We consider unimodal polynomials with Feigenbaum topological type and critical points whose orders tend to infinity. It is shown that the hyperbolic dimensions of their Julia set go to 2; furthermore, that the Hausdorff dimensions of the basins of attraction of their Feigenbaum attractors also tend to 2. The proof is based on constructing a limiting dynamics with a flat critical point.
On considère des polynômes unimodaux de type topologique de Feigenbaum et les points critiques dont l'ordre tend vers l'infini. On montre que la dimension hyperbolique des ensembles de Julia tend vers 2. De plus, la dimension de Hausdorff du bassin d'attraction des attracteurs tend aussi vers 2. La preuve s'appuie sur une construction de la dynamique limite avec un point critique plat.
Accepted:
Published online:
Genadi Levin 1; Grzegorz Świątek 2
@article{CRMATH_2004__339_6_421_0, author = {Genadi Levin and Grzegorz \'Swi\k{a}tek}, title = {Thickness of {Julia} sets of {Feigenbaum} polynomials with high order critical points}, journal = {Comptes Rendus. Math\'ematique}, pages = {421--424}, publisher = {Elsevier}, volume = {339}, number = {6}, year = {2004}, doi = {10.1016/j.crma.2004.07.013}, language = {en}, }
TY - JOUR AU - Genadi Levin AU - Grzegorz Świątek TI - Thickness of Julia sets of Feigenbaum polynomials with high order critical points JO - Comptes Rendus. Mathématique PY - 2004 SP - 421 EP - 424 VL - 339 IS - 6 PB - Elsevier DO - 10.1016/j.crma.2004.07.013 LA - en ID - CRMATH_2004__339_6_421_0 ER -
Genadi Levin; Grzegorz Świątek. Thickness of Julia sets of Feigenbaum polynomials with high order critical points. Comptes Rendus. Mathématique, Volume 339 (2004) no. 6, pp. 421-424. doi : 10.1016/j.crma.2004.07.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.07.013/
[1] Wild Cantor attractors exist, Ann. Math., Volume 143 (1996), pp. 97-130
[2] Computer Methods and Borel Summability Applied to Feigenbaum's Equation, Lecture Notes in Phys., vol. 227, Springer-Verlag, 1985
[3] Collet, Eckmann & Hölder, Invent. Math., Volume 133 (1998) no. 1, pp. 69-96
[4] G. Levin, G. Świątek, Dynamics and universality of unimodal mappings with infinite criticality, manuscript, 2003
[5] Renormalization and 3-Manifolds which Fiber Over the Circle, Ann. of Math. Stud., vol. 142, Princeton University Press, 1998
[6] Porosity of Collet–Eckmann Julia sets, Fund. Math., Volume 155 (1998) no. 2, pp. 189-199
[7] The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. Math., Volume 147 (1998), pp. 225-267
Cited by Sources:
Comments - Policy