Let (W,H,μ) be an abstract Wiener space, assume that is a second probability measures on such that , with lower bounded and H-convex. Let , be the solution of the Monge problem transporting μ to ν and realizing the H-Wasserstein distance between μ and ν. We prove that hence the Gaussian Jacobian is well-defined and T is the strong solution of the Monge–Ampère equation ΛL∘T=1 a.s. on W.
Soit (W,H,μ) un espace de Wiener abstrait, on suppose que est une autre probabilité sur où , avec , inférieurement bornée et H-convexe. Soit T=IW+∇ϕ, , la solution du problème de Monge qui transporte μ sur ν et qui realise la distance de Wasserstein entre μ et ν par rapport à la métrique de Cameron–Martin. Nous montrons qu'en fait . Par conséquent le jacobien gaussien est bien défini et T est la solution forte de l'equation de Monge–Ampère ΛL∘T=1 p.s.
Accepted:
Published online:
Denis Feyel 1; Ali Suleyman Üstünel 2
@article{CRMATH_2004__339_1_49_0, author = {Denis Feyel and Ali Suleyman \"Ust\"unel}, title = {The strong solution of the {Monge{\textendash}Amp\`ere} equation on the {Wiener} space for log-concave densities}, journal = {Comptes Rendus. Math\'ematique}, pages = {49--53}, publisher = {Elsevier}, volume = {339}, number = {1}, year = {2004}, doi = {10.1016/j.crma.2004.04.013}, language = {en}, }
TY - JOUR AU - Denis Feyel AU - Ali Suleyman Üstünel TI - The strong solution of the Monge–Ampère equation on the Wiener space for log-concave densities JO - Comptes Rendus. Mathématique PY - 2004 SP - 49 EP - 53 VL - 339 IS - 1 PB - Elsevier DO - 10.1016/j.crma.2004.04.013 LA - en ID - CRMATH_2004__339_1_49_0 ER -
Denis Feyel; Ali Suleyman Üstünel. The strong solution of the Monge–Ampère equation on the Wiener space for log-concave densities. Comptes Rendus. Mathématique, Volume 339 (2004) no. 1, pp. 49-53. doi : 10.1016/j.crma.2004.04.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.04.013/
[1] Inequalities, Ergebn. Math. Grenzgeb., vol. 30, Springer-Verlag, 1983
[2] Polar factorization and monotone rearrangement of vector valued functions, Comm. Pure Appl. Math., Volume 44 (1991), pp. 375-417
[3] The regularity of mappings with a convex potential, J. Amer. Math. Soc., Volume 5 (1992), pp. 99-104
[4] Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys., Volume 214 (2000), pp. 547-563
[5] Linear Operators, vol. 2, Interscience, 1963
[6] D. Feyel, A survey on the Monge transport problem, Preprint, 2004
[7] Capacités gaussiennes, Ann. Inst. Fourier, Volume 41 (1991), pp. 49-76
[8] The notion of convexity and concavity on Wiener space, J. Funct. Anal., Volume 176 (2000), pp. 400-428
[9] Transport of measures on Wiener space and the Girsanov theorem, C. R. Acad. Sci Paris, Ser. I, Volume 334 (2002) no. 1, pp. 1025-1028
[10] Monge–Kantorovitch measure transportation and Monge–Ampère equation on Wiener space, Probab. Theory Related Fields, Volume 128 (2004), pp. 347-385
[11] D. Feyel, A.S. Üstünel, Monge–Kantorovitch measure transportation, Monge–Ampère equation and the Itô calculus, Adv. Stud. Pure Math., vol. 41, Mathematical Society of Japan, in press
[12] Stochastic Analysis, Springer-Verlag, 1997
[13] Introduction to Analysis on Wiener Space, Lecture Notes in Math., vol. 1610, Springer, 1995
[14] Transformation of Measure on Wiener Space, Springer-Verlag, 1999
Cited by Sources:
Comments - Policy