Plan
Comptes Rendus

Account / Revue
Carbohydrates as green raw materials for the chemical industry
Comptes Rendus. Chimie, Volume 7 (2004) no. 2, pp. 65-90.

Résumés

In view of the impending transition of chemical industry from depleting fossil raw materials to renewable feedstocks − the end of cheap oil is predicted for 2040 at the latest − this account gives an overview on chemically transforming low-molecular weight carbohydrates into products with versatile industrial application profiles and the potential to replace those presently derived from petrochemical sources.

Du fait de l'imminence de la mutation de l'industrie chimique vers l'utilisation de matières premières renouvelables à la place des ressources fossiles – l'épuisement de ces ressources bon marché est prévu pour 2040 au plus tard –, cet article propose une vue générale de la transformation chimique des sucres, à faible poids moléculaire, vers des applications industrielles polyvalentes et de leur potentiel à remplacer les produits préparés actuellement à partir de ressources pétrochimiques.

Métadonnées
Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crci.2004.02.002
Keywords: Carbohydrates, Biofeedstock, Industrial utilization, Organic chemicals
Mots-clés : Sucres, Biomasse, Utilisation industrielle, Produits chimiques organiques

Frieder W. Lichtenthaler 1 ; Siegfried Peters 1

1 Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstraße 22, 64287 Darmstadt, Germany
@article{CRCHIM_2004__7_2_65_0,
     author = {Frieder W. Lichtenthaler and Siegfried Peters},
     title = {Carbohydrates as green raw materials for the chemical industry},
     journal = {Comptes Rendus. Chimie},
     pages = {65--90},
     publisher = {Elsevier},
     volume = {7},
     number = {2},
     year = {2004},
     doi = {10.1016/j.crci.2004.02.002},
     language = {en},
}
TY  - JOUR
AU  - Frieder W. Lichtenthaler
AU  - Siegfried Peters
TI  - Carbohydrates as green raw materials for the chemical industry
JO  - Comptes Rendus. Chimie
PY  - 2004
SP  - 65
EP  - 90
VL  - 7
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crci.2004.02.002
LA  - en
ID  - CRCHIM_2004__7_2_65_0
ER  - 
%0 Journal Article
%A Frieder W. Lichtenthaler
%A Siegfried Peters
%T Carbohydrates as green raw materials for the chemical industry
%J Comptes Rendus. Chimie
%D 2004
%P 65-90
%V 7
%N 2
%I Elsevier
%R 10.1016/j.crci.2004.02.002
%G en
%F CRCHIM_2004__7_2_65_0
Frieder W. Lichtenthaler; Siegfried Peters. Carbohydrates as green raw materials for the chemical industry. Comptes Rendus. Chimie, Volume 7 (2004) no. 2, pp. 65-90. doi : 10.1016/j.crci.2004.02.002. https://comptes-rendus.academie-sciences.fr/chimie/articles/10.1016/j.crci.2004.02.002/

Version originale du texte intégral

Le texte intégral ci-dessous peut contenir quelques erreurs de conversion par rapport à la version officielle de l'article publié.

1 Introduction

As our fossil raw materials are irrevocably decreasing and as the pressure on our environment is building up, the progressive changeover of chemical industry to renewable feedstocks for their raw materials emerges as an inevitable necessity [1–4], i.e. it will have to proceed increasingly to the raw materials basis that prevailed before natural gas and oil outpaced all other sources.

Historically, the raw materials basis was substantially renewable, as depicted in Fig. 1, with the utilization of biomass and coal being in equal about 100 years ago [5]. In the 1920s, coal tar-based materials had taken the lead, reaching a maximum around 1930; thereafter, fossil gas and oil irresistibly took over, eliminating coal nearly completely and reducing renewable feedstocks to very modest levels.

Fig. 1

Raw materials basis of chemical industry in historical perspective.

This over-reliance of chemical industry on fossil raw materials has its foreseeable limits as they are depleting and are irreplaceable, the only question being: when will affordable fossil fuels be exhausted? Or, stated more appropriately: when will fossil raw materials have become so expensive that biofeedstocks are an economically competitive alternative? Experts realistically predict the end of cheap oil for 2040 at the latest [6,7], a development that we can witness by now already, as chemical industry combats the rising costs of natural oil and gas [8]. Thus, taking the prognostication for the end of cheap oil [7], the curve for the utilization of biofeedstocks in Fig. 1 will have to rise such that it meets that of fossil raw materials somewhere around 2030–2040.

The transition to a more bio-based production system is pressing, yet hampered by a variety of obstacles: fossil raw materials are more economic at present, and the process technology for their into organic chemicals is exceedingly well developed and basically different from that required for transforming carbohydrates into products with industrial application profiles. This situation originates from the inherently different chemical structures of the two types of raw materials, as terrestrial biomass is considerably more complex, constituting a multifaceted array of low and high molecular weight products, exemplified by sugars, hydroxy and amino acids, lipids, and biopolymers such as cellulose, hemicelluloses, chitin, starch, lignin, and proteins. By far, the most important class of organic compounds in terms of volume produced are carbohydrates, as they represent roughly 75% of the annually renewable biomass of about 200 billion tons. Of these, only a minor fraction (ca. 4%) is used by man, the rest decays and recycles along natural pathways.

The bulk of the annually renewable carbohydrate biomass are polysaccharides, yet their non-food utilization is confined to textile, paper, and coating industries, either as such or in the form of simple esters and ethers. Organic commodity chemicals, however, are usually of low molecular weight, so they are more expediently obtained from low-molecular-weight carbohydrates than from polysaccharides. Accordingly, the constituent repeating units of these polysaccharides − glucose (cellulose, starch), fructose (inulin), xylose (xylan), etc., inexpensive and available on multi-ton scale − are the actual carbohydrate raw materials for basic organic chemicals.

Intense efforts within the last decade [9–17] to advance the use of inexpensive, large-scale-accessible mono- and di-saccharides as raw materials for chemical industry have so far not been able to basically bridge the conceptual, technological and economical gap between fossil hydrocarbons and renewable carbohydrates; so, this account reviews the present utilization of low-molecular-weight carbohydrates as feedstock for organic chemicals and − that being rather modest − accentuates existing methodologies that appear practical enough to be developed into industrially viable processes and products of presumed industrial relevance, i.e. bulk, intermediate, and fine chemicals, pharmaceuticals, agrochemicals, high-value-added speciality chemicals, or simply enantiopure building blocks for organic synthesis.

2 Sugars as biofeedstocks

The following overview concentrates on transformations of large-scale accessible mono- and disaccharides that either can be performed in one-pot procedures or in a few simple practicability-oriented steps, in which the carbon chain of the sugar is fully retained. As will become clear along the way, only a few of the products described have reached industrial status, yet this setting that is going to change with the rising costs for petrochemical raw materials.

2.1 Non-food valorisation of sucrose

2.1.1 Structure and conformation

Sucrose is a non-reducing disaccharide, because its component sugars, D-glucose and D-fructose, are glycosidically linked through their anomeric carbon atoms. Hence, it constitutes a β-D-fructofuranosyl α-D-glucopyranoside (Fig. 2). It is widely distributed throughout the plant kingdom, is the main carbohydrate reserve and energy source and an indispensable dietary material for humans. For centuries, sucrose has been the world’s most plentiful produced organic compound of low molecular mass, the present annual production from sugar-cane and sugar-beet being an impressive 130 × 106 t. Due to the usual overproduction, and the potential to be producible on an even higher scale if required, it is, together with starch-derived glucose, the major carbohydrate feedstock of low molecular weight from which to elaborate chemicals.

Fig. 2

Common structural representations of sucrose (top entries). The molecular geometry realized in the crystal is characterized by two intramolecular hydrogen bonds between the glucose and fructose portion [18–20] (centre left). In aqueous solution, the two sugar units are similarly disposed towards each other, caused by insertion of a water molecule between the glucosyl-2-OH and fructosyl-1-OH [21,22], this ‘water-bridge’ being fixed by hydrogen bonding (centre right).

Due to its eight hydroxyl groups, chemical reactions of unprotected sucrose at a single hydroxyl group are difficult to achieve, i.e. getting useful regioselectivities is a basic issue [23–25]. The subtle reactivity differences between primary and secondary hydroxyl groups have been generalized such that the three primary ones are preferentially alkylated, acylated, oxidized and displaced by halogen in the order 6g-OH ≈ 6f-OH >> 1f-OH [23] − an over-generalization as this order of reactivity mainly covers comparatively bulky reagents which necessarily favour reaction at the 6g- and 6f-OH groups. (For ready differentiation of the oxygens in the fructose (primed numbers usually) and the glucose portions, they are denoted with ‘f’ and ‘g’ superscripts, respectively.) Molecular modelling of the electrostatic potential at the solvent accessible surface of sucrose clearly revealed the highest electropositivity being at the glucosyl-2-OH [20–22], entailing that it is the one most readily deprotonated. Accordingly, under basic conditions in ensuing reactions the 2g-OH is preferentially alkylated or acylated if the moiety to be attached to the oxygen is not too bulky (cf. § 2.1.2 and 2.1.3). In addition, the regioselectivity attainable is also depending on the nature of the electrophilic reagent, on the catalyst used for promoting the reaction and, not the least, on the solvent or solvent mixtures used. Sucrose is only soluble in DMF and DMSO aside water, and differently solvated in each one [10,22].

In the sequel, only those ‘entry reactions’ into sucrose derivatives are covered, which either are of industrial relevance or have the potential to attain significance as products with useful non-food application profiles.

2.1.2 Oxidation of sucrose

Prototype of an ‘entry reaction’ into regioselectively modified sucroses is the essentially regiospecific oxidation by Agrobacterium tumefaciens, whose dehydrogenase exclusively generates 3g-ketosucrose (1) [26]. This ready access opened the way to manifold modifications of 1 at the 3g-carbonyl function [27,28] (Scheme 1).

Scheme 1

Chemical oxidation (Fig. 3) proceeds less uniformly, e.g. agitation of an aqueous solution of pH 6.5–7.0 at 35 °C with air in the presence of 0.5% Pt/C gave a 9:9:1 ratio of the 6g-, 6f- and 1f-saccharonic acids [29]. On further oxidation, particularly when using large amounts of the Pt catalyst and higher temperatures (80–100 °C), the preferred formation of the 6g,6f-dicarboxylic acid 2 has been observed [30], yet a preparatively useful procedure for its acquisition was developed only recently [31] through combining Pt/air-oxidation with continuous electrodialytic removal of 2, thereby protecting it from further oxidation. Otherwise, on letting the reaction proceed, the sucrose-tricarboxylate 3 is obtained [32]. An alternate useful oxidant to the tricarboxylate 3 is the NaOCl/ TEMPO system [33], particularly when applying high-frequency ultrasound, allowing yields in the 70% range [34].

Fig. 3

Catalytic oxidation of sucrose [29–32].

2.1.3 Sucrose esters

synthetically prepared [35] octa-fatty acid esters of sucrose have been approved by the US Food and Drug Administration in 1996 as a dietary fat substitute [36], and were marketed under the name Olestra® or Olean® [37] – a development contributing to further food utilization of sucrose.

Less highly esterified sucroses, usually mixtures of with high proportion of either mono-, di- or triesters of variable regioisomeric distribution over the 2g, 6g-, 6f- as well as other hydroxyls, are food and cosmetic emulsifiers and have favourable surfactant properties, their precise application profiles depending on the length of the fatty acid chains as well as on average degree of esterification. A concise overview on the preparation and the potential uses of sucrose esters is contained in this issue [25].

2.1.4 Sucrose ethers

Due to the persistence of an intramolecular hydrogen bond of the 2g-O...HO-1f type in aprotic solvents [38], the 2g-OH is the hydroxyl group most readily deprotonated, the resulting sucrose 2g-alkoxide then being preferentially alkylated at the glucosyl-2-oxygen. Thus, benzylation with NaH/benzylbromide in DMF is highly regioselective, resulting in an 11:2:1 mixture of 2g-O-benzyl-sucrose (5), its 1f-O- and 3f-O-isomers [38]. Being thus readily accessible, 5 proved to be a versatile intermediate for the generation of 2g-modified sucroses, e.g. the 2g-keto and 2g-deoxy derivatives as well as sucrosamine (2g-amino-2g-deoxy-sucrose) [38] (Scheme 2).

Scheme 2

Of higher interest industrially are amphiphilic hydroxyalkyl ethers of type 6 and 7, preparable etherification of sucrose with long-chain epoxides such as 1,2-epoxydodecane [39,40] or 1,2-epoxydodecan-3-ol [41], performable as one-pot reactions in DMSO and the presence of a base (N-methylmorpholine or ground NaOH), the regioselectivities being in preference of the 2g-O- and 1f-O-positions. Unlike sucrose esters, its ethers are resistant to alkaline conditions, which considerably extends their potential application as non-ionic surfactants. They also have liquid crystal properties with mesophases depending on the point of attachment of the fatty chain to the sucrose [39].

2.1.5 Sucrose-derived urethanes

The non-reducing and polyhydroxy functionalities of sucrose have prompted various efforts to use it as a polyol for the manufacture of polyurethanes [42–44], replacing di- and polyols derived from fossil resources. Mostly though, sucrose is not directly used because it gives brittle foams on reaction with isocyanates, but is first etherified with propylene oxide to its poly(hydroxypropyl) derivative, which yields a strong polyurethane foam [43]. However, finely powdered sucrose may be used to the extent of 40% as a direct replacement of a polyol component, thereby improving mechanical properties and flame retardancy of the polyurethanes [45].

Whilst these sucrose-derived polyurethanes are industrially used, their structures, i.e. the extent with which sucrose is carbamoylated and the type(s) of crosslinking involved, are not well defined. More detailed investigations have shown that crosslinking can be avoided under certain conditions, e.g. when equimolar quantities of sucrose and aliphatic diisocyanates are subjected to polycondensation in dimethylacetamide, providing polyurethanes soluble not only in polar organic solvents, but also in water [46].

Some recent studies towards the generation of defined sucrose mono-carbamates [47-49] have again revealed the glucosyl-2-OH to be preferentially carbamoylated. Reaction of sucrose in anhydrous DMF with heptyl or undecyl isocyanate in the presence of triethylamine gave the respective 2g-O-(N-alkylcarbamoyl)-sucroses 8 (n = 7, 11) in 50% yield [47]. The analogous exposure of sucrose to ethyl isocyanate in DMF in the presence of Ca(OH)2 allowed the isolation of 72% of the 2g-O-carbamoylated product (8, n = 1), whereas use of Ba(OH)2, interestingly, afforded a 3:2 mixture of the 2g-O- and 1f-O-carbamates [48,49]. The more reactive phenyl isocyanate, however, under the same conditions, preferentially reacted with the 6g-OH followed by 2g-OH, giving a 3:2 mixture of the respective sucrose monocarbamates [49]. On application of these conditions (DMF, Ca(OH)2, −40 → +25 °C) to hexamethylene diisocyanate, the di-2-O-(N,N"-hexamethylene-1,6-di-carbamoyl)-sucrose 9 could be isolated in 31% yield [48,49] (Scheme 3).

Scheme 3

2.1.6 Polymerisable sucrose derivatives

A large series of mono-O- and di-O-substituted sucrose derivatives – with polymerisable C=C double bonds in ester or ether moieties attached − have been prepared [50–54], usually as mixtures with average degrees of substitution: esters of acrylic or methacrylic acid, or vinylbenzyl ethers mostly. Their polymerisation as such, or in copolymerisation with styrene has led to a variety of interesting linear and crosslinked polymers with ‘sucrose anchors’ attached to the polymeric carbon chain(s) [50–53]. Despite favourable properties, as gels and chelating resins, these polymers are still only a chemical curiosity and their commercial potential has yet to be established (Fig. 4).

Fig. 4

Idealized structure of a linear polymer resulting from radical polymerisation of a mono-O-methacroyl-sucrose (left) and a 1:1 copolymerization product with styrene.

2.1.7 Replacement of hydroxyl-groups in sucrose

The many studies towards the exchange of one or more of the sucrose hydroxyls by hydrogen, halogen or amino groups, or inversion of the configuration at any of the five secondary hydroxyls, have all been encumbered by regioselectivity problems when using unprotected sucrose; otherwise extensive blocking/deblocking procedures required to single out one free OH for then specific transformations [23,24,55,56]. Two ‘entry reactions’ though, both involving fairly regioselective chlorinations, may be mentioned in this context, despite the fact that the reagents required − triphenylphosphine/CCl4 and sulfuryl chloride − do not necessarily satisfy the basic principles of green/sustainable chemistry [57] (Scheme 4).

Scheme 4

When exposing sucrose in pyridine solution to reaction with triphenylphosphine/carbon tetrachloride (3 h, 25 → 70 °C), about a 70% yield of the crystalline 6g,6f-dichlorosucrose 10 is obtained [58,59]. It can be further modified at the chlorinated positions, as, for example, to the diamine 12 via azidolysis (1011) and hydrogenation [59,60]. Although this 6g,6f-diaminosucrose has potential interest as a diamine component towards hydrophilic polyamides, its unsustainable mode of preparation precludes its industrial exploitation.

Sucralose (13), a trichloro-trideoxy-galactosucrose, is 650 times sweeter than sucrose [61] and has been marketed as a non-caloric sweetener under the brand name Splenda® [62]. Its preparation involves treatment of a partially acetylated sucrose with sulfuryl chloride, whereby the initially formed chlorosulfate esters, as effective leaving groups, undergo nucleophilic displacement by chlorine, comprising inversion of configuration when esters at secondary hydroxyls are involved [63,64].

2.1.8 Conversion of sucrose to isomaltulose and ensuing products

Isomaltulose (14), a 6-O-α-D-glucosyl-D-fructose, is isomeric with sucrose, from which it is produced at an approximate 60 000-t/yr scale by Südzucker. The industrial process involves a glucosyl shift from the 2f-O of sucrose to the 6f-OH, effected by action of an immobilized Protaminobacter rubrum-derived α(1→6)-glucosyltransferase [65,66] − a transformation that most likely proceeds through a closed-shell intermediate, i.e. without full separation of the glucose and fructose portions [10]. The isomaltulose produced is subsequently hydrogenated to isomalt, an approximate 1:1 mixture of the terminally α-glucosylated glucitol and mannitol (15), which is on the market as a low-caloric sweetener [67].

Due to its the large scale availability, isomaltulose is also an attractive target for generating disaccharide intermediates of industrial utility. For example, hydrogenation of isomaltulose oxime over platinum [68] or Raney-nickel-promoted reductive amination with hydrazine [69] smoothly generates a 1:1-mixture of glucosyl-α(1→6)-2-amino-2-deoxy-D-glucitol and -mannitol, appropriately termed isomaltamine in analogy to isomalt. As a pronouncedly hydrophilic amine of a disaccharide alcohol, it is a versatile intermediate for further derivatization, e.g. with fatty acid halides to non-ionic, biologically degradable detergents of type 17, or with methacrylic acid derivatives to provide polymerisable acrylamido-disaccharides of type 18 [69].

Air oxidation in strongly alkaline solution (KOH) converts isomaltulose into the potassium salt of the next lower aldonic acid, i.e. D-glucosyl-α(1→5)-D-arabinonic acid (GPA), isolable as such, or upon neutralization, as the GPA-lactone 19 in high yields each [70]. Oxidation with hydrogen peroxide proceeds further, shortening the fructose portion by four carbon atoms to yield O-(α-D-glucosyl)glycolic acid, isolable after acetylation as its crystalline tri-O-acetyl-lactone [71] (Fig. 5).

Fig. 5

Generation of isomaltulose from sucrose, and ensuing products of industrial potential.

Another industrially relevant ensuing reaction of isomaltulose comprises its ready conversion into 5-(α-D-glucosyloxymethyl)-furfural (α-GMF, 20) by acidic dehydration of its fructose portion under conditions (acidic resin in DMSO, 120 °C) that retain the intersaccharidic linkage [72]. This process can also be performed in a continuous flow reactor [73]. Thus, a most versatile building block is available in two steps from sucrose, of which the first is already industrially realized, and the second simple enough to be performed on a large scale. A variety of industrially relevant products have already been prepared: aldol-type condensations provide derivatives with polymerisable double bonds that are expected to yield novel, hydrophilic polymers [72]. Oxidation and reductive amination generate the α-GMF-carboxylate and α-GMF-amine, respectively, which on esterification with long-chain alcohols or N-acylation with fatty acids afford compounds of type 21 and 22 − a novel type of non-ionic surfactants, in which the hydrophilic glucose and the hydrophobic fat-alkyl residue are separated by an quasi-aromatic spacer [72]; they also have favourable liquid crystalline properties [74] (Fig. 6).

Fig. 6

GMF-derived products with surfactant and liquid crystalline properties R = Et, Bu, Hex.

2.2 Non-food valorisation of glucose

Although D-glucose is the component sugar of cellulose and starch, only the latter is the raw material for its commercial production [75]. Glucose-containing syrups and pure, crystalline glucose are used as a nutrient in a vast variety of food applications, yet also serve as the raw material for the manufacture of sorbitol (= D-glucitol, by hydrogenation), and, by microbial processing, food-grade carboxylic acids (e.g. citric, lactic, or acetic acid), amino acids (L-lysine, L-glutamic acid), vitamins and antibiotics.

The largest non-food use of glucose is as a raw material for the production of ethanol by yeast fermentation, the annual worldwide production being in the 3 × 109 l range as of 1988 [75]. Another fairly large use of glucose goes into the alkyl polyglucosides (‘APGs’), biodegradable surfactants presently produced at an approximate 50 000-t/yr scale (cf. below), and into polylactic acid (‘PLA’), a benign packaging material (vide infra). Some minor applications comprise its use as additive in adhesives and in leather tanning, and of methyl α-D-glucoside in insulating foams. With these non-food applications of glucose, however, the huge chemical potential lying in this inexpensive and bulk-scale accessible commodity is largely untapped and waits for systematic exploitation. The most promising veins along which viable industrial products may conceivably be developed are outlined in the sequel.

The principal, preparatively useful derivatizations of D-glucose − entry reactions with which the tautomeric forms are fixed − have already been elaborated before the turn of the 19th century: mercaptalisation to the acyclic dithio acetals, isopropylidenation to furanoid systems, or the generation of pyranoid structures, such as glucosides, glucals, and hydroxyglucalesters [76] (Fig. 7).

Fig. 7

Well accessible, tautomerically fixed D-glucose derivatives with which to embark towards versatile building blocks [76].

Another simple, one-step entry from D-glucose to highly substituted furans involves their ZnCl2-mediated reaction with acetylacetone. As only the first two sugar carbons of D-glucose contribute to the formation of the furan, a distinctly hydrophilic tetrahydroxybutyl side chain is elaborated (→ 23 [77]) which can be shortened oxidatively to the dicarboxylic acid 25 or a variety of other furanic building blocks (Fig. 8). By contrast, under mildly basic conditions (aqueous bicarbonate at 85 °C), D-glucose reacts with pentane-2,4-dione in an entirely different way, elaborating via C-addition and subsequent retroaldol-type elimination of OAc, the 2-C-glucosyl-propanone 24 [78,79]. As this conversion can be performed with the unprotected sugar and in aqueous solution with simple reagents, it may legitimately be referred to as green and/or sustainable in accord with approved principles [57]. As the procedure is equally well feasible with other monosaccharides, it is, thus, one of the cleanest and most efficient preparative entry into the area of C-glycosides, which as stable ‘mimics’ to the usual O-glycosides command major interest as glycosidase inhibitors [80].

Fig. 8

One-pot conversions of D-glucose into hydrophilic furans [77] or, alternatively, into C-glucosides by reaction with acetylacetone [78,79].

Despite the ready accessibility of these ‘entry products’, and their fairly well-developed ensuing chemistry, their exploitation towards industrial intermediates is exceedingly modest. To nevertheless emphasize their potential towards industrial intermediates, be it as enantiopure building blocks for the synthesis of non-carbohydrate natural products [81–83] or for agrochemicals and/or high-value-added pharmaceuticals, a particular versatile array of six-carbon dihydropyrans is listed in Fig. 9, all being accessible from D-glucose (via the glucal and hydroxyglucal esters) in no more than three to five straightforward steps.

Fig. 9

Pyranoid six-carbon building blocks accessible from D-glucose via glucal (upper half) or hydroxyglucal esters (lower entries) as key intermediates. All products require no more than 3 to 5 straightforward steps from D-glucose [84–93].

A bicyclic dihydropyranone, namely levoglucosenone, is accessible even more directly by vacuum pyrolysis of waste paper [94]. Although the yield attainable is relatively low − levoglucosan is also formed, their proportions depending on the exact conditions (Fig. 10) − relatively large amounts can be amassed quickly; levoglucosenone has been used for the synthesis of a diverse variety of natural products in enantiopure form [95].

Fig. 10

High-vacuum pyrolysis [94].

Similarly convenient are the acquisition of the two dihydropyranones 26 and 27 requiring two and three steps from maltose or sucrose respectively, their ‘left-over’ glycosyl and fructosyl residues serving as acid labile blocking groups as contrasted by the alkali-sensitive ester functions (Scheme 5).

Scheme 5

See [92,96].

Kojic acid, a γ-pyrone, is readily obtained from D-glucose either enzymatically by Aspergillus oxyzae growing on steamed rice [97] or chemically via pyranoid 3,2-enolones [98,99]. A structurally corresponding α-pyrone can be effectively generated by oxidation of glucose to D-gluconic acid and acetylation [100]. Both, at present, are of little significance as six-carbon building blocks, despite a surprisingly effective route to cyclo-pentanoid products [101] which is surmised to have industrial potential (Scheme 6).

Scheme 6

An established, non-food application of D-glucose are the alkyl polyglucosides (‘APGs’), which combine high performance as non-ionic surfactants with non-toxicity, low-skin irritation, and biodegradability [102]. They are technically produced − on an estimated 50 000-t scale worldwide presently − either through acid-induced glycosidation of glucose with a long chain fat alcohol or by transglycosylation of a short-chain alkyl glucoside with the appropriate long-chain alkanol. The resulting mixtures contain the α-D-glucosides majorly, as designated by the formula in Fig. 11, and are marketed as such. They are widely used in manual dishwashing detergents and in formulations of shampoos, hair conditioners, and other personal care products.

Fig. 11

Henkel's alkyl polyglucosides (‘APGs’).

Other applications of D-glucose on an industrial scale comprise its oxidation product, D-gluconic acid, widely used as a chelating agent and textile printing additive [103], as well as sorbitol (= D-glucitol), obtained by catalytic hydrogenation [104]. Although the main consumer of its sizable annual production is the food industry, primarily as a non-caloric sweetening agent, a sugar substitute for diabetics, and as a key intermediate for the production of ascorbic acid (vitamin C) [105]. It is also applied though as a favourable moisture conditioner in printing, writing ink, and cosmetics and pharmaceutical formulations.

On exposure to mineral acid at fairly high temperatures, sorbitol readily undergoes dehydration to ‘sorbitan’, which constitutes a mixture of sorbitol, its 1,4-anhydro and 1,4:3,6-dianhydro derivatives, the exact composition depending on the conditions employed [104]. Esterification of this mixture with fatty acid chlorides/base or with their methyl esters at 200–250 °C with 0.1 N NaOH generates a sorbitan monoester (‘SMS’, R = C16/C18 acyl), di- or triester (‘SMT’), depending on the stoichiometries employed. Sorbitan monoesters (‘SMS’) are commercially available [106]; due to their low HLB values, they find use as non-ionic surfactants and as solubilizer and emulsifier in cosmetics and various other formulations [104] (Fig.  12).

Fig. 12

‘Sorbitan Monoester’ (SMS): R = C16-C18 acyl.

Large amounts of D-glucose – in crude form as obtainable from corn, potatoes or molasses by acid hydrolysis – enter into industrial fermentation processes towards the production of lactic acid, citric acid and various amino acids, such as L-lysine or L-glutamic acid. Whilst the major use of these products is in food and related industries, recent non-food exploitations of lactic acid have made it a large-scale, organic commodity chemical. Most of it is subsequently polymerised via its cyclic dimer (lactide) to a high molecular weight polyester: polylactic acid (‘PLA’) [107]. Due to its high strength, it can be fabricated into fibres, films, and rods that are fully biodegradable (→ lactic acid, CO2) and compostable, having degraded within 45–60 days. Accordingly, PLA and copolymers of lactic and glycolic acid are of particular significance for food packaging and in agricultural or gardening applications, but are highly suitable materials for surgical implants and sutures, as they are bioresorbable (Fig. 13).

Fig. 13

Generation and use of lactic acid.

Cargill Dow, since 1989, has invested some $ 750 million to develop and commercialise polylactic acid [108], its Nebraska plant opened in 2001 having an annual capacity of 140 000 metric tons [109,110]. Thus, polylactides, due to combining favourable economics with green sustainability are poised to compete in large volume markets that are now the domain of thermoplastic polymers derived from petrochemical sources.

Another encouraging green development based on lactic acid is its ethyl ester (‘VertecTM’) that has recently been marketed for applications in specialty coatings, inks, and straight use cleaning because of their high performance and versatility [111]. As a most benign solvent – green, readily biodegradable, and excellent toxicology records – it has the potential to displace various petrochemically based solvents such as acetone, DMF, toluene or N-methylpyrrolidone in industrial processes.

2.3 D-Fructose: potentials for non-food uses

The substantial amounts of this ketohexose are mainly prepared by base-catalysed isomerisation of starch-derived glucose [112], yet may also be generated by hydrolysis of inulin, a fructooligosaccharide [113]. As fructose – de facto only the β-D-fructopyranose tautomer – is sweeter than sucrose (up to 1.5 times), it is widely used as a sweetener for beverages (‘high fructose syrup’). Its non-food utilization is modest − not surprising since its basic chemistry is more capricious and considerably less developed than that of glucose. The ‘entry reactions’ compiled in Figs. 14 and 15, nevertheless, provide a multifaceted array of well-accessible, pyranoid (28–35) and furanoid derivatives (40–46) with which to exploit their industrial application potential.

Fig. 14

Readily accessible pyranoid derivatives of D-fructose. Key: (A) allyl alcohol/AcCl, 49% [114]; (B) glycol/H+, 74% [115]; (C) pentane-2,4-dione, aq. NaHCO3, 85 °C, 27% [116]; (D) AcCl, –10 °C → PCl5, 61% [117]; (E) BzCl, -10 °C → HBr, 63% [117]; (F) Me2CO/cat. H2SO4, 58% [118]; (G) Me2CO/>5% H2SO4, 80%[119]; (H) KOCN, 31% [117]; (I) 5 steps, 22% [120]; (K) DBU → NH2OH → MeCHO/H+, 45% [121]; (L) Zn/MIM, 90% [122].

Fig. 15

D-Fructose-derived furanoid products. Reagents and conditions: (A) BzCl, 60 °C, 60% [128]; (B) KOCN/KH2PO4, 32% [117]; (C) H+, 90% [126]; (D) Ag2O, 100 °C, 75% [129]; (E) BaMnO4/1,1,2-trichloroethane, 93% [129]; (F) Pb,Pt/O2/pH 7, quant. [130] ; (G) Pt/H2, quant. [131]; (H) NH2OH/HCl → Raney-Ni/H2, 33% [129].

The pyranoid building blocks 36 and 37 have versatile functionalities for a rich ensuing chemistry [122] as does have the exo-D-fructal 38 [121]. The diacetone-fructose 34 similarly is the starting material for drugs, e.g. the anticonvulsant Topiramate® 39 [123].

The pyranoid building blocks 36 and 37 have versatile functionalities for a rich ensuing chemistry [122] as does have the exo-D-fructal 38 [121]. The diacetone-fructose 34 similarly is the starting material for drugs, e.g. the anticonvulsant Topiramate® 39 [123] (Scheme 7).

Scheme 7

Of the simple furanoid products derived from fructose, the tetrabenzoate 40 and the cyclocarbamate 41 are well accessible, but by far the highest industrial potential demands 5-hydroxymethyl-furfural (HMF), which has been termed one of the few ‘petrochemicals readily accessible from regrowing resources’ [124] and ‘a key substance between carbohydrate chemistry and mineral oil-based industrial organic chemistry’ [125]. It is readily accessible from fructose or inulin hydrolysates by acid-induced elimination of 3 mol of water [126], and even a pilot plant size process has been elaborated [127].

Of the products readily generated from HMF in simple, large-scale adaptable transformations (Fig. 15), the 5-hydroxymethyl-furoic acid 42, the 2,5-dicarboxylic acid (44), and the respective 1,6-diol (45) and 1,6-diamine (46) are most versatile intermediate chemicals of high industrial potential, as they represent six-carbon monomers that could replace adipic acid, or alkyldiols hexamethylenediamine in the production of polyamides and polyesters. HMF as such has been used for the manufacture of special phenolic resins, as acid catalysis induces its aldehyde and hydroxymethyl group to react with phenol [132], and an impressive series of such furanic polymers with highly promising properties have been prepared [133], yet none has proved competitive to existing products. Thus, HMF is, as of now, not produced on an industrial scale. A recent assessment of its economics as compared to petrochemical raw materials [134] clearly unfolds the reasons underlying: ton prices of naphtha and ethylene are in the 150–400 € range and that of inulin (500 €/t) or fructose (~1000 €/t), entailing an HMF-marketing price of at least 2500 €/t, which is too expensive at present for a bulk-scale industrial product. Accordingly, as long as the economic situation favours fossil raw materials, applications of HMF lie in high value-added products, such as pharmaceuticals or special niche materials.

2.4 Furfural from pentoses (pentosans)

With an annual production of about 250 000 tons, furfural (2-furfuraldehyde) appears to be the only unsaturated large-volume organic chemical prepared from carbohydrate sources. Indeed, its price of about 250 €/t lies in the range of the basic petrochemicals mentioned, benzene and toluene being in the € 225–250 region. The technical process involves exposure of the lignocellulosic material in agricultural or forestry wastes (pentose–polysaccharides in straw, oat hulls, corn cobs, etc.) to aqueous acid and fairly high temperatures, the pentosans first being hydrolysed to pentoses and then undergoing cyclodehydration [135].

The chemistry of furfural is well developed, providing a host of versatile industrial chemicals by simple straightforward operations (Fig. 16): furfuryl alcohol and its tetrahydro derivative (hydrogenation), furfurylamine (reductive amination), furoic acid (oxidation) and furanacrylic acid (Perkin reaction), or furylidene ketones (aldol condensations). Furfural is also the key chemical for the commercial production of furan (through catalytic decarbonylation) and tetrahydrofuran (hydrogenation), thereby providing a biomass-based alternative to its petrochemical production via dehydration of 1,4-butanediol [135].

Fig. 16

Furanic chemical from pentosans.

The bulk of the furfural produced is used as foundry sand linker, in the refining of lubricating oil, and in condensations with formaldehyde, phenol, acetone, or urea to yield resins of complex, ill-defined structures, yet with excellent thermosetting properties, high corrosion resistance, low fire hazard, and extreme physical strength [135].

2.5 Sugar-derived unsaturated N-heterocycles

Although transformation of sugars into trace amounts of N-heterocycles occurs extensively on exposure of foodstuffs to heat − the nitrogen stemming from amino acids or peptides (Maillard reaction [136]) − and despite the fact that various nitrogen heterocycles have been generated from saccharide derivatives [137], procedures meeting preparative standards are exceedingly scarce. Recent improvements of existing procedures and the development of new methodologies has led to the more ready acquisition of various N-heterocycles from carbohydrates, e.g. imidazoles, pyrroles, pyrazoles, pyridines and quinoxalines, which due to their sugar derivation have hydrophilic side chains.

2.5.1 Pyrroles

The generation of pyrroles by heating a glycerol solution of lactose-derived [138] ammonium salt of galactaric acid over a free flame [139] appears to be the highest-yielding acquisition (40%) from a carbohydrate source − a process, that in this or modified form does not seem to be utilized industrially (Scheme 8).

Scheme 8

2,5-Disubstituted pyrroles are accessible from carbohydrate sources via HMF in a preparatively straightforward reaction sequence, involving photooxidative furan ring opening and cyclisation of the saturated 2,5-diketones with ammonia or amines [140] (Scheme 9).

Scheme 9

These reaction sequences can directly be transferred to GMF, leading to pyrroles carrying an additional glucosyl residue [140]. Pyrroles with hydrophilic tetrahydroxybutyl substituent are available in a one-pot reaction from D-fructose by heating with acetylacetone and ammonium carbonate in DMSO [141] (Scheme 10).

Scheme 10

The hydroxylated side chain can, of course, be oxidatively shortened to give a variety of simple pyrrole building blocks, or cyclised to a furanoid ring [142]. These compounds may be considered as C-nucleosides.

2.5.2 Pyrazoles

An expeditious four-step approach to 1-phenylpyrazol-3-carboxaldehydes with a 5-hydroxymethyl, 5-dihydroxyethyl, or 5-glucosyloxymethyl substituents has been elaborated starting from D-xylose [143], D-glucose and isomaltulose [144], respectively (Scheme 11).

Scheme 11

As illustrated for D-xylose, its osazone, nearly quantitatively formed on reaction with phenylhydrazine, straightforwardedly elaborates the pyrazole upon addition to refluxing acetic anhydride. Subsequent removal of the N-acetylphenylhydrazone residue with formaldehyde/acetic acid and de-O-acetylation provides, in 57% yield based on D-xylose [143], a hydroxymethyl-pyrazole-aldehyde (Fig. 17, centre), which constitutes a versatile N-heterocyclic building block for the elaboration of pharmaceuticals or the generation of polyamides and polyesters.

Fig. 17

Versatile pyrazoles from D-xylose.

2.5.3 Imidazoles

Various imidazoles carrying hydrophilic substituents in the 4-position are readily accessible from the standard monosaccharides in one-pot procedures. Of those, the formation of 4-hydroxymethylimidazole on Cu(II)-promoted reaction with formaldehyde and concentrated ammonia [145] is rather unique in such as obviously retroaldolization to glyceraldehyde and dihydroxyacetone is involved. The retroaldol fission can be partially suppressed through heating D-fructose with formamidinium acetate in liquid ammonia in a pressure vessel [146] or with formamidinium acetate in the presence of boric acid and hydrazine, obviously proceeding via a boric acid complex of the bishydrazone of D-glucosone [147] (Scheme 12).

Scheme 12

These conditions can be readily applied to pentoses or disaccharides, as exemplified with D-xylose [146] and isomaltulose [147] in for one-pot procedures acceptable yields (Scheme 13).

Scheme 13

2.5.4 3-Pyridinols

The conversion of pentosans or pentoses into 3-pyridinol can be effected in a practical 3-step sequence, involving acid-induced dehydration to furfural, reductive amination to furfurylamine, and subsequent oxidation wit hydrogen peroxide [148,149], the last step conceivably proceeding through the stage of a 2,5-dihydroxy-2,5-dihydrofurfurylamine, which elaborates the pyridine nucleus via dehydration to a 5-aminopentenal intermediate and intramolecular aldimine formation. The pyridinol figures prominently as an intermediate chemical for the preparation of herbicides and insecticides [150] as well as cholinergic drugs of the pyridostigmine type (Scheme 14).

Scheme 14

For the conversion of furfurylamines with readily oxidizable hydroxyl groups, e.g. those derived from fructose via HMF/bromine in water/methanol, the entire multi-step process to the hydroxymethyl-pyridinol is effected in a one-pot procedure [151] (Scheme 15).

Scheme 15

2.6 Sugar-derived hydrophilic polyamides

Polyamide production worldwide amounted to about 5.8 × 106 t in 1998 [152]. More than 90% of these polyamides are based on six-carbon monomers, i.e. caprolactam lactam (nylon 6), and adipic acid/hexamethylenediamine (nylon 66) (Scheme 16).

Scheme 16

As six-carbon compounds in the form of hexoses are abundantly available in nature, substantial efforts have been made to derive monomers suitable for polyamidation from the bulk scale-accessible hexoses. This approach becomes particularly evident, when considering the large variety of amincarboxylic acids, dicarboxylic acids, and diamines, that are accessible from the common six-carbon sugars [153–155] (Fig. 18).

Fig. 18

Green six-carbon building blacks for the generation of polyamides (starting materials in parentheses).

Of the myriad of possible combinations of these sugar-derived monomers either with themselves or with the common, petrochemically derived diamines and dicarboxylic acids, an immense number have been realized. Here only a few of these polyamides are exemplarily covered.

Solution or interfacial polycondensation of galactaric acid dichloride in its acetylated form with various aliphatic and aromatic diamines resulted in a series of polyamides [150,152], the one resulting from 1,6-diamino-hexane resembling a nylon-6,6, in which half of the methylene hydrogens of the usual adipic acid are substituted by acetoxy groups (R = Ac). These can be deacylated with aqueous ammonia to give the tetra-hydroxylated nylon-66 (Scheme 17).

Scheme 17

In the case of D-glucaric acid, the use of its 3,6-lactone mono-methyl ester proved advantageous to generate stereoregular polyglucaramides, effected with an impressive array of aliphatic and aromatic diamines [156,157] (Scheme 18).

Scheme 18

Of similar practical utility is the sucrose-6g,6f-dicarboxylic acid (2), which on amidation of its di-methylester [158] with fat-amines provided surface-active diamines of type 47 with remarkable tensidometric properties, whereas reaction with hexamethylenediamine elaborates a polyamide 48 [159] (Scheme 19).

Scheme 19

Sugar-based ‘quasi-aromatic’ monomers for polyamides, i.e. the furan-2,5-dicarboxylic acid, appear particularly relevant as they embody the potential to replace petrochemically derived terephthalic or isophtalic acid in the present industrial products. Similar potential pertains to the furanic 1,6-diamine as a substitute for p-phenylenediamine. Indeed, a series of such furanic polyamides has been prepared [160] using the dicarboxylic acid and aliphatic as well as aromatic diamines. Of these, the polyamide resulting from condensation with p-phenylenediamine, which de facto is an analogue of the commercially introduced Nomex® and Kevlar®, has particularly promising decomposition and glass temperature parameters [161], distinctly better than those found for the all-furanic polyamides (Scheme 20).

Scheme 20

2.7 Sugar-derived polyesters

Aside polylactic acid (‘PLA’), that is in use as a benign, biodegradable packaging material (cf. above), other sugar-based polyesters do not seem to have been commercialised – despite of the fact, that HMF-derived furanic polyesters have considerable potential. Thus, the 5-hydroxymethyl-2-furoic acid 42 and the 2,5-dicarboxylic acid 44 have extensively been exploited for the preparation of furanoic polyesters [160], and the corresponding diol 45 has been reacted with various aliphatic and aromatic diacids; the ethyl ester of 42, upon polycondensation, gave a mixture of linear (49) and cyclic products, while the furan-diacid 44 has been polyesterified with a series of aliphatic diols or bisphenols. Even the all-furanic polyester 50 has been successfully prepared from its respective monomeric components [160] (Scheme 21).

Scheme 21

In spite of the impressive array of highly useful products polyesters and polyamides − with respect to their application profiles, they compare favourably with the well-known polyamides − none at present, are produced on an industrial scale, the reasons being purely economic as the products derived from fossil raw material sources are still cheaper by a factor of 5 on the average –, a situation that will only change with the progressing depletion of affordable fossil raw materials.

3 Conclusion

At present, the non-food utilization of inexpensive, bulk scale-accessible low-molecular-weight carbohydrates – sucrose, glucose and fructose being the most abundant – is at a rather modest level in terms of large-scale manufactured commodities that are on the market: the APGs (alkyl polyglucosides), PLA (polylactic acid) and furfural, with some of its ensuing products. The unusually diverse stock of readily accessible products described in this account, which cover a wide range of industrial application profiles, lies essentially unexploited − for economic reasons mainly −, as equivalent products based on petrochemical raw materials are simply cheaper. Notwithstanding, a basic change in this scenario is clearly foreseeable. As depletion of our fossil raw materials is progressing, chemical products derived therefrom will inevitably increase in price, such that biobased products will become competitive. Realistic prognoses expect this for 2040 at the latest [7].

In the meantime, it is imperative that carbohydrates are systematically further exploited towards efficient, environmentally benign, and economical process methodologies for their large-scale conversion into industrially viable products, be it bulk or intermediate chemicals, pharmaceuticals, or polymeric organic materials. General conceptual formulations towards this goal are available [2–4,162]; yet, their straightforward implementation, as of now, is exceedingly slow. Thus, it is essential that national and supranational funding institutions – in Europe, the corresponding EU bodies and/or ERRMA (European Renewable Resources & Materials Association [163]) – play a considerably more dynamic role than heretofore. One decisive action, of course, is the generous funding, not only of applied, but of basic research activities in this area, and this over a considerably broader time frame – 5–10 years for promising projects rather than an expectational horizon to deliver marketable products within 3–5 years.


Bibliographie

[1] C. Okkerse; H. van Bekkum Green Chem. (1999), p. 107

[2] USA National Research Council Priorities for Research and Commercialization of Biobased Industrial Products, Natl Acad. Sci. Press, Washington, 2000

[3] Vision for Bioenergy & Biobased Products in The United States, Biomass Research and Development Technical Advisory Comitee, October 2002 http://www.bioproducts-bioenergy.gov/pdfs/biovsion_03_web.pdf

[4] Roadmap for Biomass Technologies in the United States, Biomass Research and Development Technical Advisory Comitee, October 2002 http://www.bioproducts-bioenergy.gov/pdfs/finalbiomassroadmap.pdf

[5] W. Umbach (H. Eierdanz, ed.), Perspektiven Nachwachsender Rohstoffe in der Chemie, VCH Publ, Weinheim, Germany, 1996, p. XXIX

[6] D.H. Klass Biomass for Renewable Energy, Fuels and Chemicals. Fossil Fuel Reserves and Depletion, Academic Press, San Diego, 1998, p. 10

[7] C.J. Campbell; J.H. Laherrère The End of Cheap Oil, Sci. Am. (March 1998), p. 60

[8] A. Tullo Chem. Eng. News, 81 (2003) no. 11, p. 21

[9] Carbohydrates as Organic Raw Materials, VCH Publ., Weinheim/New York: Vol. I (F.W. Lichtenthaler, Ed.), 1991, 365 p.; Vol. II (G. Descotes, Ed.), 1993, 278 p.; Vol. III (H. van Bekkum, H. Röper, A.G.J. Voragen, Eds.), 1996, 358 pp.; Vol. IV (W. Praznik, Ed.), Wiener Univ. Verlag, Vienna, 1998, 292 p

[10] F.W. Lichtenthaler; P. Pokinskyj; S. Immel Zuckerindustrie (Berlin), 121 (1996), p. 174

[11] H. Eierdanz Perspektiven Nachwachsender Rohstoffe in der Chemie, VCH Publ, Weinheim/New York, 1996, 358 p

[12] F.W. Lichtenthaler; S. Mondel Pure Appl. Chem., 69 (1997), p. 1853

[13] F.W. Lichtenthaler Carbohydr. Res., 313 (1998), p. 69

[14] R.I. Hollingsworth; G. Wang Chem. Rev., 100 (2000), p. 4267

[15] J.J. Bozell (Ed.), ACS Symp. Ser. 784 (2001), 262 p

[16] F.W. Lichtenthaler Acc. Chem. Res., 35 (2002), p. 728

[17] F.W. Lichtenthaler, Carbohydrates as Organic Raw Materials, Ullmann’s Encycl. Ind. Chem., 6th Ed., 6, 2002, p. 262

[18] (a) G.M. Brown, H.A. Levy, Science 141 (1963) 921–923; (b) G.M. Brown, H.A. Levy, Acta Crystallogr. B 29 (1973) 790

[19] J.C. Hanson; L.C. Sieker; L.H. Jensen Acta Crystallogr. B, 29 (1973), p. 797

[20] F.W. Lichtenthaler; S. Immel; U. Kreis; F.W. Lichtenthaler; S. Immel; U. Kreis Shokuhin Kogyo, 43 (1991) no. 14, p. 121

[21] S. Immel; F.W. Lichtenthaler Liebigs Ann. Chem. (1995), p. 1925

[22] F.W. Lichtenthaler; S. Immel Int. Sugar J., 97 (1995), p. 12

[23] C.E. James; L. Hough; R. Khan Prog. Chem. Org. Nat. Prod., 55 (1989), p. 117

[24] S. Jarosz; M. Mach Eur. J. Org. Chem. (2002), p. 769

[25] Y. Queneau; J. Fitremann; S. Trombotto C. R. Chimie, 7 (2004) no. 2

[26] E. Stoppok; K. Matalla; K. Buchholz Appl. Microbiol. Biotechnol., 36 (1992), p. 604

[27] M. Pietsch; M. Walter; K. Buchholz Carbohydr. Res., 254 (1994), p. 183

[28] C. Simiand; E. Samain; O.R. Martin; H. Driguez Carbohydr. Res., 267 (1995), p. 1

[29] M. Kunz, H. Puke, C. Recker, L. Scheiwe, J. Kowalczyk, Ger. Offen. DE 4 307 388 (1994); Chem. Abstr. 122 (1995) 56411

[30] L.A. Edye; G.V. Meehan; G.N. Richards; L.A. Edye; G.V. Meehan; G.N. Richards J. Carbohydr. Chem., 10 (1991), p. 11

[31] M. Kunz, A. Schwarz, J. Kowalczyk (Südzucker AG), Ger. Pat. DE 19 542 287, 1996; Chem. Abstr. 127 (1997) 52504

[32] W. Fritsche-Lang, E.I. Leupold, M. Schlingmann, Ger. Offen. DE 3 535 720, 1987; Chem. Abstr. 107 (1987) 59408

[33] TEMPO is an established acronym for 2,2,6,6-tetramethyl-1-piperidinyloxy

[34] S. Lemoine; C. Thomazeau; D. Joannard; S. Trombotto; G. Descotes; A. Bouchu; Y. Queneau Carbohydr. Res., 326 (2000), p. 176

[35] Procter & Gamble Co., Low-caloric fat-containing food compositions, US Pat. 3 600 186, 1971; Chem. Abstr. 75 (1971) 139 614v

[36] Food & Drug Administration, Olestra and Other Fat Substitutes, 1995; <http://www.fda.gov/opacom/backgrounders/olestra.html>

[37] Procter & Gamble, <http://www.olean.com/>

[38] F.W. Lichtenthaler; S. Immel; P. Pokinskyj Liebigs Ann. Chem. (1995), p. 2069

[39] J. Gagnaire; A. Cornet; A. Bouchu; G. Descotes; Y. Queneau Colloids Surf. A, 172 (2000), p. 125

[40] R. Pierre; I. Adam; J. Fitremann; F. Jérôme; A. Bouchu; G. Courtois; J. Barreault; Y. Queneau C. R. Chimie, 7 (2004) no. 2

[41] M. Danel; J. Gagnaire; Y. Queneau J. Mol. Catal. A, 184 (2002), p. 131

[42] For a review on the early work in this area, see: V. Kollonitsch, Sucrose Chemicals, The International Sugar Research Foundation, Inc, Washington DC, 1970

[43] K.C. Frisch, J.E. Kresta, in: J.L. Hickson (Ed.), Sucrochemistry, ACS Symp. Ser. 41 (1977) 238

[44] A.R. Meath, L.D. Booth, Sucrose and sucrose-modified polyols in urethane foams, in: J.L. Hickson (Ed.), Sucrochemistry, ACS Symp. Ser. 41 (1977) 257

[45] A.R. Haji Begli, G. Keller, J. Kowalczyk, J. Küster, M. Kunz (Südzucker AG), DE 19 748 210, 1997 & EP 913 415 A1, 1999; Chem. Abstr. 130 (1999) 325764

[46] D. Jhurry; A. Deffieux Eur. Polym. J., 33 (1997), p. 1577

[47] C. Chauvin; K. Baczko; D. Plusquellec J. Org. Chem., 58 (1993), p. 2291

[48] R. Kohlstrung; M. Kunz; A.R. Haji Begli; F.W. Lichtenthaler 20th Int. Carbohydr. Symp., Hamburg, 2000, Abstract C-158

[49] R. Kohlstrung Dissertation, TU Darmstadt, 2001, 210 p

[50] H. Gruber; G. Greber (F.W. Lichtenthaler, ed.), Carbohydrates as Organic Raw Materials, VCH, Weinheim/New York, 1991, p. 95

[51] D. Jhurry; A. Deffieux; M. Foutanille; I. Betremieux; J. Mentech; G. Descotes Makromol. Chem., 193 (1992), p. 2997

[52] N.D. Sachinvala; W.P. Niemczura; M.H. Litt Carbohydr. Res., 218 (1991), p. 237

[53] E. Fanton; C. Fayet; J. Gelas; D. Jhurry; A. Deffieux; M. Fontanille Carbohydr. Res. (1992) no. 226, p. 337

[54] E. Fanton; C. Fayet; J. Gelas; A. Deffieux; M. Fontanille; D. Jhurry Carbohydr. Res., 240 (1993), p. 143

[55] C. Siamand; H. Driguez J. Carbohydr. Chem., 14 (1995), p. 977

[56] F.W. Lichtenthaler; S. Mondel Carbohydr. Res., 303 (1997), p. 293

[57] P. Anastas; M.A. Kirchhoff Acc. Chem. Res., 35 (2002), p. 686

[58] A.K.M. Anisuzzaman; R.L. Whistler Carbohydr. Res., 61 (1978), p. 611

[59] A. Raadt; A.E. Stütz Tetrahedron Lett., 33 (1992), p. 189

[60] R. Khan; C.L. Bhardwaj; K.S. Mufti; M.J. Jenner Carbohydr. Res., 78 (1980), p. 185

[61] M.R. Jenner (T.H. Grenby, ed.), Sweeteners, Elsevier Appl. Sci, London/New York, 1989, p. 121

[62] <http://www.splenda.com/>

[63] P.H. Fairclough; L. Hough; A.C. Richardson Carbohydr. Res., 40 (1975), p. 285

[64] L. Hough, S.P. Phadnis, R. Khan, M.R. Jenner, Chlorine Derivatives of Sucrose, Brit. Pat. 1 543 167, 1977; Chem. Abstr. 87 (1977) 202019v

[65] H. Schiweck; M. Munir; K.M. Rapp; B. Schneider; M. Vogel; H. Schiweck; M. Munir; K.M. Rapp; B. Schneider; M. Vogel Zuckerindustrie (Berlin), Carbohydrates as Organic Raw Materials, 115 (1991, p. 57), p. 555

[66] M. Kunz, Ullmann's Encycl. Ind. Chem., 5th Ed., A25, 1994, p. 426

[67] <http://www.isomalt.de/>; <http://www.isomaltidex.com/html>

[68] R. Klimesch Dissertation, TU Darmstadt, Germany, 1983

[69] M. Kunz (G. Descotes, ed.), Carbohydrates as Organic Raw Materials II, VCH Publ, Weinheim, 1993, p. 135

[70] F.W. Lichtenthaler; R. Klimesch; V. Müller; M. Kunz Liebigs Ann. Chem. (1993), p. 975

[71] S. Trombotto; M. Danel; J. Fitremann; A. Bouchu; Y. Queneau J. Org. Chem., 68 (2003), p. 6672

[72] F. Lichtenthaler; D. Martin; T. Weber; H. Schiweck Liebigs Ann. Chem. (1993), p. 967

[73] (a) F.W. Lichtenthaler, D. Martin, T. Weber, H. Schiweck, Ger. Offen. 3 936 522 (1989); Chem. Abstr. 115 (1991) 92826t

[74] T. Hanemann; E. Schumacher; W. Haase; F.W. Lichtenthaler Liquid Cryst., 20 (1997), p. 47

[75] F.W. Schenck, Ullmann’s Encycl. Ind. Chem., 5th Ed., A12, 1989, p. 457

[76] For useful preparative procedures, see: Methods Carbohydr. Chem. 2 (1963) 318, 326, 405, and 427

[77] F. Garcia-Gonzáles Adv. Carbohydr. Chem., 11 (1956), p. 97

[78] F. Rodrigues; Y. Canac; A. Lubineau Chem. Commun. (2000), p. 2049

[79] I. Riemann; M.A. Papadopoulos; M. Knorst; W.-D. Fessner Aust. J. Chem., 55 (2002), p. 147

[80] (Y. Chapleur, ed.), Carbohydrate Mimics, Wiley-VCH, Weinheim/New York, 1998, p. 604 and references cited therein

[81] S. Hanessian Total Synthesis of Natural Products: The Chiron Approach, Pergamon, UK, Oxford, 1983

[82] F.W. Lichtenthaler (R. Scheffold, ed.), Modern Synthetic Methods, 6, VCH, Weinheim, 1992, p. 273

[83] F.W. Lichtenthaler Carbohydrate synthons in Natural Product Chemistry. ACS Symp. Ser., 841 (2003), p. 470

[84] W. Roth; W. Pigman Methods Carbohydr. Chem., 2 (1963), p. 405

[85] R.J. Ferrier; G.H. Sankey J. Chem. Soc. (C) (1966), p. 2339

[86] F.W. Lichtenthaler; S. Rönninger; P. Jarglis Liebigs Ann. Chem. (1989), p. 1153

[87] S. Hanessian; A.-M. Faucher; S. Leger Tetrahedron, 46 (1990), p. 231

[88] S. Czerneckí; K. Víjayakuraman; G. Ville J. Org. Chem., 51 (1986), p. 5472

[89] B. Fraser-Reid; A. McLean; E.W. Usherwood; M. Yunker Can. J. Chem., 48 (1970), p. 2877

[90] R.J. Ferrier Methods Carbohydr. Chem., 6 (1972), p. 307

[91] F.W. Lichtenthaler; U. Kraska Carbohydr. Res., 58 (1977), p. 363

[92] F.W. Lichtenthaler; S. Nishiyama; T. Weimer Liebigs Ann. (1989), p. 1163

[93] F.W. Lichtenthaler; S. Ogawa; P. Heidel Chem. Ber., 110 (1977), p. 3324

[94] F. Shafizadeh; R. Furneaux; T. Stevenson Carbohydr. Res., 71 (1979), p. 169

[95] Z.J. Witczak Pure Appl. Chem., 66 (1994), p. 2189

[96] F.W. Lichtenthaler; S. Immel; D. Martin; V. Müller Starch/Stärke, 44 (1992), p. 445

[97] A. Beélik Adv. Carbohydr. Chem., 11 (1956), p. 145

[98] F.W. Lichtenthaler Pure Appl. Chem., 50 (1978), p. 1343

[99] F.W. Lichtenthaler; P. Jarglis Chem. Ber., 113 (1980), p. 4890

[100] C. Nelson; J. Gratzl Carbohydr. Res., 60 (1978), p. 267

[101] K. Tajima Chem. Lett. (1987), p. 1319

[102] W. von Rybinski, K. Hill, Angew. Chem. 110 (1998) 1394; Angew. Chem. Int. Ed. Engl. 37 (1998) 1328

[103] H. Hustede, H.-J. Haberstroh, E. Schinzig, Ullmann's Encycl. Ind. Chem., A12, 1989, p. 449

[104] R. Vogel, Ullmann's Encycl. Ind. Chem., 5th Ed., A25, 1994, p. 418

[105] B. Oster, U. Fechtal, Ullman's Encycl. Industr. Chem., 5th Ed., A27, 1996, p. 547

[106] See, for example: <http://products.cheshamchemicals.co.uk/>

[107] E. Chiellini; R. Solaro Adv. Mater., 8 (1996), p. 305

[108] A. Thayer Chem. Eng. News, 75 (8 Dec. 1997), p. 14

[109] M. McCoy Chem. Eng. News, 81 (24 Feb. 2003), p. 18

[110] <http://www.cargilldow.com/natureworks.asp>

[111] <http://www.vertecbiosolvents.com/>

[112] T. Cronewitz, M. Munir, B. Schneider, A. Sentko, Ullmann's Encycl. Ind. Chem., 5th Ed., A12, 1989, p. 47

[113] A. Fontana; B. Hermann; J.-P. Guirand (A. Fuchs, ed.), Inulin and Inulin-containing Crops, Elsevier Science Publ, Amsterdam/London, 1993, p. 251

[114] H.W.C. Raaijmakers; E.G. Arnouts; B. Zwanenburg; G.J.F. Chittenden Carbohydr. Res., 257 (1994), p. 293

[115] J.Y.C. Chan; P.P.L. Cheong; L. Hough; A.C. Richardson J. Chem. Soc., Perkin Trans., 1 (1985), p. 1447

[116] S. Peters; F.W. Lichtenthaler; H.J. Lindner Tetrahedron: Asymmetry, 14 (2003), p. 2475

[117] F.W. Lichtenthaler; J. Klotz; F.J. Flath Liebigs Ann. Chem. (1995), p. 2069

[118] J. Kang; G.J. Lim; S.K. Yoon; M.Y. Kim J. Org. Chem., 60 (1995), p. 564

[119] R.F. Brady Carbohydr. Res., 15 (1970), p. 35

[120] F.W. Lichtenthaler; W. Doleschal; S. Hahn Liebigs Ann. Chem. (1985), p. 2454

[121] A. Boettcher, F.W. Lichtenthaler, J. Carbohydr. Chem. 23 (in press)

[122] F.W. Lichtenthaler; S. Hahn; F.J. Flath Liebigs Ann. Chem. (1995), p. 2081

[123] Annual Drug Data Report, 9 (1987), p. 114ff

[124] F.W. Lichtenthaler; E. Cuny; D. Martin; S. Rönninger (F.W. Lichtenthaler, ed.), Carbohydrates as Organic Raw Materials, VCH Publ, Weinheim/New York, 1991, p. 214

[125] H. Schiweck; M. Munir; K.M. Rapp; B. Schneider; M. Vogel (F.W. Lichtenthaler, ed.), Carbohydrates as Organic Raw Materials, VCH Publ, Weinheim/New York, 1991, p. 80

[126] B.F.M. Kuster Starch/Stärke, 42 (1990), p. 314

[127] H. Schiweck; M. Munir; K. Rapp; M. Vogel (F.W. Lichtenthaler, ed.), Carbohydrates as Organic Raw Materials, VCH Publ, Weinheim, Germany, 1991, p. 78

[128] J.W. van Cleve Methods Carbohydr. Chem., 2 (1963), p. 237

[129] El Haji; A. Masroua; J.-C. Martin; G. Descotes Bull. Soc. Chim. Fr. (1987), p. 855

[130] E. Leupold, M. Wiesner, M. Schlingmann, K. Rapp, Ger. Offen., DE 3 826 073, 1988; Chem. Abstr. 113 (1990) 23678t

[131] V. Schiavo; G. Descotes; J. Mentech Bull. Soc. Chim. Fr., 128 (1991), p. 704

[132] H. Koch; J. Pein; H. Koch; J. Pein Starch/Stärke, 13 (1985), p. 525

[133] A. Gandini; M.N. Belgacem Prog. Polym. Sci., 22 (1997), p. 1203 (and references therein)

[134] M. Kunz Inulin and Inulin-Containing Crops (A. Fuchs, ed.), Elsevier, Amsterdam, 1993, p. 149

[135] W.J. McKillip; Kirk-Othmer Encycl. Chem. Technol., 11 (1981), p. 501

[136] F. Ledl, E. Schleicher, Angew. Chem. 102 (1990) 597; Angew. Chem. Int. Ed. Engl 29 (1990) 565

[137] H. El Khadem Adv. Carbohydr. Chem., 25 (1970), p. 351

[138] B.A. Lewis; F. Smith; A.M. Stephen Methods Carbohydr. Chem., 2 (1963), p. 38

[139] S.M. McElvain, K.M. Bolliger, Org. Synth. Coll., Vol. 1, 1941, p. 473

[140] F.W. Lichtenthaler; A. Brust; E. Cuny Green Chem., 3 (2001), p. 201

[141] A. Rozanski, K. Bielawski, J. Boltryk, D. Bartulewicz, Akad. Med. Juliana Marchlewskiego Bialymstoku (1991) 35 & 57; Chem. Abstr. 118 (1992) 22471m

[142] F. García-Gonzáles; A. Gomes Sanchez Adv. Carbohydr. Chem., 20 (1965), p. 303

[143] V. Diehl; E. Cuny; F.W. Lichtenthaler Heterocycles, 48 (1998), p. 1193

[144] M. Oikawa; C. Müller; M. Kunz; F.W. Lichtenthaler Carbohydr. Res., 309 (1998), p. 269

[145] (a) R. Weidenhagen, R. Hermann, Ber. Dtsch. Chem. Ges. 70 (1937) 570; (b) R. Weidenhagen, R. Hermann, Org. Synth. Coll., Vol. 3, 1955, p. 460

[146] J. Streith; A. Boiron; A. Frankowski; D. Le Nouen; H. Rudyk; T. Tschamber Synthesis (1995), p. 944

[147] S. Rapp Dissertation, TU Darmstadt, 2002

[148] N. Elming, S.V. Carlsten, B. Lennart, I. Ohlsson, Brit. Pat. 862 581, 1961; Chem. Abstr. 56 (1962) 11574g

[149] N. Elming; N. Clauson-Kaas Acta Chem. Scand., 10 (1956), pp. 1603-1605

[150] V. Koch, L. Willms, A. Fuß, K. Bauer, K.H. Bieringer, H. Buerstell, Eur. Pat. 227 045 & 227 046, 1987; Chem. Abstr. 107 (1987) 175892 & 134217

[151] C. Müller; V. Diehl; F.W. Lichtenthaler Tetrahedron, 54 (1998), p. 10703

[152] H.-P. Weiß; W. Sauerer Kunststoffe, 89 (1999), p. 68

[153] J. Thiem; F. Bachmann Trends Polym. Sci., 2 (1994), p. 425

[154] O. Varela; H.A. Orgueira Adv. Carbohydr. Chem. Biochem., 55 (1999), p. 137

[155] E.M.E. Mansur; S.H. Kandil; H.H.A.M. Hassan; M.A.E. Shaban Eur. Polym. J., 26 (1990), p. 267

[156] L. Chen, D.E. Kiely, J. Org. Chem. 61 (1996) 5847; L. Chen, D.E. Kiely, US Pat. 5 329 044, 1994; Chem. Abstr. 122 (1994) 56785

[157] D.E. Kiely Chemicals and Materials from Renewable Resources, ACS Symp. Ser., Volume 784 (2001), p. 64

[158] S. Mondel Dissertation, TU Darmstadt, Germany, 1997

[159] A. Vlach Dissertation, TU Darmstadt, Germany, 2001

[160] A. Gandini; M.N. Belgacem Prog. Polym. Sci., 22 (1997), p. 1238

[161] A. Mitiakoudis; A. Gandini Macromolecules, 24 (1991), p. 830

[162] M. Eissen, J.O. Metzger, E. Schmidt, U. Schneidewind, Angew. Chem. 114 (2002) 402; Angew. Chem. Int. Ed. Engl. 41 (2002) 414

[163] <http://www.errma.com>.


Cité par

  • Fiammetta Vitulano; Andrea Solida; Letizia Sorti; Carlo F. Morelli; Alessandro Minguzzi; Alberto Vertova Alcohol and Carbonyl Redox Reactions in Electrochemical Organic Synthesis, ChemistryEurope (2025) | DOI:10.1002/ceur.202500013
  • María Angélica Escobar Caicedo; Valeria Palermo; Ángel Gabriel Sathicq; Gustavo Pablo Romanelli Aprovechamiento De Biomasa Y Residuos Agrícolas En La Producción De Moléculas Plataforma: Ácido Levulínico Y Derivados, Ciencia en Desarrollo, Volume 16 (2025) no. 1 | DOI:10.19053/uptc.01217488.v16.n1.2025.18188
  • Kuo-Jian Ma; Yong-Lian Ye; Yu-Kang Li; Ge-Yi Fu; Yue-Hong Wu; Cong Sun; Xue-Wei Xu Polysaccharide metabolic pattern of Cytophagales and Flavobacteriales: a comprehensive genomics approach, Frontiers in Marine Science, Volume 12 (2025) | DOI:10.3389/fmars.2025.1551618
  • Sara Mohebbi; Robin A. Hutchinson; Michael F. Cunningham Exploring Bio‐Based Monomers in Emulsion and Miniemulsion Polymerization, Macromolecular Rapid Communications, Volume 46 (2025) no. 12 | DOI:10.1002/marc.202401097
  • Marco Weers; Aaron R. von Seggern; Heinrich Vocke; Dereje H. Taffa; Michael Wark Two Ways to more NH2-Groups: Formation of Polymeric Carbon Nitride via Melem Tetramer Nano Sheets or Supramolecular Assembly of Melamine and Cyanuric Acid for Applications as Photocatalyst, ACS Applied Nano Materials, Volume 7 (2024) no. 1, p. 1402 | DOI:10.1021/acsanm.3c05516
  • Muhammad Umair; Giovanni Palmisano; Reem Al Sakkaf; Samar Al Jitan; Albin Pintar; Gregor Žerjav; Leonardo Palmisano; Vittorio Loddo; Marianna Bellardita Pt-Nb2O5-TiO2 based semiconductors for photo-reforming of glucose and fructose aqueous solutions, Applied Surface Science, Volume 648 (2024), p. 159030 | DOI:10.1016/j.apsusc.2023.159030
  • Lennart Sobota; Christoph J. Bondue; Pouya Hosseini; Christoph Kaiser; Marius Spallek; Kristina Tschulik Impact of the Electrochemically Inert Furan Ring on the Oxidation of the Alcohol and Aldehyde Functional Group of 5‐Hydroxymethylfurfural (HMF), ChemElectroChem, Volume 11 (2024) no. 1 | DOI:10.1002/celc.202300151
  • Mohd Talha Biomacromolecules as green corrosion inhibitors: a review based on mild steel corrosion in acidic media, Corrosion Reviews (2024) | DOI:10.1515/corrrev-2024-0067
  • Bright Amanful; Eunice Sefakor Dogbe; Catharine Elizabeth Bosman; Johann Ferdinand Görgens Stochastic techno-economic analysis for the co-production of alternative sweeteners in sugarcane biorefineries, Food and Bioproducts Processing, Volume 143 (2024), p. 9 | DOI:10.1016/j.fbp.2023.10.006
  • Norbert Hoffmann; Mario Andrés Gomez Fernandez; Arthur Desvals; Corentin Lefebvre; Clément Michelin; Mohammed Latrache Photochemical reactions of biomass derived platform chemicals, Frontiers in Chemistry, Volume 12 (2024) | DOI:10.3389/fchem.2024.1485354
  • Ping Zhang; Cécile Barbot; Ramakrishna Gandikota; Cenxiao Li; Laura Gouriou; Géraldine Gouhier; Chang-Chun Ling Synthesis of an Ethylenediaminetetraacetic Acid-like Ligand Based on Sucrose Scaffold and Complexation and Proton Relaxivity Studies of Its Gadolinium(III) Complex in Solution, Molecules, Volume 29 (2024) no. 19, p. 4688 | DOI:10.3390/molecules29194688
  • Stefan S. Warthegau; Sebastian Meier Tailoring the Formation of Functionalized Furans from Glucose in Water with Nature-Sourced Catalysts and In Situ NMR, Molecules, Volume 29 (2024) no. 6, p. 1368 | DOI:10.3390/molecules29061368
  • Shamli Rajput; Rajinder Kaur; Surbhi Sharma Synthesis of Pure and Engineered Soft Materials, Soft Materials for Functional Applications, Volume 225 (2024), p. 1 | DOI:10.1007/978-981-97-9468-3_1
  • Isaac T. Daniel; Bohyeon Kim; Mark Douthwaite; Samuel Pattisson; Richard J. Lewis; Joseph Cline; David J. Morgan; Donald Bethell; Christopher J. Kiely; Steven McIntosh; Graham J. Hutchings Electrochemical Polarization of Disparate Catalytic Sites Drives Thermochemical Rate Enhancement, ACS Catalysis, Volume 13 (2023) no. 21, p. 14189 | DOI:10.1021/acscatal.3c03364
  • Tariq Ali; Haiyan Wang; Waseem Iqbal; Tariq Bashir; Rahim Shah; Yong Hu Electro‐Synthesis of Organic Compounds with Heterogeneous Catalysis, Advanced Science, Volume 10 (2023) no. 1 | DOI:10.1002/advs.202205077
  • Shashank Kumar Singh; Yatender Kumar; Soumya Sasmal Perspectives of HMF and LA from microalgal biomass, Algal Research, Volume 72 (2023), p. 103133 | DOI:10.1016/j.algal.2023.103133
  • Shashank Kumar Singh; Yatender Kumar; Soumya Sasmal One-Step method for the production of 5-HMF from catalytic conversion of microalgal biomass, Biomass Conversion and Biorefinery (2023) | DOI:10.1007/s13399-023-04316-4
  • Dean C. Webster Bio-based Polymers and Resins in Paints and Coatings, Bioplastics and Biocomposites (2023), p. 249 | DOI:10.1039/bk9781788010085-00249
  • Wawat Rodiahwati; Trevor C. Brown; Ben W. Greatrex Formation of levoglucosenone and furfural from three different carrageenans via acid-catalyzed pyrolysis in polyethylene glycol, Bioresource Technology Reports, Volume 23 (2023), p. 101576 | DOI:10.1016/j.biteb.2023.101576
  • Chandrabhan Verma; M.A. Quraishi Carbohydrate polymers-modified carbon allotropes for enhanced anticorrosive activity: State-of-arts and perspective, Chemical Engineering Journal Advances, Volume 13 (2023), p. 100428 | DOI:10.1016/j.ceja.2022.100428
  • Laura M. H. Pascual; Stéphanie Boudesocque; Laurent Dupont; Jean Michel; Richard Plantier‐Royon; Sylvain Gatard A Xyloside‐Based Ligand to Stabilize Gold Nanoparticles: Preparation and Application, European Journal of Inorganic Chemistry, Volume 26 (2023) no. 18 | DOI:10.1002/ejic.202300076
  • Kuo-Jian Ma; Yong-Lian Ye; Yun-Han Fu; Ge-Yi Fu; Cong Sun; Xue-Wei Xu Genomic and phylotypic properties of three novel marine Bacteroidota from bare tidal flats reveal insights into their potential of polysaccharide metabolism, Frontiers in Marine Science, Volume 10 (2023) | DOI:10.3389/fmars.2023.1222157
  • Noor Hadi Hasan; Nabeel Ibrahim Hasan Agricultural Waste Liquefied Hydrothermally using Heterogeneous Catalyst, IOP Conference Series: Earth and Environmental Science, Volume 1259 (2023) no. 1, p. 012032 | DOI:10.1088/1755-1315/1259/1/012032
  • Shixia Xi; Haocun Kong; Xiaofeng Ban; Caiming Li; Zhengbiao Gu; Zhaofeng Li Bifunctional Mutant of Oligo-1,6-glucosidase for the Production of Glucose from Glucose Mother Liquor, Journal of Agricultural and Food Chemistry, Volume 71 (2023) no. 35, p. 13035 | DOI:10.1021/acs.jafc.3c03731
  • Kyoyoung Seo; Wei Shu; Christian Rückert-Reed; Patrick Gerlinger; Tobias J. Erb; Jörn Kalinowski; Christoph Wittmann From waste to health-supporting molecules: biosynthesis of natural products from lignin-, plastic- and seaweed-based monomers using metabolically engineered Streptomyces lividans, Microbial Cell Factories, Volume 22 (2023) no. 1 | DOI:10.1186/s12934-023-02266-0
  • Mario Andrés Gómez Fernández; Norbert Hoffmann Photocatalytic Transformation of Biomass and Biomass Derived Compounds—Application to Organic Synthesis, Molecules, Volume 28 (2023) no. 12, p. 4746 | DOI:10.3390/molecules28124746
  • Mengxin Xia; Ziad Moussa; Zaher M. A. Judeh Acetic Acid‐Catalyzed Selective Synthesis of N‐Substituted 2‐Amino‐3‐Cyanopyrroles via a Three‐Component Reaction Between Carbohydrates, Primary Amines and Malononitrile, Asian Journal of Organic Chemistry, Volume 11 (2022) no. 9 | DOI:10.1002/ajoc.202200367
  • Alessandro Messori; Andrea Fasolini; Rita Mazzoni Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bio‐Based Platform 5‐Hydroxymethylfurfural, ChemSusChem, Volume 15 (2022) no. 13 | DOI:10.1002/cssc.202200228
  • Arpna Jaryal; Battula Venugopala Rao; Kamalakannan Kailasam A Light(er) Approach for the Selective Hydrogenation of 5‐Hydroxymethylfurfural to 2,5‐Bis(hydroxymethyl)furan without External H2, ChemSusChem, Volume 15 (2022) no. 13 | DOI:10.1002/cssc.202200430
  • Roland Wohlgemuth Selective Biocatalytic Defunctionalization of Raw Materials, ChemSusChem, Volume 15 (2022) no. 9 | DOI:10.1002/cssc.202200402
  • Da-Ming Gao; Shuoqi Zhang; Tingzhou Lei; Jie Zhu; Taoli Huhe; Fuan Sun; Guixiang Zeng; Haichao Liu Unexpected High-Substrate-Dependent Ketonization of Aldose on Niobium Phosphate-Supported Magnesia: An Emphasis on Surface Chemisorption, Industrial Engineering Chemistry Research, Volume 61 (2022) no. 50, p. 18362 | DOI:10.1021/acs.iecr.2c03358
  • Diogo Pimentel de Sá da Silva; David Clebson de Melo Silva; Thaís Regina Silva Ribeiro; Julyane Rocha Santos Solano; Bruno José Barros da Silva; Sarah Arvelos Altino; Antonio Osimar Sousa da Silva Mesoporous aluminas synthesis using carboxylic acids to enhance performance in CO2 adsorption, Journal of Environmental Chemical Engineering, Volume 10 (2022) no. 6, p. 108928 | DOI:10.1016/j.jece.2022.108928
  • Ji-feng BAI; Man-fang CHENG; Hong-zhu LU; Ming-bo HOU; Yu YANG; Jing-yun WANG; Ming-dong ZHOU In-situ oxidation of 5-hydroxymethylfurfural to 5-formylfuran-2-carboxylic acid catalyzed by iron, manganese, copper and salicylic amantadine Schiff base ligands, Journal of Fuel Chemistry and Technology, Volume 50 (2022) no. 4, p. 418 | DOI:10.1016/s1872-5813(21)60176-7
  • Anuj Kumar Chandel; Jesús J. Ascencio; Akhilesh K. Singh; Ruly T. Hilares; Lucas Ramos; Rishi Gupta; Yeruva Thirupathaiah; Sridevi Jagavati White Biotechnology, Lignocellulose Bioconversion Through White Biotechnology (2022), p. 1 | DOI:10.1002/9781119735984.ch1
  • Y. Lun; Y. Zhou; Q. Li; P. Chen; Y. Huang; G. Ye Preparation and characterization of a magnetic microsphere synthesized from sucrose allyl ether for transcatheter arterial embolization, Materials Today Chemistry, Volume 24 (2022), p. 100772 | DOI:10.1016/j.mtchem.2022.100772
  • Radosław Michał Gruska; Andrzej Baryga; Alina Kunicka-Styczyńska; Stanisław Brzeziński; Justyna Rosicka-Kaczmarek; Karolina Miśkiewicz; Teresa Sumińska Fresh and Stored Sugar Beet Roots as a Source of Various Types of Mono- and Oligosaccharides, Molecules, Volume 27 (2022) no. 16, p. 5125 | DOI:10.3390/molecules27165125
  • Patricia Garcia Ferreira; Vitor Francisco Ferreira; Fernando de Carvalho da Silva; Cyntia Silva Freitas; Patricia Ribeiro Pereira; Vania Margaret Flosi Paschoalin Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair, Pharmaceutics, Volume 14 (2022) no. 6, p. 1307 | DOI:10.3390/pharmaceutics14061307
  • Neha Kesharwani; Chanchal Haldar Synthesis and characterization of Merrifield resin-supported vanadium complexes for the catalytic oxidation of straight-chain aliphatic alcohols, Polyhedron, Volume 219 (2022), p. 115787 | DOI:10.1016/j.poly.2022.115787
  • Henrique Magri Marçon; Julio Cezar Pastre Continuous flow Meerwein–Ponndorf–Verley reduction of HMF and furfural using basic zirconium carbonate, RSC Advances, Volume 12 (2022) no. 13, p. 7980 | DOI:10.1039/d2ra00588c
  • Carbohydrates, Renewable Resources for Surface Coatings, Inks, and Adhesives (2022), p. 589 | DOI:10.1039/9781788013024-00589
  • B. M. Muir; A. R. Anderson Development and Diversification of Sugar Beet in Europe, Sugar Tech, Volume 24 (2022) no. 4, p. 992 | DOI:10.1007/s12355-021-01036-9
  • Ayman Akhdar; Killian Onida; Nam Duc Vu; Kevin Grollier; Sébastien Norsic; Christophe Boisson; Franck D'Agosto; Nicolas Duguet Thermomorphic Polyethylene‐Supported Organocatalysts for the Valorization of Vegetable Oils and CO2, Advanced Sustainable Systems, Volume 5 (2021) no. 2 | DOI:10.1002/adsu.202000218
  • Radhika Theagarajan; Srinivasan Krishnamoorthy; J.A. Moses; C. Anandharamakrishnan Advanced applications of green materials in food applications, Applications of Advanced Green Materials (2021), p. 1 | DOI:10.1016/b978-0-12-820484-9.00001-5
  • Harilal Krishna; Moritz O. Haus; Regina Palkovits Basic silica catalysts for the efficient dehydration of biomass-derived compounds – Elucidating structure-activity relationships for Na2O/SiO2-type materials, Applied Catalysis B: Environmental, Volume 286 (2021), p. 119933 | DOI:10.1016/j.apcatb.2021.119933
  • Guoquan Liu; Yan Zhang; Hao Gong; Shan Li; Yunrong Pan; Christopher Davis; Hai-Chun Jing; Luguang Wu; Ian D. Godwin Stem vacuole-targetted sucrose isomerase enhances sugar content in sorghum, Biotechnology for Biofuels, Volume 14 (2021) no. 1 | DOI:10.1186/s13068-021-01907-z
  • Stéphane Patry; Mike Robitzer; Jean-Pierre Habas Synthesis and characterization of a small library of bisglucosides: Influence of the nature of the diol/diphenol used in O-glucosylation, Carbohydrate Research, Volume 500 (2021), p. 108217 | DOI:10.1016/j.carres.2020.108217
  • Ayhan Yıldırım; Yunus Kaya; Mustafa Göker Screening of simple carbohydrates as a renewable organocatalyst for the efficient construction of 1,3-benzoxazine scaffold, Carbohydrate Research, Volume 510 (2021), p. 108458 | DOI:10.1016/j.carres.2021.108458
  • Hessam Jahangiri; João Santos; Andreas Hornung; Miloud Ouadi Thermochemical Conversion of Biomass and Upgrading of Bio-Products to Produce Fuels and Chemicals, Catalysis for Clean Energy and Environmental Sustainability (2021), p. 1 | DOI:10.1007/978-3-030-65017-9_1
  • José Carlos Velasco Calderón; Shang Jiang; Samir H. Mushrif Understanding the Effect of Solvent Environment on the Interaction of Hydronium Ion with Biomass Derived Species: A Molecular Dynamics and Metadynamics Investigation, ChemPhysChem, Volume 22 (2021) no. 21, p. 2222 | DOI:10.1002/cphc.202100485
  • Mojtaba Hedayati Marzbali; Sazal Kundu; Pobitra Halder; Savankumar Patel; Ibrahim Gbolahan Hakeem; Jorge Paz-Ferreiro; Srinivasan Madapusi; Aravind Surapaneni; Kalpit Shah Wet organic waste treatment via hydrothermal processing: A critical review, Chemosphere, Volume 279 (2021), p. 130557 | DOI:10.1016/j.chemosphere.2021.130557
  • Chandrabhan Verma; M.A. Quraishi Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications, Current Research in Green and Sustainable Chemistry, Volume 4 (2021), p. 100184 | DOI:10.1016/j.crgsc.2021.100184
  • Gabrielle Robert‐Scott; Jacob St‐Gelais; Denis Giguère Annulative Dimerization of Carbohydrates: Synthesis of Complex C2‐Symmetrical 1,4‐Dioxane‐Sugar Hybrids, European Journal of Organic Chemistry, Volume 2021 (2021) no. 22, p. 3322 | DOI:10.1002/ejoc.202100411
  • Xiaojue Li; Naoto Shimizu Effects of Lipase Addition, Hydrothermal Processing, Their Combination, and Co-Digestion with Crude Glycerol on Food Waste Anaerobic Digestion, Fermentation, Volume 7 (2021) no. 4, p. 284 | DOI:10.3390/fermentation7040284
  • Dibakar Goswami; Soumyaditya Mula Green Chemistry Approach for Synthesis of Materials, Handbook on Synthesis Strategies for Advanced Materials (2021), p. 557 | DOI:10.1007/978-981-16-1807-9_17
  • Dakeshwar Kumar Verma; Ruby Aslam; Jeenat Aslam; M.A. Quraishi; Eno E. Ebenso; Chandrabhan Verma Computational Modeling: Theoretical Predictive Tools for Designing of Potential Organic Corrosion Inhibitors, Journal of Molecular Structure, Volume 1236 (2021), p. 130294 | DOI:10.1016/j.molstruc.2021.130294
  • Akarsh Verma; Naman Jain; Kalpana; Sanjay Mavinkere Rangappa; Suchart Siengchin; Mohammad Jawaid Natural Fibers Based Bio-phenolic Composites, Phenolic Polymers Based Composite Materials (2021), p. 153 | DOI:10.1007/978-981-15-8932-4_10
  • L. Kh. Faizullina; Yu. S. Galimova; Yu. A. Khalilova; F. A. Valeev Synthesis of Methyl-3,4-Dideoxy-α(β)-D-glycero-hex-3-enopyranosiduloses from Levoglucosenone, Russian Journal of Organic Chemistry, Volume 57 (2021) no. 7, p. 1047 | DOI:10.1134/s1070428021070034
  • Tau Len-Kelly Yong; Khairul Faizal Pa’ee; Norfahana Abd-Talib; Nurabiyiah Mohamad Production of Platform Chemicals Using Supercritical Fluid Technology, Advanced Nanotechnology and Application of Supercritical Fluids (2020), p. 53 | DOI:10.1007/978-3-030-44984-1_4
  • Francesco Manfellotto; Giulio Rocco Stella; Angela Falciatore; Christophe Brunet; Maria Immacolata Ferrante Engineering the Unicellular Alga Phaeodactylum tricornutum for Enhancing Carotenoid Production, Antioxidants, Volume 9 (2020) no. 8, p. 757 | DOI:10.3390/antiox9080757
  • Saravanan Kasipandi; Mansoor Ali; Yongdan Li; Jong Wook Bae Phosphorus‐Modified Mesoporous Inorganic Materials for Production of Hydrocarbon Fuels and Value‐Added Chemicals, ChemCatChem, Volume 12 (2020) no. 17, p. 4224 | DOI:10.1002/cctc.202000418
  • Giulia Moggia; Thomas Kenis; Nick Daems; Tom Breugelmans Electrochemical Oxidation of d‐Glucose in Alkaline Medium: Impact of Oxidation Potential and Chemical Side Reactions on the Selectivity to d‐Gluconic and d‐Glucaric Acid, ChemElectroChem, Volume 7 (2020) no. 1, p. 86 | DOI:10.1002/celc.201901592
  • Konstantin I. Galkin; Valentine P. Ananikov The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5‐(hydroxymethyl)furfural, ChemistryOpen, Volume 9 (2020) no. 11, p. 1135 | DOI:10.1002/open.202000233
  • João Santos; Miloud Ouadi; Hessam Jahangiri; Andreas Hornung Thermochemical conversion of agricultural wastes applying different reforming temperatures, Fuel Processing Technology, Volume 203 (2020), p. 106402 | DOI:10.1016/j.fuproc.2020.106402
  • Jessica S. Desport; Matías L. Picchio; Luis M. Gugliotta; María J. Barandiaran; Roque J. Minari Waterborne coatings from casein and carbohydrate biobased raw materials, Handbook of Waterborne Coatings (2020), p. 195 | DOI:10.1016/b978-0-12-814201-1.00009-3
  • Sang Yeol Lee; Dae Ryook Yang; Ji Woong Chang Design of isosorbide crystallization process as recovery system for poly(ethylene-co-isosorbide) terephthalate production via solubility measurements and crystallization kinetic parameter estimation, Journal of Industrial and Engineering Chemistry, Volume 92 (2020), p. 191 | DOI:10.1016/j.jiec.2020.09.004
  • Lei Chen; Zhouyi Xiong; Zia-ud Din; Asad Nawaz; Hanguo Xiong; Jie Cai Interfacial modification of starch at high concentration by sodium dodecylsulfate as revealed by experiments and molecular simulation, Journal of Molecular Liquids, Volume 310 (2020), p. 113190 | DOI:10.1016/j.molliq.2020.113190
  • Takuya Isono; Saki Nakahira; Hui-Ching Hsieh; Satoshi Katsuhara; Hiroaki Mamiya; Takuya Yamamoto; Wen-Chang Chen; Redouane Borsali; Kenji Tajima; Toshifumi Satoh Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers, Macromolecules, Volume 53 (2020) no. 13, p. 5408 | DOI:10.1021/acs.macromol.0c00611
  • Vincent Vedovato; Karolien Vanbroekhoven; Deepak Pant; Joost Helsen Electrosynthesis of Biobased Chemicals Using Carbohydrates as a Feedstock, Molecules, Volume 25 (2020) no. 16, p. 3712 | DOI:10.3390/molecules25163712
  • Yadavali Siva Prasad; S. Manikandan; Krishnamoorthy Lalitha; Miryala Sandeep; R. Vara Prasad; R. Arun Kumar; C.S. Srinandan; C. Uma Maheswari; Vellaisamy Sridharan; Subbiah Nagarajan Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications, Nano Select, Volume 1 (2020) no. 5, p. 510 | DOI:10.1002/nano.202000058
  • Cong-Yu Ke; Guo-Min Lu; Ying-Lin Wei; Xiao-Xia Zhang; Wu-Juan Sun; Xuan Tang; Qun-Zheng Zhang; Xun-Li Zhang Chemical Kinetics of the Alkylation of Xylenol for the Separation of Their Close-Boiling Isomers from Coal Tar, Petroleum Chemistry, Volume 60 (2020) no. 11, p. 1291 | DOI:10.1134/s0965544120110031
  • Kerem Kaya; Tapas Debsharma; Helmut Schlaad; Yusuf Yagci Cellulose-based polyacetals by direct and sensitized photocationic ring-opening polymerization of levoglucosenyl methyl ether, Polymer Chemistry, Volume 11 (2020) no. 43, p. 6884 | DOI:10.1039/d0py01307b
  • Fatma Cetin Telli Synthesis, characterization and thermokinetic analysis of the novel sugar based styrene co-polymer, Polímeros, Volume 30 (2020) no. 2 | DOI:10.1590/0104-1428.02620
  • Adrián Badía; Maud Kastelijn; Jurgen Scheerder; Jose R. Leiza Development of biobased waterborne coatings containing Ecomer®: An alkyl polyglucoside maleic acid ester monomer, Progress in Organic Coatings, Volume 147 (2020), p. 105708 | DOI:10.1016/j.porgcoat.2020.105708
  • Séma Golonu; Gwladys Pourceau; Lucie Quéhon; Anne Wadouachi; Frédéric Sauvage Insight on the Contribution of Plasmons to Gold‐Catalyzed Solar‐Driven Selective Oxidation of Glucose under Oxygen, Solar RRL, Volume 4 (2020) no. 8 | DOI:10.1002/solr.202000084
  • Supriya Sasmal; Srayoshi Roy Chowdhury; Debasish Podder; Debasish Haldar Urea-Appended Amino Acid To Vitalize Yeast Growth, Enhance Fermentation, and Promote Ethanol Production, ACS Omega, Volume 4 (2019) no. 8, p. 13172 | DOI:10.1021/acsomega.9b01260
  • Nam Duc Vu; Romain Chavallard; Thomas De Dios Miguel; Nicolas Duguet; Marc Lemaire Organocatalytic Cleavage of Fatty 1,2-Diketones to Esters, ACS Sustainable Chemistry Engineering, Volume 7 (2019) no. 16, p. 13865 | DOI:10.1021/acssuschemeng.9b02026
  • Hui Zhao; Na Qi; Ying Li Interaction between polysaccharide monomer and SiO2/Al2O3/CaCO3 surfaces: A DFT theoretical study, Applied Surface Science, Volume 466 (2019), p. 607 | DOI:10.1016/j.apsusc.2018.10.085
  • Zhi-Peng Wang; Lin-Lin Zhang; Song Liu; Xiao-Yan Liu; Xin-Jun Yu Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations, Biomolecules, Volume 9 (2019) no. 8, p. 353 | DOI:10.3390/biom9080353
  • Seong-Won Choi; Jung-A Lee; Sang-Ho Yoo Sucrose-based biosynthetic process for chain-length-defined α-glucan and functional sweetener by Bifidobacterium amylosucrase, Carbohydrate Polymers, Volume 205 (2019), p. 581 | DOI:10.1016/j.carbpol.2018.10.064
  • Konstantin I. Galkin; Valentine P. Ananikov When Will 5‐Hydroxymethylfurfural, the “Sleeping Giant” of Sustainable Chemistry, Awaken?, ChemSusChem, Volume 12 (2019) no. 13, p. 2976 | DOI:10.1002/cssc.201900592
  • Vasile I. Parvulescu; Simona M. Coman Core-Magnetic Composites Catalysts for the Valorization and Up-grading of the Renewable Feedstocks: A Minireview, Current Catalysis, Volume 8 (2019) no. 1, p. 2 | DOI:10.2174/2211544708666181227152000
  • Azis Adharis; Katja Loos Synthesis of glycomonomers via biocatalytic methods, Enzymatic Polymerizations, Volume 627 (2019), p. 215 | DOI:10.1016/bs.mie.2019.04.015
  • Joao Santos; Miloud Ouadi; Hessam Jahangiri; Andreas Hornung Integrated intermediate catalytic pyrolysis of wheat husk, Food and Bioproducts Processing, Volume 114 (2019), p. 23 | DOI:10.1016/j.fbp.2018.11.001
  • Samantha Molina-Gutiérrez; Vincent Ladmiral; Roberta Bongiovanni; Sylvain Caillol; Patrick Lacroix-Desmazes Radical polymerization of biobased monomers in aqueous dispersed media, Green Chemistry, Volume 21 (2019) no. 1, p. 36 | DOI:10.1039/c8gc02277a
  • Laure Benhamou; Robert W. Foster; David P. Ward; Katherine Wheelhouse; Lisa Sloan; Christopher J. Tame; Dejan-Krešimir Bučar; Gary J. Lye; Helen C. Hailes; Tom D. Sheppard Functionalised tetrahydrofuran fragments from carbohydrates or sugar beet pulp biomass, Green Chemistry, Volume 21 (2019) no. 8, p. 2035 | DOI:10.1039/c9gc00448c
  • Wenhui Duan; Xiuchun Xiao; Dongyang Fu; Jingwen Yan; Mei Liu; Jiliang Zhang; Long Jin Neural Dynamics for Control of Industrial Agitator Tank With Rapid Convergence and Perturbations Rejection, IEEE Access, Volume 7 (2019), p. 102941 | DOI:10.1109/access.2019.2930323
  • Guillermo Portillo Perez; Agneev Mukherjee; Marie-Josée Dumont Insights into HMF catalysis, Journal of Industrial and Engineering Chemistry, Volume 70 (2019), p. 1 | DOI:10.1016/j.jiec.2018.10.002
  • Guangzhi Xu; Chen Liu; Aiyun Hu; Yongmei Xia; Haijun Wang; Xiang Liu Transfer hydrogenation of furfural to furfuryl alcohol over Keggin zirconium-heteropoly acid, Molecular Catalysis, Volume 475 (2019), p. 110384 | DOI:10.1016/j.mcat.2019.04.013
  • S. Iraj Sadraei; Brent St Onge; John F. Trant Recent advances in the application of carbohydrates as renewable feedstocks for the synthesis of nitrogen-containing compounds, Physical Sciences Reviews, Volume 4 (2019) no. 1 | DOI:10.1515/psr-2018-0074
  • Zhixin Zhao; Bei Lei; Wenhao Du; Xi Zhang The Effects of Inorganic Salts with Different Anions on the Structure and Properties of Starch/Poly (Butylene Succinate) Blends Plasticized with Ionic Liquid, Polymers, Volume 11 (2019) no. 12, p. 2004 | DOI:10.3390/polym11122004
  • Cláudia Moreira da Fontoura; Vinicios Pistor; Raquel Santos Mauler Evaluation of degradation of furanic polyamides synthesized with different solvents, Polímeros, Volume 29 (2019) no. 2 | DOI:10.1590/0104-1428.08917
  • Qiong Wang; Wei Qi; Wen Wang; Yu Zhang; Noppol Leksawasdi; Xinshu Zhuang; Qiang Yu; Zhenhong Yuan Production of furfural with high yields from corncob under extremely low water/solid ratios, Renewable Energy, Volume 144 (2019), p. 139 | DOI:10.1016/j.renene.2018.07.095
  • Muhammad Tahir Khan; Imtiaz Ahmed Khan; Shafquat Yasmeen Genetically Modified Sugarcane for Biofuels Production: Status and Perspectives of Conventional Transgenic Approaches, RNA Interference, and Genome Editing for Improving Sugarcane for Biofuels, Sugarcane Biofuels (2019), p. 67 | DOI:10.1007/978-3-030-18597-8_4
  • Johannes T. Cramer; Jana I. Führing; Petra Baruch; Christian Brütting; Hans-Joachim Knölker; Rita Gerardy-Schahn; Roman Fedorov Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies, ACS Catalysis, Volume 8 (2018) no. 4, p. 2683 | DOI:10.1021/acscatal.7b03714
  • Mohammad Rafiee; Zachary M. Konz; Matthew D. Graaf; Hannes F. Koolman; Shannon S. Stahl Electrochemical Oxidation of Alcohols and Aldehydes to Carboxylic Acids Catalyzed by 4-Acetamido-TEMPO: An Alternative to “Anelli” and “Pinnick” Oxidations, ACS Catalysis, Volume 8 (2018) no. 7, p. 6738 | DOI:10.1021/acscatal.8b01640
  • Biwen Zhu; Dorine Belmessieri; Jesús Fermin Ontiveros; Jean-Marie Aubry; Guo-Rong Chen; Nicolas Duguet; Marc Lemaire Trialkylamine-Catalyzed Aldolization of Unprotected 1,3-Dihydroxyacetone (DHA) toward C–C Bond-Linked Tetraol Surfactants, ACS Sustainable Chemistry Engineering, Volume 6 (2018) no. 2, p. 2630 | DOI:10.1021/acssuschemeng.7b04135
  • Yue Shen; Jiankui Sun; Bo Wang; Feng Xu; Runcang Sun Catalytic Approaches to the Production of Furfural and Levulinates From Lignocelluloses, Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value (2018), p. 235 | DOI:10.1016/b978-0-444-63774-1.00007-7
  • Joanna Rydz; Marta Musioł; Barbara Zawidlak-Węgrzyńska; Wanda Sikorska Present and Future of Biodegradable Polymers for Food Packaging Applications, Biopolymers for Food Design (2018), p. 431 | DOI:10.1016/b978-0-12-811449-0.00014-1
  • Ying Zhou; Nils Engler; Michael Nelles Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China, Bioresource Technology, Volume 260 (2018), p. 404 | DOI:10.1016/j.biortech.2018.03.102
  • C. Megías-Sayago; L.F. Bobadilla; S. Ivanova; A. Penkova; M.A. Centeno; J.A. Odriozola Gold catalyst recycling study in base-free glucose oxidation reaction, Catalysis Today, Volume 301 (2018), p. 72 | DOI:10.1016/j.cattod.2017.03.022
  • Azis Adharis; Dennis Vesper; Nick Koning; Katja Loos Synthesis of (meth)acrylamide-based glycomonomers using renewable resources and their polymerization in aqueous systems, Green Chemistry, Volume 20 (2018) no. 2, p. 476 | DOI:10.1039/c7gc03023a
  • Andrea Pérez Nebreda; Tapio Salmi; Dmitry Yu Murzin; Henrik Grénman High purity fructose from inulin with heterogeneous catalysis – kinetics and modelling, Journal of Chemical Technology Biotechnology, Volume 93 (2018) no. 1, p. 224 | DOI:10.1002/jctb.5344
  • Krasimira T. Petrova; M. Teresa Barros; Ricardo C. Calhelha; Marina Soković; Isabel C. F. R. Ferreira Antimicrobial and cytotoxic activities of short carbon chain unsaturated sucrose esters, Medicinal Chemistry Research, Volume 27 (2018) no. 3, p. 980 | DOI:10.1007/s00044-017-2121-5
  • Sailaja Gadamsetti; Nagaraju Mathangi; Sk. Hussain; Vijay Kumar Velisoju; Komandur V.R. Chary Vapor phase esterification of levulinic acid catalyzed by γ-Al 2 O 3 supported molybdenum phosphate catalysts, Molecular Catalysis, Volume 451 (2018), p. 192 | DOI:10.1016/j.mcat.2018.01.011
  • Jessica S. Desport; Mónica Moreno; María J. Barandiaran Fructose-Based Acrylic Copolymers by Emulsion Polymerization, Polymers, Volume 10 (2018) no. 5, p. 488 | DOI:10.3390/polym10050488
  • Tommy Haynes; Vincent Dubois; Sophie Hermans Particle size effect in glucose oxidation with Pd/CB catalysts, Applied Catalysis A: General, Volume 542 (2017), p. 47 | DOI:10.1016/j.apcata.2017.05.008
  • Stefania Solmi; Calogero Morreale; Francesca Ospitali; Stefano Agnoli; Fabrizio Cavani Oxidation of d‐Glucose to Glucaric Acid Using Au/C Catalysts, ChemCatChem, Volume 9 (2017) no. 14, p. 2797 | DOI:10.1002/cctc.201700089
  • Pei Zhang; Jun Ma; Xinchen Kang; Huizhen Liu; Chunjun Chen; Zhanrong Zhang; Jianling Zhang; Buxing Han Switching chirality in the assemblies of bio-based amphiphiles solely by varying their alkyl chain length, Chemical Communications, Volume 53 (2017) no. 13, p. 2162 | DOI:10.1039/c6cc10122d
  • Elena Zakharova; Antxon Martínez de Ilarduya; Salvador León; Sebastián Muñoz-Guerra Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide, Designed Monomers and Polymers, Volume 20 (2017) no. 1, p. 157 | DOI:10.1080/15685551.2016.1231038
  • Andrea Vavasori; Lucio Ronchin Polyketones: Synthesis and Applications, Encyclopedia of Polymer Science and Technology (2017), p. 1 | DOI:10.1002/0471440264.pst273.pub2
  • Gianluca Gallina; Pierdomenico Biasi; Cristian M. Piqueras; Juan García-Serna Processing of Lignocellulosic Biomass Derived Monomers using High-pressure CO2 and CO2–H2O Mixtures, High Pressure Technologies in Biomass Conversion (2017), p. 115 | DOI:10.1039/9781782626763-00115
  • Dietrich Braun DAS KUNSTSTOFFZEITALTER, KLEINE GESCHICHTE DER KUNSTSTOFFE (2017), p. 44 | DOI:10.1007/978-3-446-45242-8_2
  • Shuang Zhang; Long Zhang A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural, Polish Journal of Chemical Technology, Volume 19 (2017) no. 1, p. 11 | DOI:10.1515/pjct-2017-0002
  • Haosheng Xin; Tingwei Zhang; Wenzhi Li; Mingxue Su; Song Li; Qun Shao; Longlong Ma Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid, RSC Advances, Volume 7 (2017) no. 66, p. 41546 | DOI:10.1039/c7ra07684c
  • V. M. Akhmedov; N. E. Melnikova; I. D. Akhmedov Synthesis, properties, and application of polymeric carbon nitrides, Russian Chemical Bulletin, Volume 66 (2017) no. 5, p. 782 | DOI:10.1007/s11172-017-1810-z
  • Mehdi Omri; Gwladys Pourceau; Matthieu Becuwe; Anne Wadouachi Improvement of Gold-Catalyzed Oxidation of Free Carbohydrates to Corresponding Aldonates Using Microwaves, ACS Sustainable Chemistry Engineering, Volume 4 (2016) no. 4, p. 2432 | DOI:10.1021/acssuschemeng.6b00263
  • Maria Grahn; Julia Hansson Prospects for Domestic Biofuels for Transport in Sweden 2030 Based on Current Production and Future Plans, Advances in Bioenergy (2016), p. 431 | DOI:10.1002/9781118957844.ch28
  • Mónica Moreno; Monika Goikoetxea; María J. Barandiaran Fatty Acid‐Based Waterborne Coatings, Biobased and Environmental Benign Coatings (2016), p. 161 | DOI:10.1002/9781119185055.ch7
  • Hongming Xu; Chongming Wang A Comprehensive Review of 2,5‐Dimethylfuran as a Biofuel Candidate, Biofuels from Lignocellulosic Biomass (2016), p. 105 | DOI:10.1002/9783527685318.ch5
  • Xujing Zheng; Xiaochao Gu; Yun Ren; Zehao Zhi; Xuebin Lu Production of 5‐hydroxymethyl furfural and levulinic acid from lignocellulose in aqueous solution and different solvents, Biofuels, Bioproducts and Biorefining, Volume 10 (2016) no. 6, p. 917 | DOI:10.1002/bbb.1720
  • Jacob Heltzel; Carl R.F. Lund Glucose formate conversion in gamma-valerolactone, Catalysis Today, Volume 269 (2016), p. 88 | DOI:10.1016/j.cattod.2015.12.020
  • Andrew D. Sutton; Jin K. Kim; Ruilian Wu; Caroline B. Hoyt; David B. Kimball; Louis A. Silks; John C. Gordon The Conversion of Starch and Sugars into Branched C10 and C11 Hydrocarbons, ChemSusChem, Volume 9 (2016) no. 17, p. 2298 | DOI:10.1002/cssc.201600669
  • Yuehu Wang; Shilpa Agarwal; Arjan Kloekhorst; Hero Jan Heeres Catalytic Hydrotreatment of Humins in Mixtures of Formic Acid/2‐Propanol with Supported Ruthenium Catalysts, ChemSusChem, Volume 9 (2016) no. 9, p. 951 | DOI:10.1002/cssc.201501371
  • Hamid Hafizi; Alireza Najafi Chermahini; Mohammad Saraji; Gholamhossein Mohammadnezhad The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica, Chemical Engineering Journal, Volume 294 (2016), p. 380 | DOI:10.1016/j.cej.2016.02.082
  • Annamaria Celli; Martino Colonna; Alessandro Gandini; Claudio Gioia; Talita M. Lacerda; Micaela Vannini Polymers from Monomers Derived from Biomass, Chemicals and Fuels from Bio‐Based Building Blocks (2016), p. 315 | DOI:10.1002/9783527698202.ch13
  • Ruben Jolie; Jean‐Claude de Troostembergh; Aristos Aristidou; Massimo Bregola; Eric Black Colocation as Model for Production of Bio‐Based Chemicals from Starch, Chemicals and Fuels from Bio‐Based Building Blocks (2016), p. 549 | DOI:10.1002/9783527698202.ch21
  • Zetryana Puteri Tachrim; Lei Wang; Takuma Yoshida; Miho Muto; Tadashi Nakamura; Katsuyoshi Masuda; Yasuyuki Hashidoko; Makoto Hashimoto Comprehensive structural analysis of halogenated sucrose derivatives: Revisiting the reactivity of sucrose primary alcohols, ChemistrySelect, Volume 1 (2016) no. 1, p. 58 | DOI:10.1002/slct.201500003
  • George Z. Papageorgiou; Dimitrios G. Papageorgiou; Zoi Terzopoulou; Dimitrios N. Bikiaris Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties, European Polymer Journal, Volume 83 (2016), p. 202 | DOI:10.1016/j.eurpolymj.2016.08.004
  • Charlotte Gozlan; Elsa Deruer; Marie-Christine Duclos; Valérie Molinier; Jean-Marie Aubry; Andreas Redl; Nicolas Duguet; Marc Lemaire Preparation of amphiphilic sorbitan monoethers through hydrogenolysis of sorbitan acetals and evaluation as bio-based surfactants, Green Chemistry, Volume 18 (2016) no. 7, p. 1994 | DOI:10.1039/c5gc02131f
  • Sanan Eminov; Paraskevi Filippousi; Agnieszka Brandt; James Wilton-Ely; Jason Hallett Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids, Inorganics, Volume 4 (2016) no. 4, p. 32 | DOI:10.3390/inorganics4040032
  • Marianna Bellardita; Elisa Isabel García-López; Giuseppe Marcì; Leonardo Palmisano Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension, International Journal of Hydrogen Energy, Volume 41 (2016) no. 14, p. 5934 | DOI:10.1016/j.ijhydene.2016.02.103
  • Angélica M. Escobar Caicedo; Julián A. Rengifo-Herrera; Pierre Florian; Mirta N. Blanco; Gustavo P. Romanelli; Luis R. Pizzio Valorization of biomass derivatives: Keggin heteropolyacids supported on titania as catalysts in the suitable synthesis of 2-phenoxyethyl-2-furoate, Journal of Molecular Catalysis A: Chemical, Volume 425 (2016), p. 266 | DOI:10.1016/j.molcata.2016.10.024
  • Rodolphe Sonnier; Belkacem Otazaghine; Fadela Iftene; Claire Negrell; Ghislain David; Bob A. Howell Predicting the flammability of polymers from their chemical structure: An improved model based on group contributions, Polymer, Volume 86 (2016), p. 42 | DOI:10.1016/j.polymer.2016.01.046
  • Quentin Girka; Boris Estrine; Norbert Hoffmann; Jean Le Bras; Siniša Marinković; Jacques Muzart Simple efficient one-pot synthesis of 5-hydroxymethylfurfural and 2,5-diformylfuran from carbohydrates, Reaction Chemistry Engineering, Volume 1 (2016) no. 2, p. 176 | DOI:10.1039/c5re00004a
  • Rik De Clercq; Michiel Dusselier; Bert F. Sels Advances in the Conversion of Short-Chain Carbohydrates: A Mechanistic Insight, Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion I (2016), p. 27 | DOI:10.1007/978-981-287-688-1_3
  • Boy A. Fachri; Ria M. Abdilla; Henk H. van de Bovenkamp; Carolus B. Rasrendra; Hero J. Heeres Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water, ACS Sustainable Chemistry Engineering, Volume 3 (2015) no. 12, p. 3024 | DOI:10.1021/acssuschemeng.5b00023
  • Daniel Stubba; Günther Lahm; Mario Geffe; Jason W. Runyon; Anthony J. Arduengo; Till Opatz Xylochemie – Naturstoffsynthese aus Holz, Angewandte Chemie, Volume 127 (2015) no. 47, p. 14394 | DOI:10.1002/ange.201508500
  • Daniel Stubba; Günther Lahm; Mario Geffe; Jason W. Runyon; Anthony J. Arduengo; Till Opatz Xylochemistry—Making Natural Products Entirely from Wood, Angewandte Chemie International Edition, Volume 54 (2015) no. 47, p. 14187 | DOI:10.1002/anie.201508500
  • Sunil K Khare; Ashok Pandey; Christian Larroche Current perspectives in enzymatic saccharification of lignocellulosic biomass, Biochemical Engineering Journal, Volume 102 (2015), p. 38 | DOI:10.1016/j.bej.2015.02.033
  • Agneev Mukherjee; Marie-Josée Dumont; Vijaya Raghavan Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities, Biomass and Bioenergy, Volume 72 (2015), p. 143 | DOI:10.1016/j.biombioe.2014.11.007
  • Hongzhang Chen; Lanzhi Qin; Bin Yu Furfural production from steam explosion liquor of rice straw by solid acid catalysts (HZSM-5), Biomass and Bioenergy, Volume 73 (2015), p. 77 | DOI:10.1016/j.biombioe.2014.12.013
  • Krasimira T. Petrova; Taterao M. Potewar; Paula Correia-da-Silva; M. Teresa Barros; Ricardo C. Calhelha; Ana Ćiric; Marina Soković; Isabel C.F.R. Ferreira Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives, Carbohydrate Research, Volume 417 (2015), p. 66 | DOI:10.1016/j.carres.2015.09.003
  • Boy Fachri; Carolus Rasrendra; Hero Heeres Experimental and Modeling Studies on the Conversion of Inulin to 5-Hydroxymethylfurfural Using Metal Salts in Water, Catalysts, Volume 5 (2015) no. 4, p. 2287 | DOI:10.3390/catal5042287
  • Asbjørn Toftgaard Pedersen; Rolf Ringborg; Thomas Grotkjær; Sven Pedersen; John M. Woodley Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose–fructose mixtures, Chemical Engineering Journal, Volume 273 (2015), p. 455 | DOI:10.1016/j.cej.2015.03.094
  • Young-Byung Yi; Jin-Woo Lee; Chung-Han Chung Conversion of plant materials into hydroxymethylfurfural using ionic liquids, Environmental Chemistry Letters, Volume 13 (2015) no. 2, p. 173 | DOI:10.1007/s10311-015-0503-9
  • M.T. García‐Domínguez; J.C. García‐Domínguez; F. López; C.M. de Diego; M.J. Díaz Maximizing furfural concentration from wheat straw and Eucalyptus globulus by nonisothermal autohydrolysis, Environmental Progress Sustainable Energy, Volume 34 (2015) no. 4, p. 1236 | DOI:10.1002/ep.12099
  • Pranit S. Metkar; Eric J. Till; David R. Corbin; Carmo J. Pereira; Keith W. Hutchenson; Sourav K. Sengupta Reactive distillation process for the production of furfural using solid acid catalysts, Green Chemistry, Volume 17 (2015) no. 3, p. 1453 | DOI:10.1039/c4gc01912a
  • Gerlinde Rusu; Sabina Nitu; Lucian Rusnac; Geza Bandur Polymerization Kinetic Analysis of some Glycerol and Glucose Based Polymers, Macromolecular Symposia, Volume 352 (2015) no. 1, p. 51 | DOI:10.1002/masy.201400153
  • Angélica Escobar; Ángel Sathicq; Luis Pizzio; Mirta Blanco; Gustavo Romanelli Biomass valorization derivatives: Clean esterification of 2-furoic acid using tungstophosphoric acid/zirconia composites as recyclable catalyst, Process Safety and Environmental Protection, Volume 98 (2015), p. 176 | DOI:10.1016/j.psep.2015.07.008
  • Jia-Neng Tan; Mohammed Ahmar; Yves Queneau Glucosyloxymethylfurfural (GMF): a creative renewable scaffold towards bioinspired architectures, Pure and Applied Chemistry, Volume 87 (2015) no. 8, p. 827 | DOI:10.1515/pac-2015-0202
  • Ana V. Carvalho; André M. da Costa Lopes; Rafał Bogel-Łukasik Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction, RSC Advances, Volume 5 (2015) no. 58, p. 47153 | DOI:10.1039/c5ra07159c
  • Jia-Neng Tan; Mohammed Ahmar; Yves Queneau Bio-based solvents for the Baylis–Hillman reaction of HMF, RSC Advances, Volume 5 (2015) no. 85, p. 69238 | DOI:10.1039/c5ra14554f
  • Xing-Long Li; Tao Pan; Jin Deng; Yao Fu; Hua-Jian Xu Catalytic dehydration ofd-xylose to furfural over a tantalum-based catalyst in batch and continuous process, RSC Advances, Volume 5 (2015) no. 86, p. 70139 | DOI:10.1039/c5ra11411j
  • Soubhik K. Bardhan; Shelaka Gupta; M.E. Gorman; M. Ali Haider Biorenewable chemicals: Feedstocks, technologies and the conflict with food production, Renewable and Sustainable Energy Reviews, Volume 51 (2015), p. 506 | DOI:10.1016/j.rser.2015.06.013
  • Ž. Knez; E. Markočič; M. Knez Hrnčič; M. Ravber; M. Škerget High pressure water reforming of biomass for energy and chemicals: A short review, The Journal of Supercritical Fluids, Volume 96 (2015), p. 46 | DOI:10.1016/j.supflu.2014.06.008
  • Maria Grahn; Julia Hansson Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans, WIREs Energy and Environment, Volume 4 (2015) no. 3, p. 290 | DOI:10.1002/wene.138
  • S. Morales-Delarosa; J.M. Campos-Martin Catalytic processes and catalyst development in biorefining, Advances in Biorefineries (2014), p. 152 | DOI:10.1533/9780857097385.1.152
  • K. Wilson; A.F. Lee Bio-based chemicals from biorefining: carbohydrate conversion and utilisation, Advances in Biorefineries (2014), p. 624 | DOI:10.1533/9780857097385.2.624
  • John Gräsvik; Sandra Winestrand; Monica Normark; Leif J Jönsson; Jyri-Pekka Mikkola Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass, BMC Biotechnology, Volume 14 (2014) no. 1 | DOI:10.1186/1472-6750-14-34
  • Ed de Jong; Richard J.A. Gosselink Lignocellulose-Based Chemical Products, Bioenergy Research: Advances and Applications (2014), p. 277 | DOI:10.1016/b978-0-444-59561-4.00017-6
  • Fernando C. Gómez-Merino; Libia I. Trejo-Téllez; Héctor E. Sentíes-Herrera Sugarcane as a Novel Biofactory: Potentialities and Challenges, Biosystems Engineering: Biofactories for Food Production in the Century XXI (2014), p. 129 | DOI:10.1007/978-3-319-03880-3_5
  • Teuvo Kilpiö; Victor Sifontes; Kari Eränen; Dmitry Yu. Murzin; Tapio Salmi Reactor Technology and Modeling Aspects for the Hydrogenation of Components from Biomass, Catalytic Hydrogenation for Biomass Valorization (2014), p. 253 | DOI:10.1039/9781782620099-00253
  • P.-F. Koh; P. Wang; J.-M. Huang; T.-P. Loh Biomass derived furfural-based facile synthesis of protected (2S)-phenyl-3-piperidone, a common intermediate for many drugs, Chem. Commun., Volume 50 (2014) no. 61, p. 8324 | DOI:10.1039/c4cc02645d
  • Vincent Escande; Tomasz K. Olszewski; Eddy Petit; Claude Grison Biosourced Polymetallic Catalysts: An Efficient Means To Synthesize Underexploited Platform Molecules from Carbohydrates, ChemSusChem, Volume 7 (2014) no. 7, p. 1915 | DOI:10.1002/cssc.201400078
  • Paulo M Donate Green synthesis from biomass, Chemical and Biological Technologies in Agriculture, Volume 1 (2014) no. 1 | DOI:10.1186/s40538-014-0004-2
  • G. Herbert Vogel Chemie erneuerbarer kohlenstoffbasierter Rohstoffe zur Produktion von Chemikalien und Kraftstoffen, Chemie Ingenieur Technik, Volume 86 (2014) no. 12, p. 2135 | DOI:10.1002/cite.201400114
  • M. G. Uchuskin; A. S. Makarov; A. V. Butin Catalytic Alkylation of Furans by π-Activated Alcohols (Review), Chemistry of Heterocyclic Compounds, Volume 50 (2014) no. 6, p. 791 | DOI:10.1007/s10593-014-1534-z
  • Sylvain Gatard; Lionel Salmon; Christophe Deraedt; Jaime Ruiz; Didier Astruc; Sandrine Bouquillon Gold Nanoparticles Stabilized by Glycodendrimers: Synthesis and Application to the Catalytic Reduction of 4‐Nitrophenol, European Journal of Inorganic Chemistry, Volume 2014 (2014) no. 16, p. 2671 | DOI:10.1002/ejic.201402067
  • Jayeon Baek; Tae Yong Kim; Wooyoung Kim; Hee Jong Lee; Jongheop Yi Selective production of 1,3-butadiene using glucose fermentation liquor, Green Chem., Volume 16 (2014) no. 7, p. 3501 | DOI:10.1039/c4gc00485j
  • NISHITA LUCAS; NARASIMHA RAO KANNA; ATUL S NAGPURE; GANESH KOKATE; SATYANARAYANA CHILUKURI Novel catalysts for valorization of biomass to value-added chemicals and fuels, Journal of Chemical Sciences, Volume 126 (2014) no. 2, p. 403 | DOI:10.1007/s12039-014-0577-0
  • Charles M Cai; Taiying Zhang; Rajeev Kumar; Charles E Wyman Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass, Journal of Chemical Technology Biotechnology, Volume 89 (2014) no. 1, p. 2 | DOI:10.1002/jctb.4168
  • Morris Schnitzer; Carlos M. Monreal; Erin E. Powell Wheat straw biomass: A resource for high-value chemicals, Journal of Environmental Science and Health, Part B, Volume 49 (2014) no. 1, p. 51 | DOI:10.1080/03601234.2013.836924
  • E. Fesenko; R. Edwards Plant synthetic biology: a new platform for industrial biotechnology, Journal of Experimental Botany, Volume 65 (2014) no. 8, p. 1927 | DOI:10.1093/jxb/eru070
  • Karsten Lang; Jessica Zierow; Katja Buehler; Andreas Schmid Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites, Microbial Cell Factories, Volume 13 (2014) no. 1 | DOI:10.1186/1475-2859-13-2
  • Bimlesh Lochab; Swapnil Shukla; Indra K. Varma Naturally occurring phenolic sources: monomers and polymers, RSC Adv., Volume 4 (2014) no. 42, p. 21712 | DOI:10.1039/c4ra00181h
  • Stefano Santoro; Juliano B. Azeredo; Vanessa Nascimento; Luca Sancineto; Antonio L. Braga; Claudio Santi “The green side of the moon: ecofriendly aspects of organoselenium chemistry”, RSC Adv., Volume 4 (2014) no. 60, p. 31521 | DOI:10.1039/c4ra04493b
  • Andreas Brust; Eckehard Cuny Reducing disaccharides and their 1,2-dicarbonyl intermediates as building blocks for nitrogen heterocycles, RSC Advances, Volume 4 (2014) no. 11, p. 5759 | DOI:10.1039/c3ra47349j
  • Gerald D. Watt Kinetic evaluation of the viologen-catalyzed carbohydrate oxidation reaction for fuel cell application, Renewable Energy, Volume 63 (2014), p. 370 | DOI:10.1016/j.renene.2013.09.025
  • Tetsuo Honma; Hiroshi Inomata Density functional theory study of glyceraldehyde conversion in supercritical water, The Journal of Supercritical Fluids, Volume 90 (2014), p. 1 | DOI:10.1016/j.supflu.2014.03.007
  • Patrícia Neves; Sérgio Lima; Martyn Pillinger; Sílvia M. Rocha; João Rocha; Anabela A. Valente Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts, Catalysis Today, Volume 218-219 (2013), p. 76 | DOI:10.1016/j.cattod.2013.04.035
  • Robert‐Jan van Putten; Ana Sousa Dias; Ed de Jong Furan‐Based Building Blocks from Carbohydrates, Catalytic Process Development for Renewable Materials (2013), p. 81 | DOI:10.1002/9783527656639.ch4
  • Robert-Jan van Putten; Jan C. van der Waal; Ed de Jong; Carolus B. Rasrendra; Hero J. Heeres; Johannes G. de Vries Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, Chemical Reviews, Volume 113 (2013) no. 3, p. 1499 | DOI:10.1021/cr300182k
  • Andreas Brust; Eckehard Cuny Conversion of reducing carbohydrates into hydrophilic substituted imidazoles, Green Chemistry, Volume 15 (2013) no. 10, p. 2993 | DOI:10.1039/c3gc41203b
  • Andreas Brust; Frieder W. Lichtenthaler Facile conversion of glycosyloxymethyl-furfural into γ-keto-carboxylic acid building blocks towards a sustainable chemical industry, Green Chemistry, Volume 15 (2013) no. 5, p. 1368 | DOI:10.1039/c3gc40185e
  • Abdoulaye Gassama; Cédric Ernenwein; Ali Youssef; Mickaël Agach; Emmanuel Riguet; Siniša Marinković; Boris Estrine; Norbert Hoffmann Sulfonated surfactants obtained from furfural, Green Chemistry, Volume 15 (2013) no. 6, p. 1558 | DOI:10.1039/c3gc00062a
  • Irena Pavlovič; Željko Knez; Mojca Škerget Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research, Journal of Agricultural and Food Chemistry, Volume 61 (2013) no. 34, p. 8003 | DOI:10.1021/jf401008a
  • V.P. Muiuane; M. Ferreira; P. Bignet; A.P. Bettencourt; P. Parpot Production of formic acid from biomass-based compounds using a filter press type electrolyzer, Journal of Environmental Chemical Engineering, Volume 1 (2013) no. 4, p. 1237 | DOI:10.1016/j.jece.2013.09.014
  • István Antal; Nikolett Kállai; Oliver Luhn; Jörg Bernard; Zsombor Kristóf Nagy; Barnabás Szabó; Imre Klebovich; Romána Zelkó Supramolecular elucidation of the quality attributes of microcrystalline cellulose and isomalt composite pellet cores, Journal of Pharmaceutical and Biomedical Analysis, Volume 84 (2013), p. 124 | DOI:10.1016/j.jpba.2013.04.026
  • Thomas Kunz; Torsten Seewald; Niklas Brandt; Frank-Jürgen Methner Reducing Properties of Fermentable and Nonfermentable Carbohydrates in Beverages and Brewing Process, Journal of the American Society of Brewing Chemists, Volume 71 (2013) no. 3, p. 124 | DOI:10.1094/asbcj-2013-0610-01
  • Xiao-Qin Yang; Hui Pan; Li-Juan Du; Tao Zeng Synthesis and characterization of a novel bornadiene/carbon monoxide polyketone based on a renewable α-pinene derivative, Materials Letters, Volume 102-103 (2013), p. 68 | DOI:10.1016/j.matlet.2013.03.113
  • Nishita Lucas; Ganesh Kokate; Atul Nagpure; Satyanarayana Chilukuri Dehydration of fructose to 5-hydroxymethyl furfural over ordered AlSBA-15 catalysts, Microporous and Mesoporous Materials, Volume 181 (2013), p. 38 | DOI:10.1016/j.micromeso.2013.07.015
  • Zheng Xu; Sha Li; Jie Li; Yan Li; Xiaohai Feng; Renxiao Wang; Hong Xu; Jiahai Zhou; Paul Taylor The Structural Basis of Erwinia rhapontici Isomaltulose Synthase, PLoS ONE, Volume 8 (2013) no. 9, p. e74788 | DOI:10.1371/journal.pone.0074788
  • Maria-Magdalena Titirici Green Carbon Nanomaterials, Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials (2013), p. 7 | DOI:10.1201/b15585-4
  • Mamata Singhvi; Digambar Gokhale Biomass to biodegradable polymer (PLA), RSC Advances, Volume 3 (2013) no. 33, p. 13558 | DOI:10.1039/c3ra41592a
  • Jia-Neng Tan; Mohammed Ahmar; Yves Queneau HMF derivatives as platform molecules: aqueous Baylis–Hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates, RSC Advances, Volume 3 (2013) no. 39, p. 17649 | DOI:10.1039/c3ra43369b
  • Maria‐Magdalena Titirici Green Carbon, Sustainable Carbon Materials from Hydrothermal Processes (2013), p. 1 | DOI:10.1002/9781118622179.ch1
  • Jumat Salimon; Nadia Salih; Emad Yousif Industrial development and applications of plant oils and their biobased oleochemicals, Arabian Journal of Chemistry, Volume 5 (2012) no. 2, p. 135 | DOI:10.1016/j.arabjc.2010.08.007
  • Romain Irague; Agnès Rolland-Sabaté; Laurence Tarquis; Jean Louis Doublier; Claire Moulis; Pierre Monsan; Magali Remaud-Siméon; Gabrielle Potocki-Véronèse; Alain Buléon Structure and Property Engineering of α-d-Glucans Synthesized by Dextransucrase Mutants, Biomacromolecules, Volume 13 (2012) no. 1, p. 187 | DOI:10.1021/bm201453r
  • Ed de Jong; Thomas Vijlbrief; Rene Hijkoop; Gert-Jan M. Gruter; Jan C. van der Waal Promising results with YXY Diesel components in an ESC test cycle using a PACCAR Diesel engine, Biomass and Bioenergy, Volume 36 (2012), p. 151 | DOI:10.1016/j.biombioe.2011.10.034
  • Young-Byung Yi; Jin-Woo Lee; Young-Hun Choi; Suk-Man Park; Chung-Han Chung Simple process for production of hydroxymethylfurfural from raw biomasses of girasol and potato tubers, Biomass and Bioenergy, Volume 39 (2012), p. 484 | DOI:10.1016/j.biombioe.2012.01.011
  • Oktay Yemiş; Giuseppe Mazza Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process, Bioresource Technology, Volume 109 (2012), p. 215 | DOI:10.1016/j.biortech.2012.01.031
  • Teresa Moreno; Goushi Kouzaki; Mitsuru Sasaki; Motonobu Goto; María José Cocero Uncatalysed wet oxidation of d-glucose with hydrogen peroxide and its combination with hydrothermal electrolysis, Carbohydrate Research, Volume 349 (2012), p. 33 | DOI:10.1016/j.carres.2011.12.005
  • Marcus V.C. Cardoso; Larissa V.C. Carvalho; Edvaldo Sabadini Solubility of carbohydrates in heavy water, Carbohydrate Research, Volume 353 (2012), p. 57 | DOI:10.1016/j.carres.2012.03.005
  • Margarida M. Antunes; Sérgio Lima; Auguste Fernandes; Joana Candeias; Martyn Pillinger; Sílvia M. Rocha; Maria Filipa Ribeiro; Anabela A. Valente Catalytic dehydration of d-xylose to 2-furfuraldehyde in the presence of Zr-(W,Al) mixed oxides. Tracing by-products using two-dimensional gas chromatography-time-of-flight mass spectrometry, Catalysis Today, Volume 195 (2012) no. 1, p. 127 | DOI:10.1016/j.cattod.2012.03.066
  • Juan Carlos Serrano-Ruiz; James A. Dumesic Catalytic Production of Liquid Hydrocarbon Transportation Fuels, Catalysis for Alternative Energy Generation (2012), p. 29 | DOI:10.1007/978-1-4614-0344-9_2
  • Pierre Gallezot Conversion of biomass to selected chemical products, Chem. Soc. Rev., Volume 41 (2012) no. 4, p. 1538 | DOI:10.1039/c1cs15147a
  • Junxia Liu; Zhongtian Du; Yanliang Yang; Tianliang Lu; Fang Lu; Jie Xu Catalytic Oxidative Decarboxylation of Malic Acid into Dimethyl Malonate in Methanol with Dioxygen, ChemSusChem, Volume 5 (2012) no. 11, p. 2151 | DOI:10.1002/cssc.201200489
  • Xiao Pan; Dean C. Webster New Biobased High Functionality Polyols and Their Use in Polyurethane Coatings, ChemSusChem, Volume 5 (2012) no. 2, p. 419 | DOI:10.1002/cssc.201100415
  • Ken C. Goulter; Saeed M. Hashimi; Robert G. Birch Microbial sucrose isomerases: Producing organisms, genes and enzymes, Enzyme and Microbial Technology, Volume 50 (2012) no. 1, p. 57 | DOI:10.1016/j.enzmictec.2011.09.011
  • M.J. Climent; A. Corma; J.C. Hernández; A.B. Hungría; S. Iborra; S. Martínez-Silvestre Biomass into chemicals: One-pot two- and three-step synthesis of quinoxalines from biomass-derived glycols and 1,2-dinitrobenzene derivatives using supported gold nanoparticles as catalysts, Journal of Catalysis, Volume 292 (2012), p. 118 | DOI:10.1016/j.jcat.2012.05.002
  • John Gräsvik; Bertil Eliasson; Jyri-Pekka Mikkola Halogen-free ionic liquids and their utilization as cellulose solvents, Journal of Molecular Structure, Volume 1028 (2012), p. 156 | DOI:10.1016/j.molstruc.2012.06.044
  • David Daudé; Magali Remaud-Siméon; Isabelle André Sucrose analogs: an attractive (bio)source for glycodiversification, Natural Product Reports, Volume 29 (2012) no. 9, p. 945 | DOI:10.1039/c2np20054f
  • Adam Read; Dane Hansen; Sekoti Aloi; William G. Pitt; Dean R. Wheeler; Gerald D. Watt Monoalkyl viologens are effective carbohydrate O2-oxidation catalysts for electrical energy generation by fuel cells, Renewable Energy, Volume 46 (2012), p. 218 | DOI:10.1016/j.renene.2012.03.035
  • Michela I. Simone; Raquel G. Soengas; Sarah F. Jenkinson; Emma L. Evinson; Robert J. Nash; George W.J. Fleet Synthesis of three branched iminosugars [(3R,4R,5S)-3-(hydroxymethyl)piperidine-3,4,5-triol, (3R,4R,5R)-3-(hydroxymethyl)piperidine-3,4,5-triol and (3S,4R,5R)-3-(hydroxymethyl)piperidine-3,4,5-triol] and a branched trihydroxynipecotic acid [(3R,4R,5R)-3,4,5-trihydroxypiperidine-3-carboxylic acid] from sugar lactones with a carbon substituent at C-2, Tetrahedron: Asymmetry, Volume 23 (2012) no. 5, p. 401 | DOI:10.1016/j.tetasy.2012.03.007
  • Kerry K. Karukstis; Whitney C. Duim; Gerald R. Van Hecke; Nagiko Hara Biologically Relevant Lyotropic Liquid Crystalline Phases in Mixtures of n-Octyl β-d-Glucoside and Water. Determination of the Phase Diagram by Fluorescence Spectroscopy, The Journal of Physical Chemistry B, Volume 116 (2012) no. 12, p. 3816 | DOI:10.1021/jp208097c
  • Michael B. Griffin; Simon H. Pang; J. Will Medlin Surface Chemistry of 2-Iodoethanol on Pd(111): Orientation of Surface-Bound Alcohol Controls Selectivity, The Journal of Physical Chemistry C, Volume 116 (2012) no. 6, p. 4201 | DOI:10.1021/jp211259h
  • Hubert Schiweck; Albert Bär; Roland Vogel; Eugen Schwarz; Markwart Kunz; Cécile Dusautois; Alexandre Clement; Caterine Lefranc; Bernd Lüssem; Matthias Moser; Siegfried Peters Sugar Alcohols, Ullmann's Encyclopedia of Industrial Chemistry (2012) | DOI:10.1002/14356007.a25_413.pub3
  • Ramona Saliger; Nadine Decker; Ulf Prüße d-Glucose oxidation with H2O2 on an Au/Al2O3 catalyst, Applied Catalysis B: Environmental, Volume 102 (2011) no. 3-4, p. 584 | DOI:10.1016/j.apcatb.2010.12.042
  • Xiao Pan; Partha Sengupta; Dean C. Webster High Biobased Content Epoxy–Anhydride Thermosets from Epoxidized Sucrose Esters of Fatty Acids, Biomacromolecules, Volume 12 (2011) no. 6, p. 2416 | DOI:10.1021/bm200549c
  • Sérgio Lima; Margarida M. Antunes; Martyn Pillinger; Anabela A. Valente Ionic Liquids as Tools for the Acid‐Catalyzed Hydrolysis/Dehydration of Saccharides to Furanic Aldehydes, ChemCatChem, Volume 3 (2011) no. 11, p. 1686 | DOI:10.1002/cctc.201100105
  • Haroldo Yukio Kawaguti; Priscila Hoffmann Carvalho; Joelise Alencar Figueira; Hélia Harumi Sato Immobilization ofErwiniasp. D12 Cells in Alginate-Gelatin Matrix and Conversion of Sucrose into Isomaltulose Using Response Surface Methodology, Enzyme Research, Volume 2011 (2011), p. 1 | DOI:10.4061/2011/791269
  • Carla S. M. Pereira; Viviana M. T. M. Silva; Alírio E. Rodrigues Ethyl lactate as a solvent: Properties, applications and production processes – a review, Green Chemistry, Volume 13 (2011) no. 10, p. 2658 | DOI:10.1039/c1gc15523g
  • Andreia A. Rosatella; Svilen P. Simeonov; Raquel F. M. Frade; Carlos A. M. Afonso 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Green Chemistry, Volume 13 (2011) no. 4, p. 754 | DOI:10.1039/c0gc00401d
  • Xiao Pan; Partha Sengupta; Dean C. Webster Novel biobased epoxy compounds: epoxidized sucrose esters of fatty acids, Green Chemistry, Volume 13 (2011) no. 4, p. 965 | DOI:10.1039/c0gc00882f
  • M. Teresa Barros; Krasimira T. Petrova; Paula Correia-da-Silva; Taterao M. Potewar Library of mild and economic protocols for the selective derivatization of sucrose under microwave irradiation, Green Chemistry, Volume 13 (2011) no. 7, p. 1897 | DOI:10.1039/c1gc15228a
  • Ali Harlin Biogenic Precursors for Polyphenol, Polyester and Polyurethane Resins, Handbook of Bioplastics and Biocomposites Engineering Applications (2011), p. 511 | DOI:10.1002/9781118203699.ch18
  • Víctor A. Sifontes Herrera; Oluwamuyiwa Oladele; Krisztián Kordás; Kari Eränen; Jyri-Pekka Mikkola; Dmitry Yu. Murzin; Tapio Salmi Sugar hydrogenation over a Ru/C catalyst, Journal of Chemical Technology Biotechnology, Volume 86 (2011) no. 5, p. 658 | DOI:10.1002/jctb.2565
  • Yong-Hong Zhao; Daniel F. Shantz Modified Anopore™ hybrid membranes for the microfiltration of cellulose acid hydrolysis mixtures, Journal of Membrane Science, Volume 377 (2011) no. 1-2, p. 99 | DOI:10.1016/j.memsci.2011.04.019
  • Zhaoyang Luo; Chunchun Xia; Haojun Fan; Xin Chen; Biyu Peng The Biodegradabilities of Different Oil‐Based Fatliquors, Journal of the American Oil Chemists' Society, Volume 88 (2011) no. 7, p. 1029 | DOI:10.1007/s11746-010-1749-9
  • Yong-Hong Zhao; Daniel F. Shantz Phenylboronic Acid Functionalized SBA-15 for Sugar Capture, Langmuir, Volume 27 (2011) no. 23, p. 14554 | DOI:10.1021/la203121u
  • Ao Fan; Stephan Jaenicke; Gaik-Khuan Chuah A heterogeneous Pd–Bi/C catalyst in the synthesis of l-lyxose and l-ribose from naturally occurring d-sugars, Organic Biomolecular Chemistry, Volume 9 (2011) no. 22, p. 7720 | DOI:10.1039/c1ob06116j
  • Sinthuwat Ritthitham; Reinhard Wimmer; Lars Haastrup Pedersen Polar co-solvents in tertiary alcohols effect initial reaction rates and regio-isomeric ratio ranging from 1.2 to 2.2 in a lipase catalysed synthesis of 6-O- and 6′-O-stearoyl sucrose, Process Biochemistry, Volume 46 (2011) no. 4, p. 931 | DOI:10.1016/j.procbio.2011.01.004
  • Gerald D. Watt; Dane Hansen; Daniel Dodson; Merritt Andrus; Dean Wheeler Electrical energy from carbohydrate oxidation during viologen-catalyzed O2-oxidation: Mechanistic insights, Renewable Energy, Volume 36 (2011) no. 5, p. 1523 | DOI:10.1016/j.renene.2010.10.016
  • Elif Gürbüz; Drew Braden; James Dumesic Aqueous-Phase Catalytic Processing in Biomass Valorization to H2 and Liquid Fuels, Renewable Resources and Renewable Energy (2011), p. 37 | DOI:10.1201/b16003-5
  • Feng Peng; Jun Li Ren; Feng Xu; Run-Cang Sun Chemicals from Hemicelluloses: A Review, Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, Volume 1067 (2011), p. 219 | DOI:10.1021/bk-2011-1067.ch009
  • Geoffrey A. Tompsett; Ning Li; George W. Huber Catalytic Conversion of Sugars to Fuels, Thermochemical Processing of Biomass (2011), p. 232 | DOI:10.1002/9781119990840.ch8
  • Hubert Schiweck; Albert Bär; Roland Vogel; Eugen Schwarz; Markwart Kunz; Bernd Lüssem; Matthias Moser; Siegfried Peters Sugar Alcohols, Ullmann's Encyclopedia of Industrial Chemistry (2011) | DOI:10.1002/14356007.a25_413.pub2
  • Sarah F. Jenkinson; Ni Dai; George W. J. Fleet; David J. Watkin 2-Azido-2-deoxy-3,4-O-isopropylidene-2-C-methyl-D-talono-1,5-lactone, Acta Crystallographica Section E Structure Reports Online, Volume 66 (2010) no. 5, p. o1221 | DOI:10.1107/s160053681001500x
  • Haroldo Yukio Kawaguti; Hélia Harumi Sato Effect of Concentration and Substrate Flow Rate on Isomaltulose Production from Sucrose by Erwinia sp. Cells Immobilized in Calcium-Alginate Using Packed Bed Reactor, Applied Biochemistry and Biotechnology, Volume 162 (2010) no. 1, p. 89 | DOI:10.1007/s12010-009-8899-y
  • Susana S. Pinto; Hermínio P. Diogo; Teresa G. Nunes; Joaquim J. Moura Ramos Molecular mobility studies on the amorphous state of disaccharides. I—thermally stimulated currents and differential scanning calorimetry, Carbohydrate Research, Volume 345 (2010) no. 12, p. 1802 | DOI:10.1016/j.carres.2010.05.023
  • Siegfried Peters; Thomas Rose; Matthias Moser Sucrose: A Prospering and Sustainable Organic Raw Material, Carbohydrates in Sustainable Development I, Volume 294 (2010), p. 1 | DOI:10.1007/128_2010_58
  • Cinzia Chiappe; Alberto Marra; Andrea Mele Synthesis and Applications of Ionic Liquids Derived from Natural Sugars, Carbohydrates in Sustainable Development II, Volume 295 (2010), p. 177 | DOI:10.1007/128_2010_47
  • Nuno M. Xavier; Amélia P. Rauter; Yves Queneau Carbohydrate-Based Lactones: Synthesis and Applications, Carbohydrates in Sustainable Development II, Volume 295 (2010), p. 19 | DOI:10.1007/128_2010_61
  • Karine De Oliveira Vigier; François Jérôme Heterogeneously-Catalyzed Conversion of Carbohydrates, Carbohydrates in Sustainable Development II, Volume 295 (2010), p. 63 | DOI:10.1007/128_2010_55
  • M. Teresa Barros; Krasimira T. Petrova; Raj P. Singh Synthesis and biodegradation studies of new copolymers based on sucrose derivatives and styrene, European Polymer Journal, Volume 46 (2010) no. 5, p. 1151 | DOI:10.1016/j.eurpolymj.2010.02.002
  • Ana S. Dias; Sérgio Lima; Martyn Pillinger; Anabela A. Valente Furfural and Furfural‐Based Industrial Chemicals, Ideas in Chemistry and Molecular Sciences (2010), p. 165 | DOI:10.1002/9783527630554.ch8
  • Zhaoyang Luo; Shanshan Wang; Haojun Fan; Chunchun Xia; Jixin Yuan; Ruowang Liu A Novel Biodegradable Fluorine-Containing Copolymer Surfactant, Journal of Polymers and the Environment, Volume 18 (2010) no. 3, p. 339 | DOI:10.1007/s10924-010-0171-6
  • Alessandro Gandini Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress, Polym. Chem., Volume 1 (2010) no. 3, p. 245 | DOI:10.1039/b9py00233b
  • Michael B. Griffin; Erica L. Jorgensen; J. Will Medlin The adsorption and reaction of ethylene glycol and 1,2-propanediol on Pd(111): A TPD and HREELS study, Surface Science, Volume 604 (2010) no. 19-20, p. 1558 | DOI:10.1016/j.susc.2010.05.025
  • Taku Michael Aida; Naohiro Shiraishi; Masaki Kubo; Masaru Watanabe; Richard L. Smith Reaction kinetics of d-xylose in sub- and supercritical water, The Journal of Supercritical Fluids, Volume 55 (2010) no. 1, p. 208 | DOI:10.1016/j.supflu.2010.08.013
  • Michael A. Lilga; Richard T. Hallen; Michel Gray Production of Oxidized Derivatives of 5-Hydroxymethylfurfural (HMF), Topics in Catalysis, Volume 53 (2010) no. 15-18, p. 1264 | DOI:10.1007/s11244-010-9579-4
  • Frieder W. Lichtenthaler Carbohydrates as Organic Raw Materials, Ullmann's Encyclopedia of Industrial Chemistry (2010) | DOI:10.1002/14356007.n05_n07
  • Hildegard Watzlawick; Ralf Mattes Gene Cloning, Protein Characterization, and Alteration of Product Selectivity for the Trehalulose Hydrolase and Trehalulose Synthase from “ Pseudomonas mesoacidophila ” MX-45, Applied and Environmental Microbiology, Volume 75 (2009) no. 22, p. 7026 | DOI:10.1128/aem.01781-09
  • Yves Queneau; Stéphane Chambert; Sylvie Moebs; Arkadiusz Listkowski; Rouba Cheaib Glycosidic bicyclic lactones as new carbohydrate scaffolds, Carbohydrate Chemistry (2009), p. 99 | DOI:10.1039/b901506j
  • Kresten Egeblad; Jeppe Rass-Hansen; Charlotte C. Marsden; Esben Taarning; Claus Hviid Christensen Heterogeneous catalysis for production of value-added chemicals from biomass, Catalysis (2009), p. 13 | DOI:10.1039/b712664f
  • Yongxian Fan; Chunhui Zhou; Xiaohong Zhu Selective Catalysis of Lactic Acid to Produce Commodity Chemicals, Catalysis Reviews, Volume 51 (2009) no. 3, p. 293 | DOI:10.1080/01614940903048513
  • Loredana De Rogatis; Paolo Fornasiero Catalyst Design for Reforming of Oxygenates, Catalysis for Sustainable Energy Production (2009), p. 171 | DOI:10.1002/9783527625413.ch6
  • Suqin Hu; Zhaofu Zhang; Jinliang Song; Yinxi Zhou; Buxing Han Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid, Green Chemistry, Volume 11 (2009) no. 11, p. 1746 | DOI:10.1039/b914601f
  • Cristian Torri; Isidoro Giorgio Lesci; Daniele Fabbri Analytical study on the production of a hydroxylactone from catalytic pyrolysis of carbohydrates with nanopowder aluminium titanate, Journal of Analytical and Applied Pyrolysis, Volume 84 (2009) no. 1, p. 25 | DOI:10.1016/j.jaap.2008.10.002
  • Sinthuwat Ritthitham; Reinhard Wimmer; Allan Stensballe; Lars Haastrup Pedersen Analysis and purification of O-decanoyl sucrose regio-isomers by reversed phase high pressure liquid chromatography with evaporative light scattering detection, Journal of Chromatography A, Volume 1216 (2009) no. 25, p. 4963 | DOI:10.1016/j.chroma.2009.04.054
  • Natália T. Correia; Hermínio P. Diogo; Joaquim J. Moura Ramos Slow Molecular Mobility in the Amorphous Solid State of Fructose: Fragility and Aging, Journal of Food Science, Volume 74 (2009) no. 9 | DOI:10.1111/j.1750-3841.2009.01363.x
  • Nuno M. Xavier; Susana D. Lucas; Amélia P. Rauter Zeolites as efficient catalysts for key transformations in carbohydrate chemistry, Journal of Molecular Catalysis A: Chemical, Volume 305 (2009) no. 1-2, p. 84 | DOI:10.1016/j.molcata.2009.01.003
  • Dean R. Wheeler; Joseph Nichols; Dane Hansen; Merritt Andrus; Sang Choi; Gerald D. Watt Viologen Catalysts for a Direct Carbohydrate Fuel Cell, Journal of The Electrochemical Society, Volume 156 (2009) no. 10, p. B1201 | DOI:10.1149/1.3183815
  • Maurício Rodrigues Borges; Jaciara Alves dos Santos; Mariane Vieira; Rosangela Balaban Polymerization of a water soluble glucose vinyl ester monomer with tensoactive properties synthesized by enzymatic catalyst, Materials Science and Engineering: C, Volume 29 (2009) no. 2, p. 519 | DOI:10.1016/j.msec.2008.09.013
  • Fabrizio Cavani; Nicola Ballarini Recent Achievements and Challenges for a Greener Chemical Industry, Modern Heterogeneous Oxidation Catalysis (2009), p. 289 | DOI:10.1002/9783527627547.ch9
  • Paola Galletti; Adele Montecavalli; Fabio Moretti; Andrea Pasteris; Chiara Samorì; Emilio Tagliavini Furan containing ammonium salts from furfural: synthesis and properties evaluation, New Journal of Chemistry, Volume 33 (2009) no. 9, p. 1859 | DOI:10.1039/b902855b
  • Ed de Jong; Gert-Jan Gruter, SAE Technical Paper Series, Volume 1 (2009) | DOI:10.4271/2009-01-2767
  • Stefan Frenzel; Siegfried Peters; Thomas Rose; Markwart Kunz Industrial Sucrose, Sustainable Solutions for Modern Economies (2009), p. 264 | DOI:10.1039/9781847552686-00264
  • Sarah F. Jenkinson; K. Victoria Booth; Amalia M. Estévez Reino; Graeme Horne; Ramón J. Estévez; George W.J. Fleet Carbon-branched carbohydrate chirons: synthesis of C-3 and C-4-branched sugar lactones derived from d-erythronolactone, Tetrahedron: Asymmetry, Volume 20 (2009) no. 20, p. 2357 | DOI:10.1016/j.tetasy.2009.08.029
  • Praveen Kumar Vemula; George John Crops: A Green Approach toward Self-Assembled Soft Materials, Accounts of Chemical Research, Volume 41 (2008) no. 6, p. 769 | DOI:10.1021/ar7002682
  • Stéphanie Ravaud; Xavier Robert; Hildegard Watzlawick; Sabine Laurent; Richard Haser; Ralf Mattes; Nushin Aghajari Insights into sucrose isomerization from crystal structures of thePseudomonas mesoacidophilaMX-45 sucrose isomerase, MutB, Biocatalysis and Biotransformation, Volume 26 (2008) no. 1-2, p. 111 | DOI:10.1080/10242420701788694
  • Moez Rhimi; Richard Haser; Nushin Aghajari Bacterial sucrose isomerases: properties and structural studies, Biologia, Volume 63 (2008) no. 6, p. 1020 | DOI:10.2478/s11756-008-0166-0
  • Yves Queneau; Stéphane Chambert; Céline Besset; Rouba Cheaib Recent progress in the synthesis of carbohydrate-based amphiphilic materials: the examples of sucrose and isomaltulose, Carbohydrate Research, Volume 343 (2008) no. 12, p. 1999 | DOI:10.1016/j.carres.2008.02.008
  • Yuguo Zheng; Xiaolong Chen; Yinchu Shen Commodity Chemicals Derived from Glycerol, an Important Biorefinery Feedstock, Chemical Reviews, Volume 108 (2008) no. 12 | DOI:10.1021/cr068216s
  • Seth C. Murray; Arun Sharma; William L. Rooney; Patricia E. Klein; John E. Mullet; Sharon E. Mitchell; Stephen Kresovich Genetic Improvement of Sorghum as a Biofuel Feedstock: I. QTL for Stem Sugar and Grain Nonstructural Carbohydrates, Crop Science, Volume 48 (2008) no. 6, p. 2165 | DOI:10.2135/cropsci2008.01.0016
  • Gillian Eggleston Sucrose and Related Oligosaccharides, Glycoscience (2008), p. 1163 | DOI:10.1007/978-3-540-30429-6_26
  • Carina C. Crucho; Krasimira T. Petrova; Rui C. Pinto; Maria T. Barros Novel Unsaturated Sucrose Ethers and Their Application as Monomers, Molecules, Volume 13 (2008) no. 4, p. 762 | DOI:10.3390/molecules13040762
  • Naozumi Teramoto; Navzer D. Sachinvala; Mitsuhiro Shibata Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials, Molecules, Volume 13 (2008) no. 8, p. 1773 | DOI:10.3390/molecules13081773
  • Alessandro Gandini; Mohamed Naceur Belgacem Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials, Monomers, Polymers and Composites from Renewable Resources (2008), p. 115 | DOI:10.1016/b978-0-08-045316-3.00006-5
  • Filipa P. da Cruz; Graeme Horne; George W.J. Fleet Hydroxylated C-branched pyrrolidines, C-branched prolines and C-branched piperidines from a 2-C-methyl sugar lactone; efficient azide displacement of a tertiary triflate with inversion of configuration, Tetrahedron Letters, Volume 49 (2008) no. 48, p. 6812 | DOI:10.1016/j.tetlet.2008.09.069
  • Kathrine V. Booth; Filipa P. da Cruz; David J. Hotchkiss; Sarah F. Jenkinson; Nigel A. Jones; Alexander C. Weymouth-Wilson; Robert Clarkson; Thomas Heinz; George W.J. Fleet Carbon-branched carbohydrate chirons: practical access to both enantiomers of 2-C-methyl-ribono-1,4-lactone and 2-C-methyl-arabinonolactone, Tetrahedron: Asymmetry, Volume 19 (2008) no. 20, p. 2417 | DOI:10.1016/j.tetasy.2008.10.013
  • Yves Queneau; Slawomir Jarosz; Bartosz Lewandowski; Juliette Fitremann Sucrose Chemistry and Applications of Sucrochemicals, Advances in Carbohydrate Chemistry and Biochemistry Volume 61, Volume 61 (2007), p. 217 | DOI:10.1016/s0065-2318(07)61005-1
  • Juben N. Chheda; George W. Huber; James A. Dumesic Katalytische Flüssigphasenumwandlung oxygenierter Kohlenwasserstoffe aus Biomasse zu Treibstoffen und Rohstoffen für die Chemiewirtschaft, Angewandte Chemie, Volume 119 (2007) no. 38, p. 7298 | DOI:10.1002/ange.200604274
  • Juben N. Chheda; George W. Huber; James A. Dumesic Liquid‐Phase Catalytic Processing of Biomass‐Derived Oxygenated Hydrocarbons to Fuels and Chemicals, Angewandte Chemie International Edition, Volume 46 (2007) no. 38, p. 7164 | DOI:10.1002/anie.200604274
  • Robert G. Birch Metabolic Engineering in Sugarcane: Assisting the Transition to a Bio-based Economy, Applications of Plant Metabolic Engineering (2007), p. 249 | DOI:10.1007/978-1-4020-6031-1_11
  • Päivi Mäki‐Arvela; Bjarne Holmbom; Tapio Salmi; Dmitry Yu. Murzin Recent Progress in Synthesis of Fine and Specialty Chemicals from Wood and Other Biomass by Heterogeneous Catalytic Processes, Catalysis Reviews, Volume 49 (2007) no. 3, p. 197 | DOI:10.1080/01614940701313127
  • Pierre Gallezot Catalytic routes from renewables to fine chemicals, Catalysis Today, Volume 121 (2007) no. 1-2, p. 76 | DOI:10.1016/j.cattod.2006.11.019
  • Pierre Gallezot Process Options for the Catalytic Conversion of Renewables into Bioproducts, Catalysis for Renewables (2007), p. 53 | DOI:10.1002/9783527621118.ch3
  • Avelino Corma; Sara Iborra; Alexandra Velty Chemical Routes for the Transformation of Biomass into Chemicals, Chemical Reviews, Volume 107 (2007) no. 6, p. 2411 | DOI:10.1021/cr050989d
  • J. W. Goodby; V. Görtz; S. J. Cowling; G. Mackenzie; P. Martin; D. Plusquellec; T. Benvegnu; P. Boullanger; D. Lafont; Y. Queneau; S. Chambert; J. Fitremann Thermotropic liquid crystalline glycolipids, Chemical Society Reviews, Volume 36 (2007) no. 12, p. 1971 | DOI:10.1039/b708458g
  • Pierre Gallezot Process options for converting renewable feedstocks to bioproducts, Green Chemistry, Volume 9 (2007) no. 4, p. 295 | DOI:10.1039/b615413a
  • E. S. H. El Ashry; Y. El Kilany; N. M. Nahas Manipulation of Carbohydrate Carbon Atoms for the Synthesis of Heterocycles, Heterocycles from Carbohydrate Precursors, Volume 7 (2007), p. 1 | DOI:10.1007/7081_2006_047
  • Marcel Toonen; Michel Ebskamp; Robert Kohler Improvement of fibre and composites for new markets, Improvement of Crop Plants for Industrial End Uses (2007), p. 155 | DOI:10.1007/978-1-4020-5486-0_6
  • Stéphanie Ravaud; Xavier Robert; Hildegard Watzlawick; Richard Haser; Ralf Mattes; Nushin Aghajari Trehalulose Synthase Native and Carbohydrate Complexed Structures Provide Insights into Sucrose Isomerization, Journal of Biological Chemistry, Volume 282 (2007) no. 38, p. 28126 | DOI:10.1074/jbc.m704515200
  • Gregory L. Côté Flavorings and other value-added products from sucrose * *Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture., Novel Enzyme Technology for Food Applications (2007), p. 243 | DOI:10.1533/9781845693718.2.243
  • Luguang Wu; Robert G. Birch Doubled sugar content in sugarcane plants modified to produce a sucrose isomer, Plant Biotechnology Journal, Volume 5 (2007) no. 1, p. 109 | DOI:10.1111/j.1467-7652.2006.00224.x
  • David J. Hotchkiss; Raquel Soengas; Kathrine V. Booth; Alexander C. Weymouth-Wilson; Vanessa Eastwick-Field; George W.J. Fleet Green aldose isomerisation: 2-C-methyl-1,4-lactones from the reaction of Amadori ketoses with calcium hydroxide, Tetrahedron Letters, Volume 48 (2007) no. 4, p. 517 | DOI:10.1016/j.tetlet.2006.11.137
  • David J. Hotchkiss; Atsushi Kato; Barbara Odell; Timothy D.W. Claridge; George W.J. Fleet Homochiral carbon branched piperidines from carbon branched sugar lactones: 4-C-methyl-deoxyfuconojirimycin (DFJ) and its enantiomer—removal of glycosidase inhibition, Tetrahedron: Asymmetry, Volume 18 (2007) no. 4, p. 500 | DOI:10.1016/j.tetasy.2007.02.001
  • Taku Michael Aida; Yukiko Sato; Masaru Watanabe; Kiyohiko Tajima; Toshiyuki Nonaka; Hideo Hattori; Kunio Arai Dehydration of d-glucose in high temperature water at pressures up to 80MPa, The Journal of Supercritical Fluids, Volume 40 (2007) no. 3, p. 381 | DOI:10.1016/j.supflu.2006.07.027
  • Caroline Hadad; Céline Damez; Sandrine Bouquillon; Boris Estrine; Françoise Hénin; Jacques Muzart; Isabelle Pezron; Ljepsa Komunjer Neutral pentosides surfactants issued from the butadiene telomerization with pentoses: preparation and amphiphilic properties, Carbohydrate Research, Volume 341 (2006) no. 11, p. 1938 | DOI:10.1016/j.carres.2006.04.023
  • Marcel Schlaf Selective deoxygenation of sugar polyols to α,ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis, Dalton Trans. (2006) no. 39, p. 4645 | DOI:10.1039/b608007c
  • Nicolas Villandier; Isabelle Adam; François Jérôme; Joël Barrault; Ronan Pierre; Alain Bouchu; Juliette Fitremann; Yves Queneau Selective synthesis of amphiphilic hydroxyalkylethers of disaccharides over solid basic catalysts, Journal of Molecular Catalysis A: Chemical, Volume 259 (2006) no. 1-2, p. 67 | DOI:10.1016/j.molcata.2006.06.008
  • Jonathan A. Zerkowski; Daniel K. Y. Solaiman Synthesis of polyfunctional fatty amines from sophorolipid‐derived 17‐hydroxy oleic acid, Journal of the American Oil Chemists' Society, Volume 83 (2006) no. 7, p. 621 | DOI:10.1007/s11746-006-1248-1
  • David J. Hotchkiss; Sarah F. Jenkinson; Richard Storer; Thomas Heinz; George W.J. Fleet Amadori ketoses with calcium hydroxide and the Kiliani reaction on 1-deoxy ketoses: two approaches to the synthesis of saccharinic acids, Tetrahedron Letters, Volume 47 (2006) no. 3, p. 315 | DOI:10.1016/j.tetlet.2005.11.018
  • Dierk Martin; Frieder W. Lichtenthaler Versatile building blocks from disaccharides: glycosylated 5-hydroxymethylfurfurals, Tetrahedron: Asymmetry, Volume 17 (2006) no. 5, p. 756 | DOI:10.1016/j.tetasy.2005.12.010
  • Frieder W. Lichtenthaler Carbohydrate‐based Product Lines: The Key Sugars of Biomass: Availability, Present Non‐Food Uses and Potential Future Development Lines, Biorefineries‐Industrial Processes and Products (2005), p. 2 | DOI:10.1002/9783527619849.ch18
  • Birgit Kamm; Michael Kamm; Matthias Schmidt; Thomas Hirth; Margit Schulze Lignocellulose‐based Chemical Products and Product Family Trees, Biorefineries‐Industrial Processes and Products (2005), p. 97 | DOI:10.1002/9783527619849.ch20
  • Peter Licence; William K. Gray; Maia Sokolova; Martyn Poliakoff Selective Monoprotection of 1,n-Terminal Diols in Supercritical Carbon Dioxide:  A Striking Example of Solvent Tunable Desymmetrization, Journal of the American Chemical Society, Volume 127 (2005) no. 1, p. 293 | DOI:10.1021/ja044814h
  • Céline Satgé; Jean Le Bras; Françoise Hénin; Jacques Muzart DMF promoted xylosylation of terpenols, Tetrahedron, Volume 61 (2005) no. 35, p. 8405 | DOI:10.1016/j.tet.2005.06.075
  • Raquel Soengas; Ken Izumori; Michela Iezzi Simone; David J. Watkin; Ulla P. Skytte; Wim Soetaert; George W.J. Fleet Kiliani reactions on ketoses: branched carbohydrate building blocks from D-tagatose and D-psicose, Tetrahedron Letters, Volume 46 (2005) no. 34, p. 5755 | DOI:10.1016/j.tetlet.2005.06.030
  • Michela Iezzi Simone; Raquel Soengas; Christopher R. Newton; David J. Watkin; George W.J. Fleet Branched tetrahydrofuran α,α-disubstituted-δ-sugar amino acid scaffolds from branched sugar lactones: a new family of foldamers?, Tetrahedron Letters, Volume 46 (2005) no. 34, p. 5761 | DOI:10.1016/j.tetlet.2005.06.029
  • M. Bicker; D. Kaiser; L. Ott; H. Vogel Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids, The Journal of Supercritical Fluids, Volume 36 (2005) no. 2, p. 118 | DOI:10.1016/j.supflu.2005.04.004
  • David Hotchkiss; Raquel Soengas; Michela Iezzi Simone; Jeroen van Ameijde; Stuart Hunter; Andrew R. Cowley; George W.J. Fleet Kiliani on ketoses: branched carbohydrate building blocks from d-fructose and l-sorbose, Tetrahedron Letters, Volume 45 (2004) no. 51, p. 9461 | DOI:10.1016/j.tetlet.2004.10.086
  • Andrea Boettcher; Frieder W. Lichtenthaler d-Fructose- and l-sorbose-derived endo- and exo-hydroxyglycal esters and some of their chemistry, Tetrahedron: Asymmetry, Volume 15 (2004) no. 17, p. 2693 | DOI:10.1016/j.tetasy.2004.07.018

Cité par 314 documents. Sources : Crossref


Commentaires - Politique