Comptes Rendus
Mathematical Problems in Mechanics
Legendre–Fenchel duality in elasticity
[Dualité de Legendre–Fenchel en élasticité]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 597-602.

We show that the displacement and strain formulations of the displacement–traction problem of three-dimensional linearized elasticity can be viewed as Legendre–Fenchel dual problems to the stress formulation of the same problem. We also show that each corresponding Lagrangian has a saddle-point, thus fully justifying this new approach to elasticity by means of Legendre–Fenchel duality.

On montre que les formulations en déplacements et en déformations du problème de lʼélasticité linéarisée tri-dimensionnelle avec des conditions aux limites mixtes peuvent être vues comme des problèmes duaux de Legendre–Fenchel de la formulation en contraintes de ce même problème. On montre également que chacun des Lagrangiens correspondants a un point-selle, justifiant ainsi complètement cette nouvelle approche de lʼélasticité au moyen de la dualité de Legendre–Fenchel.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.03.007

Philippe G. Ciarlet 1 ; Giuseppe Geymonat 2 ; Françoise Krasucki 3

1 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
2 LMGC, UMR – CNRS 5508, université de Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
3 I3M, UMR – CNRS 5149, université de Montpellier II, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMATH_2011__349_9-10_597_0,
     author = {Philippe G. Ciarlet and Giuseppe Geymonat and Fran\c{c}oise Krasucki},
     title = {Legendre{\textendash}Fenchel duality in elasticity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {597--602},
     publisher = {Elsevier},
     volume = {349},
     number = {9-10},
     year = {2011},
     doi = {10.1016/j.crma.2011.03.007},
     language = {en},
}
TY  - JOUR
AU  - Philippe G. Ciarlet
AU  - Giuseppe Geymonat
AU  - Françoise Krasucki
TI  - Legendre–Fenchel duality in elasticity
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 597
EP  - 602
VL  - 349
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crma.2011.03.007
LA  - en
ID  - CRMATH_2011__349_9-10_597_0
ER  - 
%0 Journal Article
%A Philippe G. Ciarlet
%A Giuseppe Geymonat
%A Françoise Krasucki
%T Legendre–Fenchel duality in elasticity
%J Comptes Rendus. Mathématique
%D 2011
%P 597-602
%V 349
%N 9-10
%I Elsevier
%R 10.1016/j.crma.2011.03.007
%G en
%F CRMATH_2011__349_9-10_597_0
Philippe G. Ciarlet; Giuseppe Geymonat; Françoise Krasucki. Legendre–Fenchel duality in elasticity. Comptes Rendus. Mathématique, Volume 349 (2011) no. 9-10, pp. 597-602. doi : 10.1016/j.crma.2011.03.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.007/

[1] C. Amrouche; P.G. Ciarlet; L. Gratie; S. Kesavan On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl., Volume 86 (2006), pp. 116-132

[2] H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010

[3] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer, 1991

[4] P.G. Ciarlet, P. Ciarlet, Jr., O. Iosifescu, S. Sauter, Jun Zou, Lagrange multipliers in intrinsic elasticity, Math. Models Methods Appl. Sci., in press.

[5] P.G. Ciarlet, G. Geymonat, F. Krasucki, A new duality approach to elasticity, Math. Models Methods Appl. Sci., in press.

[6] G. Duvaut; J.L. Lions Les Inéquations en Mécanique et en Physique, Dunod, 1972

[7] I. Ekeland; R. Temam Analyse Convexe et Problèmes Variationnels, Dunod & Gauthier-Villars, Paris, 1974

[8] G. Geymonat; F. Krasucki Some remarks on the compatibility conditions in elasticity, Accad. Naz. Sci. XL, Volume 123 (2005), pp. 175-182

[9] G. Geymonat; F. Krasucki Beltramiʼs solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Sér. I, Volume 342 (2006), pp. 359-363

[10] G. Geymonat; P. Suquet Functional spaces for Norton–Hoff materials, Math. Methods Appl. Sci., Volume 8 (1986), pp. 206-222

  • Andaluzia Matei; Madalina Osiceanu Two-field variational formulations for a class of nonlinear mechanical models, Mathematics and Mechanics of Solids, Volume 27 (2022) no. 11, pp. 2532-2547 | DOI:10.1177/10812865211066123 | Zbl:7619149
  • Shun Zhang Primal-dual reduced basis methods for convex minimization variational problems: robust true solution a posteriori error certification and adaptive greedy algorithms, SIAM Journal on Scientific Computing, Volume 42 (2020) no. 6, p. a3638-a3676 | DOI:10.1137/19m1281551 | Zbl:1456.65171
  • Yoshihiro Kanno Intrinsic formulation and Lagrange duality for elastic cable networks with geometrical nonlinearity, Journal of Elasticity, Volume 134 (2019) no. 2, pp. 193-217 | DOI:10.1007/s10659-018-9687-0 | Zbl:1412.74056
  • Claude Vallée; Vicenţiu D. Rădulescu; Kossi Atchonouglo New variational principles for solving extended Dirichlet-Neumann problems, Journal of Elasticity, Volume 123 (2016) no. 1, pp. 1-18 | DOI:10.1007/s10659-015-9544-3 | Zbl:1382.49039
  • Andaluzia Matei A variational approach via bipotentials for a class of frictional contact problems, Acta Applicandae Mathematicae, Volume 134 (2014) no. 1, pp. 45-59 | DOI:10.1007/s10440-014-9868-1 | Zbl:1308.49009
  • C. Vallée; J. Chaoufi; C. Lerintiu The Dirichlet–Neumann problem revisited after modelling a new class of non-smooth phenomena, Annals of Solid and Structural Mechanics, Volume 6 (2014) no. 1-2, p. 29 | DOI:10.1007/s12356-014-0036-0
  • Claude Vallée; Camelia Lerintiu; Jamal Chaoufi; Danielle Fortuné; Michael Ban; Kossi Atchonouglo A class of non-associated materials: n-monotone materials – Hooke's law of elasticity revisited, Journal of Elasticity, Volume 112 (2013) no. 2, pp. 111-138 | DOI:10.1007/s10659-012-9403-4 | Zbl:1267.74021
  • Philippe G. Ciarlet; Giuseppe Geymonat; Françoise Krasucki A new duality approach to elasticity, M3AS. Mathematical Models Methods in Applied Sciences, Volume 22 (2012) no. 1, p. 1150003 | DOI:10.1142/s0218202512005861 | Zbl:1242.49072

Cité par 8 documents. Sources : Crossref, zbMATH

Commentaires - Politique