans, Horticulturae, Volume 8 (2022) no. 6, p. 558 | DOI:10.3390/horticulturae8060558
  • Vitor H. Oliveira; J.P. Coelho; R. Borgogni; M.E. Pereira; E. Figueira Metal(oid)s accumulation (Hg and As) and their biochemical effects in Halimione portulacoides (Ria de Aveiro, Portugal), Marine Pollution Bulletin, Volume 180 (2022), p. 113804 | DOI:10.1016/j.marpolbul.2022.113804
  • Nikoo Azad; Maryam Rezayian; Halimeh Hassanpour; Vahid Niknam; Hassan Ebrahimzadeh Physiological Mechanism of Salicylic Acid in Mentha pulegium L. under salinity and drought stress, Brazilian Journal of Botany, Volume 44 (2021) no. 2, p. 359 | DOI:10.1007/s40415-021-00706-y
  • Radwan Khalil; Samia Haroun; Fardous Bassyoini; Aziza Nagah; Mohammad Yusuf Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant, Journal of Agriculture and Food Research, Volume 5 (2021), p. 100182 | DOI:10.1016/j.jafr.2021.100182
  • Aung Htay Naing; Chang Kil Kim Abiotic stress‐induced anthocyanins in plants: Their role in tolerance to abiotic stresses, Physiologia Plantarum, Volume 172 (2021) no. 3, p. 1711 | DOI:10.1111/ppl.13373
  • Caixia Wang; Lin Chen; Chunlin Peng; Xiaoqing Shang; Xiaolong Lv; Jie Sun; Cheng Li; Lei Wei; Xiaoli Liu Postharvest benzothiazole treatment enhances healing in mechanically damaged sweet potato by activating the phenylpropanoid metabolism, Journal of the Science of Food and Agriculture, Volume 100 (2020) no. 8, p. 3394 | DOI:10.1002/jsfa.10373
  • Jesús D. Peco; Luisa M. Sandalio; Pablo Higueras; Adela Olmedilla; Juan A. Campos Characterization of the biochemical basis for copper homeostasis and tolerance inBiscutella auriculataL., Physiologia Plantarum (2020) | DOI:10.1111/ppl.13301
  • Milijana Kovačević; Živko Jovanović; Gordana Andrejić; Željko Dželetović; Tamara Rakić Effects of high metal concentrations on antioxidative system in Phragmites australis grown in mine and flotation tailings ponds, Plant and Soil, Volume 453 (2020) no. 1-2, p. 297 | DOI:10.1007/s11104-020-04598-x
  • Maria Hock; Carolin Plos; Maria Sporbert; Alexandra Erfmeier Combined Effects of UV-B and Drought on Native and Exotic Populations of Verbascum thapsus L., Plants, Volume 9 (2020) no. 2, p. 269 | DOI:10.3390/plants9020269
  • Juanli Chen; Xueyong Zhao; Xinping Liu; Yaqiu Zhang; Yayong Luo; Yongqing Luo; Zhaoquan He; Rui Zhang Growth and Physiology of Two Psammophytes to Precipitation Manipulation in Horqin Sandy Land, Eastern China, Plants, Volume 8 (2019) no. 7, p. 244 | DOI:10.3390/plants8070244
  • Zahra Ghasemi; Seyed Majid Ghaderian; Carmela Monterroso; Petra S. Kidd Improving the growth of Ni-hyperaccumulating plants in serpentine quarry tailings, International Journal of Phytoremediation, Volume 20 (2018) no. 7, p. 699 | DOI:10.1080/15226514.2017.1413335
  • C. Guarino; R. Sciarrillo The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy), Chemosphere, Volume 183 (2017), p. 371 | DOI:10.1016/j.chemosphere.2017.05.102
  • Carmine Guarino; Rosaria Sciarrillo Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils, Ecological Engineering, Volume 99 (2017), p. 70 | DOI:10.1016/j.ecoleng.2016.11.051
  • Halima MESLEM; Abderezzak DJABEUR; Omar KHAROUBI; Meriem KAID-HARCHE; Halima MESLEM; Abderezzak DJABEUR; Omar KHAROUBI; Meriem KAID-HARCHE Effect of water deficit on Argan tree seedlings (Argania spinosa L. Skeels): Morphological and physiological aspect, African Journal of Biotechnology, Volume 14 (2015) no. 12, p. 1020 | DOI:10.5897/ajb2014.14377
  • Zhaoyu Kong; Osama Abdalla Mohamad; Zhenshan Deng; Xiaodong Liu; Bernard R. Glick; Gehong Wei Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress, Environmental Science and Pollution Research, Volume 22 (2015) no. 16, p. 12479 | DOI:10.1007/s11356-015-4530-7
  • Zhaoyu Kong; Bernard R. Glick; Jin Duan; Shulan Ding; Jie Tian; Brendan J. McConkey; Gehong Wei Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina, Plant and Soil, Volume 391 (2015) no. 1-2, p. 383 | DOI:10.1007/s11104-015-2434-4
  • Prakash M. Gopalakrishnan Nair; Ill Min Chung A Mechanistic Study on the Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells, Biological Trace Element Research, Volume 162 (2014) no. 1-3, p. 342 | DOI:10.1007/s12011-014-0106-5
  • Xiao Shu; QuanFa Zhang; WeiBo Wang Lead Induced Changes in Growth and Micronutrient Uptake of Jatropha curcas L., Bulletin of Environmental Contamination and Toxicology, Volume 93 (2014) no. 5, p. 611 | DOI:10.1007/s00128-014-1377-4
  • Shatarupa Chakraborty; Abhishek Mukherjee; Anisur Rahman Khuda-Bukhsh; Tapan Kumar Das Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation, Ecotoxicology and Environmental Safety, Volume 106 (2014), p. 46 | DOI:10.1016/j.ecoenv.2014.04.007
  • Karolina Izbiańska; Magdalena Arasimowicz-Jelonek; Joanna Deckert Phenylpropanoid pathway metabolites promote tolerance response of lupine roots to lead stress, Ecotoxicology and Environmental Safety, Volume 110 (2014), p. 61 | DOI:10.1016/j.ecoenv.2014.08.014
  • Bok-Rye Lee; Qian Zhang; Tae-Hwan Kim Lignification in Relation to the Influence of Water-deficit Stress in Brassica napus, Journal of The Korean Society of Grassland and Forage Science, Volume 34 (2014) no. 1, p. 15 | DOI:10.5333/kgfs.2014.34.1.15
  • Réka Szőllősi Superoxide Dismutase (SOD) and Abiotic Stress Tolerance in Plants, Oxidative Damage to Plants (2014), p. 89 | DOI:10.1016/b978-0-12-799963-0.00003-4
  • Ivanildes C. dos Santos; Alex-Alan Furtado de Almeida; Dário Anhert; Alessandro S. da Conceição; Carlos P. Pirovani; José L. Pires; Raúl René Valle; Virupax C. Baligar; Gerrit T.S. Beemster Molecular, Physiological and Biochemical Responses of Theobroma cacao L. Genotypes to Soil Water Deficit, PLoS ONE, Volume 9 (2014) no. 12, p. e115746 | DOI:10.1371/journal.pone.0115746
  • Orawan Bunyatang; Nion Chirapongsatonkul; Nunta Churngchow Purification of a Protease Inhibitor from Hevea brasiliensis cell suspension and it’s effect on the growth of Phytophthora palmivora, Journal of Plant Biochemistry and Biotechnology, Volume 22 (2013) no. 2, p. 185 | DOI:10.1007/s13562-012-0137-y
  • Nadia M. El-Shafey; Hamada AbdElgawad Luteolin, a bioactive flavone compound extracted from Cichorium endivia L. subsp. divaricatum alleviates the harmful effect of salinity on maize, Acta Physiologiae Plantarum, Volume 34 (2012) no. 6, p. 2165 | DOI:10.1007/s11738-012-1017-8
  • Zao-Fa Jiang; Su-Zhen Huang; Yu-Lin Han; Jiu-Zhou Zhao; Jia-Jia Fu Physiological response of Cu and Cu mine tailing remediation of Paulownia fortunei (Seem) Hemsl, Ecotoxicology, Volume 21 (2012) no. 3, p. 759 | DOI:10.1007/s10646-011-0836-5
  • Djouher Debiane; Maryline Calonne; Joël Fontaine; Frédéric Laruelle; Anne Grandmougin-Ferjani; Anissa Lounès-Hadj Sahraoui Benzo[a]pyrene induced lipid changes in the monoxenic arbuscular mycorrhizal chicory roots, Journal of Hazardous Materials, Volume 209-210 (2012), p. 18 | DOI:10.1016/j.jhazmat.2011.12.044
  • Bok‐Rye Lee; Sowbiya Muneer; Woo‐Jin Jung; Jean‐Christophe Avice; Alain Ourry; Tae‐Hwan Kim Mycorrhizal colonization alleviates drought‐induced oxidative damage and lignification in the leaves of drought‐stressed perennial ryegrass (Lolium perenne), Physiologia Plantarum, Volume 145 (2012) no. 3, p. 440 | DOI:10.1111/j.1399-3054.2012.01586.x
  • M. F. Abou Alhamed; Y. M. Shebany Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance, Plant Biology, Volume 14 (2012) no. 5, p. 859 | DOI:10.1111/j.1438-8677.2012.00608.x
  • Tatiana P.A. Merlin; Giuseppina P.P. Lima; Sarita Leonel; Fabio Vianello Peroxidase activity and total phenol content in citrus cuttings treated with different copper sources, South African Journal of Botany, Volume 83 (2012), p. 159 | DOI:10.1016/j.sajb.2012.08.002
  • Hager Jouili; Houda Bouazizi; Ezzeddine El Ferjani Plant peroxidases: biomarkers of metallic stress, Acta Physiologiae Plantarum, Volume 33 (2011) no. 6, p. 2075 | DOI:10.1007/s11738-011-0780-2
  • Radha Solanki; Rajesh Dhankhar Biochemical changes and adaptive strategies of plants under heavy metal stress, Biologia, Volume 66 (2011) no. 2, p. 195 | DOI:10.2478/s11756-011-0005-6
  • Houda Bouazizi; Hager Jouili; Anja Geitmann; Ezzeddine El Ferjani Cell Wall Accumulation of Cu Ions and Modulation of Lignifying Enzymes in Primary Leaves of Bean Seedlings Exposed to Excess Copper, Biological Trace Element Research, Volume 139 (2011) no. 1, p. 97 | DOI:10.1007/s12011-010-8642-0
  • Rupinder Kaur; Renu Bhardwaj; Ashwani K. Thukral; Upma Narang Interactive effects of binary combinations of manganese with other heavy metals on metal uptake and antioxidative enzymes inBrassica junceaL. seedlings, Journal of Plant Interactions, Volume 6 (2011) no. 1, p. 25 | DOI:10.1080/17429145.2010.516407
  • Sonia Labidi; Maryline Calonne; Fayçal Ben Jeddi; Djouher Debiane; Salah Rezgui; Frédéric Laruelle; Benoit Tisserant; Anne Grandmougin-Ferjani; Anissa Lounès-Hadj Sahraoui Calcareous impact on arbuscular mycorrhizal fungus development and on lipid peroxidation in monoxenic roots, Phytochemistry, Volume 72 (2011) no. 18, p. 2335 | DOI:10.1016/j.phytochem.2011.08.016
  • Abdel-Basset Mohamed Al-Hakimi; Afaf Mohamed Hamada Ascorbic acid, thiamine or salicylic acid induced changes in some physiological parameters in wheat grown under copper stress, Plant Protection Science, Volume 47 (2011) no. 3, p. 92 | DOI:10.17221/20/2010-pps
  • Yan Lu; Xinrong Li; Mingzhu He; Xin Zhao; Yubing Liu; Yan Cui; Yanxia Pan; Huijuan Tan Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass, Acta Physiologiae Plantarum, Volume 32 (2010) no. 3, p. 583 | DOI:10.1007/s11738-009-0436-7
  • Houda Bouazizi; Hager Jouili; Anja Geitmann; Ezzeddine El Ferjani Structural Changes of Cell Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress, Biological Trace Element Research, Volume 136 (2010) no. 2, p. 232 | DOI:10.1007/s12011-009-8530-7
  • Hager Jouili; Houda Bouazizi; Ezzedine El Ferjani Protein and Peroxidase Modulations in Sunflower Seedlings (Helianthus annuus L.) Treated with a Toxic Amount of Aluminium, Biological Trace Element Research, Volume 138 (2010) no. 1-3, p. 326 | DOI:10.1007/s12011-010-8631-3
  • Hnia Yaakoubi; Guy Samson; Mustapha Ksontini; Wided Chaibi Localized increases of polyphenol concentration and antioxidant capacity in relation to the differential accumulations of copper and cadmium in roots and in shoots of sunflower, Botany, Volume 88 (2010) no. 10, p. 901 | DOI:10.1139/b10-063
  • Shun Gao; Chao Ou-yang; Lin Tang; Jin-qiu Zhu; Ying Xu; Sheng-hua Wang; Fang Chen Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity, Journal of Hazardous Materials, Volume 182 (2010) no. 1-3, p. 591 | DOI:10.1016/j.jhazmat.2010.06.073
  • X.M. Cui; Y.K. Zhang; X.B. Wu; C.S. Liu The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants, Plant, Soil and Environment, Volume 56 (2010) no. 6, p. 274 | DOI:10.17221/98/2009-pse
  • Xiumin Cui; Yikai Zhang; Xiuling Chen; Hong Jin; Xiaobin Wu, 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (2009), p. 1 | DOI:10.1109/icbbe.2009.5162740
  • M. P. Mourato; L. L. Martins; M. P. Campos-Andrada Physiological responses of Lupinus luteus to different copper concentrations, Biologia plantarum, Volume 53 (2009) no. 1, p. 105 | DOI:10.1007/s10535-009-0014-2
  • Yanfang Wu; Yahua Chen; Yanjun Yi; Zhenguo Shen Responses to copper by the moss Plagiomnium cuspidatum: Hydrogen peroxide accumulation and the antioxidant defense system, Chemosphere, Volume 74 (2009) no. 9, p. 1260 | DOI:10.1016/j.chemosphere.2008.10.059
  • M.M. Posmyk; R. Kontek; K.M. Janas Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress, Ecotoxicology and Environmental Safety, Volume 72 (2009) no. 2, p. 596 | DOI:10.1016/j.ecoenv.2008.04.024
  • Kierann R. Santala; Peter Ryser Influence of heavy-metal contamination on plant response to water availability in white birch, Betula papyrifera, Environmental and Experimental Botany, Volume 66 (2009) no. 2, p. 334 | DOI:10.1016/j.envexpbot.2009.03.018
  • Houda Bouazizi; Hager Jouili; Anja Geitmann; E. Ferjani Effect of copper excess on H2O2accumulation and peroxidase activities in bean roots, Acta Biologica Hungarica, Volume 59 (2008) no. 2, p. 233 | DOI:10.1556/abiol.59.2008.2.9
  • Małgorzata M. Posmyk; Renata Kontek; Krystyna M. Janas Red cabbage extract limits copper stress injury in meristematic cells of Vicia faba, Acta Physiologiae Plantarum, Volume 30 (2008) no. 4, p. 481 | DOI:10.1007/s11738-008-0145-7
  • Ninad P. Gujarathi; Bryan J. Haney; Heidi J. Park; S. Ranil Wickramasinghe; James C. Linden Hairy Roots of Helianthus annuus: A Model System to Study Phytoremediation of Tetracycline and Oxytetracycline, Biotechnology Progress, Volume 21 (2008) no. 3, p. 775 | DOI:10.1021/bp0496225
  • M. Belaqziz; E.K. Lakhal; H.D. Mbouobda; I. El Hadrami Land Spreading of Olive Mill Wastewater: Effect on Maize (Zea maize) Crop, Journal of Agronomy, Volume 7 (2008) no. 4, p. 297 | DOI:10.3923/ja.2008.297.305
  • Karina Patrícia Vieira da Cunha; Clístenes Williams Araújo do Nascimento; Rejane Magalhães de Mendonça Pimentel; Clébio Pereira Ferreira Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming, Journal of Hazardous Materials, Volume 160 (2008) no. 1, p. 228 | DOI:10.1016/j.jhazmat.2008.02.118
  • Kusum Verma; G. S. Shekhawat; Astha Sharma; S. K. Mehta; V. Sharma Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of Brassica juncea (L.) czern, Plant Cell Reports, Volume 27 (2008) no. 7, p. 1261 | DOI:10.1007/s00299-008-0552-7
  • S. Gao; R. Yan; M. Cao; W. Yang; S. Wang; F. Chen Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling, Plant, Soil and Environment, Volume 54 (2008) no. 3, p. 117 | DOI:10.17221/2688-pse
  • Houda Bouazizi; H. Jouili; E. Ferjani Copper-induced oxidative stress in maize shoots (Zea maysL.): H2O2accumulation and peroxidases modulation, Acta Biologica Hungarica, Volume 58 (2007) no. 2, p. 209 | DOI:10.1556/abiol.58.2007.2.7
  • Y. Xia; Z. G. Shen Comparative Studies of Copper Tolerance and Uptake by Three Plant Species of the Genus Elsholtzia, Bulletin of Environmental Contamination and Toxicology, Volume 79 (2007) no. 1, p. 53 | DOI:10.1007/s00128-007-9222-7
  • Sarita Sinha; Shekhar Mallick; Rohit Kumar Misra; Sarita Singh; Ankita Basant; Amit Kumar Gupta Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: Effect on lipid peroxidation, morpho-anatomical changes and antioxidants, Chemosphere, Volume 67 (2007) no. 1, p. 176 | DOI:10.1016/j.chemosphere.2006.08.026
  • G. Bidar; G. Garçon; C. Pruvot; D. Dewaele; F. Cazier; F. Douay; P. Shirali Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity, Environmental Pollution, Volume 147 (2007) no. 3, p. 546 | DOI:10.1016/j.envpol.2006.10.013
  • Siham Hanifi; Ismai El Hadrami Olive Mill Wastewaters Fractioned Soil-Application for Safe Agronomic Reuse in Date Palm (Phoenix dactylifera L.) Fertilization, Journal of Agronomy, Volume 7 (2007) no. 1, p. 63 | DOI:10.3923/ja.2008.63.69
  • Houda Bouaziz; Hager Jouili; Ezzeddine El Ferjani Effects of Copper Excess on Growth, H2O2 Production and Peroxidase Activities in Maize Seedlings (Zea mays L.), Pakistan Journal of Biological Sciences, Volume 10 (2007) no. 5, p. 751 | DOI:10.3923/pjbs.2007.751.756
  • R. Hajiboland Uptake, Transport, Re-translocation and Chelation of Ni in One Tolerant and One Susceptible Graminaceous Species, Pakistan Journal of Biological Sciences, Volume 10 (2007) no. 7, p. 1011 | DOI:10.3923/pjbs.2007.1011.1019
  • Hongxiao Zhang; Yan Xia; Guiping Wang; Zhenguo Shen Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper–zinc superoxide dismutase in roots of Elsholtzia haichowensis, Planta, Volume 227 (2007) no. 2, p. 465 | DOI:10.1007/s00425-007-0632-x
  • Mohammad Babar Ali; Nisha Singh; Abdullah Mohammad Shohael; Eun Joo Hahn; Kee-Yoeup Paek Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress, Plant Science, Volume 171 (2006) no. 1, p. 147 | DOI:10.1016/j.plantsci.2006.03.005
  • Priscila L. Gratão; Andrea Polle; Peter J. Lea; Ricardo A. Azevedo Making the life of heavy metal-stressed plants a little easier, Functional Plant Biology, Volume 32 (2005) no. 6, p. 481 | DOI:10.1071/fp05016
  • Guadalupe De la Rosa; Alejandro Martínez-Martínez; Helvia Pelayo; José R. Peralta-Videa; Blanca Sanchez-Salcido; Jorge L. Gardea-Torresdey Production of low-molecular weight thiols as a response to cadmium uptake by tumbleweed (Salsola kali), Plant Physiology and Biochemistry, Volume 43 (2005) no. 5, p. 491 | DOI:10.1016/j.plaphy.2005.03.013

Cité par 72 documents. Sources : Crossref


Commentaires - Politique