Comptes Rendus
Analyse mathématique
Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 975-980.

Nous définissons et étudions l'anneau des fonctions rationnelles dans le cadre hyper-analytique. Nous donnons un nombre de définitions équivalentes de la rationalité. La multiplication de Cauchy–Kovalevskaya joue un rôle important dans la théorie.

We define and study the ring of rational functions in the hyperholomorphic setting. We give a number of equivalent characterizations of rationality. The Cauchy–Kovalevskaya product plays an important role in the arguments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00233-4

Daniel Alpay 1 ; Baruch Schneider 1 ; Michael Shapiro 2 ; Dan Volok 1

1 Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israël
2 Departamento de Matemáticas, Escuela Superior de Fı́sica y Matemáticas, Instituto Politécnico Nacional, 07300 México, D.F., Mexique
@article{CRMATH_2003__336_12_975_0,
     author = {Daniel Alpay and Baruch Schneider and Michael Shapiro and Dan Volok},
     title = {Fonctions rationnelles et th\'eorie de la r\'ealisation: le cas hyper-analytique},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {975--980},
     publisher = {Elsevier},
     volume = {336},
     number = {12},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00233-4},
     language = {fr},
}
TY  - JOUR
AU  - Daniel Alpay
AU  - Baruch Schneider
AU  - Michael Shapiro
AU  - Dan Volok
TI  - Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 975
EP  - 980
VL  - 336
IS  - 12
PB  - Elsevier
DO  - 10.1016/S1631-073X(03)00233-4
LA  - fr
ID  - CRMATH_2003__336_12_975_0
ER  - 
%0 Journal Article
%A Daniel Alpay
%A Baruch Schneider
%A Michael Shapiro
%A Dan Volok
%T Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique
%J Comptes Rendus. Mathématique
%D 2003
%P 975-980
%V 336
%N 12
%I Elsevier
%R 10.1016/S1631-073X(03)00233-4
%G fr
%F CRMATH_2003__336_12_975_0
Daniel Alpay; Baruch Schneider; Michael Shapiro; Dan Volok. Fonctions rationnelles et théorie de la réalisation: le cas hyper-analytique. Comptes Rendus. Mathématique, Volume 336 (2003) no. 12, pp. 975-980. doi : 10.1016/S1631-073X(03)00233-4. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/S1631-073X(03)00233-4/

[1] D. Alpay Algorithme de Schur, Panoramas et Synthèses, 6, Société Mathématique de France, Paris, 1998

[2] D. Alpay; C. Dubi A realization theorem for rational functions of several complex variables, System Control Lett., Volume 49 (2003) no. 3, pp. 225-229

[3] D. Alpay; H.T. Kaptanoğlu Some finite-dimensional backward shift-invariant subspaces in the ball and a related interpolation problem, Integral Equation Operator Theory, Volume 42 (2002), pp. 1-21

[4] D. Alpay; M. Shapiro Problème de Gleason et interpolation pour les fonctions hyper-analytiques, C. R. Acad. Sci. Paris, Ser. I, Volume 335 (2003)

[5] W. Arveson Subalgebras of C * -algebras. III. Multivariable operator theory, Acta Math., Volume 181 (1998), pp. 159-228

[6] J. Ball; T. Trent; V. Vinnikov Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Proceedings of Conference in Honor of the 60-th Birthday of M.A. Kaashoek, Oper. Theory Adv. Appl., 122, Birkhäuser, 2001, pp. 89-138

[7] H. Bart; I. Gohberg; M. Kaashoek Minimal Factorization of Matrix and Operator Functions, Oper. Theory Adv. Appl., 1, Birkhäuser, Basel, 1979

[8] F. Brackx; R. Delanghe; F. Sommen Clifford Analysis, Pitman Res. Notes, 76, 1982

[9] H. Dym, J-contractive matrix functions, reproducing kernel Hilbert spaces and interpolation. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1989

[10] K. Gürlebeck; W. Sprössig Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, 1, Wiley, 1997

[11] R.E. Kalman; P.L. Falb; M.A.K. Arbib Topics in Mathematical System Theory, McGraw-Hill, New York, 1969

[12] H. Malonek Hypercomplex differentiability its applications, Clifford Algebras and their Applications in Mathematical Physics, Deinze, 1993, Fund. Theories Phys., 55, Kluwer Academic, Dordrecht, 1993, pp. 141-150

Cité par Sources :

Commentaires - Politique