We establish a new Liouville-type comparison principle for entire weak solutions of quasilinear elliptic partial differential inequalities of the form on , . Typical examples of the operator are the p-Laplacian and its well-known modifications for .
On établit un nouveau principe de comparaison de type Liouville pour des solutions entières faibles d'inégalités aux dérivées partielles elliptiques quasi linéaires de la forme dans , . Le p-laplacien et ses modifications bien connues pour sont des exemples typiques de l'opérateur .
Accepted:
Published online:
Vasilii V. Kurta 1
@article{CRMATH_2004__339_6_401_0, author = {Vasilii V. Kurta}, title = {On a {Liouville} comparison principle for entire weak solutions of quasilinear elliptic partial differential inequalities}, journal = {Comptes Rendus. Math\'ematique}, pages = {401--404}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.06.025}, language = {en}, }
TY - JOUR AU - Vasilii V. Kurta TI - On a Liouville comparison principle for entire weak solutions of quasilinear elliptic partial differential inequalities JO - Comptes Rendus. Mathématique PY - 2004 SP - 401 EP - 404 VL - 339 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2004.06.025 LA - en ID - CRMATH_2004__339_6_401_0 ER -
%0 Journal Article %A Vasilii V. Kurta %T On a Liouville comparison principle for entire weak solutions of quasilinear elliptic partial differential inequalities %J Comptes Rendus. Mathématique %D 2004 %P 401-404 %V 339 %N 6 %I Elsevier %R 10.1016/j.crma.2004.06.025 %G en %F CRMATH_2004__339_6_401_0
Vasilii V. Kurta. On a Liouville comparison principle for entire weak solutions of quasilinear elliptic partial differential inequalities. Comptes Rendus. Mathématique, Volume 339 (2004) no. 6, pp. 401-404. doi : 10.1016/j.crma.2004.06.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.06.025/
[1] V.V. Kurta, Some problems of qualitative theory for nonlinear second-order equations, Doctoral Dissert., Steklov Math. Inst., Moscow, 1994
[2] Comparison principle for solutions of parabolic inequalities, C. R. Acad. Sci. Paris, Ser. I, Volume 322 (1996), pp. 1175-1180
[3] About a Liouville phenomenon, C. R. Acad. Sci. Paris, Ser. I, Volume 338 (2004), pp. 19-22
[4] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969
Cited by Sources:
Comments - Policy