On étudie la structure des produits tensoriels de processus stationnaires à valeurs dans un espace de Hilbert H. L'une des motivations est l'estimation de l'autocovariance d'un tel processus à l'aide de l'autocovariance empirique. Pour simplifier on se limite aux processus autorégressifs (ARH) et moyennes mobiles (MAH) d'ordre un, standards, et dont l'innovation est une différence de martingale. Les processus obtenus sont alors du type , éventuellement non-standard, où est l'espace des opérateurs de Hilbert–Schmidt sur H. On s'intéresse aussi au cas réel, on donne des exemples et on fournit des critères assurant que le processus obtenu est standard.
We study the structure of tensorial products of H-valued stationary processes, where H is a Hilbert space. One of the motivations is autocovariance estimation by using the empirical autocovariance. For convenience we focus on autoregressive (ARH) and moving average (MAH) standard processes with innovations that are martingale increments. The obtained model is processes (possibly non-standard), where denotes the space of Hilbert–Schmidt operators on H. We also deal with the real case, we give some examples and we provide criteria for standardness of the tensorial products.
Accepté le :
Publié le :
Denis Bosq 1
@article{CRMATH_2009__347_7-8_419_0, author = {Denis Bosq}, title = {Produits tensoriels de processus {ARMA} fonctionnels}, journal = {Comptes Rendus. Math\'ematique}, pages = {419--423}, publisher = {Elsevier}, volume = {347}, number = {7-8}, year = {2009}, doi = {10.1016/j.crma.2009.01.031}, language = {fr}, }
Denis Bosq. Produits tensoriels de processus ARMA fonctionnels. Comptes Rendus. Mathématique, Volume 347 (2009) no. 7-8, pp. 419-423. doi : 10.1016/j.crma.2009.01.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.01.031/
[1] Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statistics, vol. 149, Springer-Verlag, New York, 2000
[2] Processus linéaires vectoriels et prédiction, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 337 (2003) no. 2, pp. 115-118
[3] General linear processes in Hilbert spaces and prediction, J. Statist. Plann. Inference, Volume 137 (2007) no. 3, pp. 879-894
[4] Inference and Prediction in Large Dimensions, Wiley Series in Probability and Statistics, John Wiley & Sons Ltd., Chichester, 2007
[5] Time Series: Theory and Methods, Springer Series in Statistics, Springer-Verlag, New York, 1991
[6] Prediction problems for square-transformed stationary processes, Stat. Inference Stoch. Process., Volume 6 (2003) no. 1, pp. 43-64
[7] Forecasting transformed series, J. Roy. Statist. Soc. Ser. B, Volume 38 (1976) no. 2, pp. 189-203
Cité par Sources :
Commentaires - Politique