In this note, we establish an extension theorem with an optimal estimate for semi-positive vector bundles in the sense of Nakano. This result also implies optimal estimate versions of various extension theorems. Applications include a solution of the equality case in a conjecture of Suita on logarithmic capacities of open Riemann surface, as well as a solution of the extended Suita conjecture and a confirmation of the so-called L-conjecture.
Dans cette note, nous présentons un théorème dʼextension avec estimation optimale, pour des fibrés vectoriels holomorphes semi-positifs dans le sens de Nakano. Ce résultat implique aussi des versions optimales pour lʼestimation de divers autres théorèmes dʼextension . En application, nous obtenons la solution du cas dʼégalité dans une conjecture de Suita relative aux capacité logarithmiques de surfaces de Riemann ouvertes, ainsi que la solution de la conjecture de Suita généralisée, et la confirmation dʼun énoncé connu sous le nom de L-conjecture.
Accepted:
Published online:
Qiʼan Guan 1; Xiangyu Zhou 2
@article{CRMATH_2014__352_2_137_0, author = {Qi'an Guan and Xiangyu Zhou}, title = {An $ {L}^{2}$ extension theorem with optimal estimate}, journal = {Comptes Rendus. Math\'ematique}, pages = {137--141}, publisher = {Elsevier}, volume = {352}, number = {2}, year = {2014}, doi = {10.1016/j.crma.2013.12.007}, language = {en}, }
Qiʼan Guan; Xiangyu Zhou. An $ {L}^{2}$ extension theorem with optimal estimate. Comptes Rendus. Mathématique, Volume 352 (2014) no. 2, pp. 137-141. doi : 10.1016/j.crma.2013.12.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.12.007/
[1] The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier, Volume 46 (1996) no. 4, pp. 1083-1094
[2] Integral formulas and the Ohsawa–Takegoshi extension theorem, Sci. China Ser. A, Volume 48 (2005) no. Suppl., pp. 61-73
[3] On the Ohsawa–Takegoshi extension theorem, Univ. Iag. Acta Math., Volume 50 (2012), pp. 53-61
[4] Suita conjecture and the Ohsawa–Takegoshi extension theorem, Invent. Math., Volume 193 (2013), pp. 149-158
[5] On the Ohsawa–Takegoshi–Manivel extension theorem, Paris, September 1997 (Progress in Mathematics) (2000)
[6] Complex analytic and differential geometry http://www-fourier.ujf-grenoble.fr/~demailly/books.html (electronically accessible at)
[7] Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010
[8] Riemann Surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, Berlin, 1980
[9] Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978
[10] Optimal constant problem in the extension theorem, C. R. Acad. Sci. Paris, Ser. I, Volume 350 (2012) no. 15–16, pp. 753-756
[11] Generalized extension theorem and a conjecture of Ohsawa, C. R. Acad. Sci. Paris, Ser. I, Volume 351 (2013) no. 3–4, pp. 111-114
[12] Q.A. Guan, X.Y. Zhou, Optimal constant in extension and a proof of a conjecture of Ohsawa, submitted for publication.
[13] Q.A. Guan, X.Y. Zhou, A solution of an extension problem with optimal estimate and applications, preprint.
[14] On the Ohsawa–Takegoshi extension theorem and the twisted Bochner–Kodaira identity, C. R. Acad. Sci. Paris, Ser. I, Volume 349 (2011) no. 13–14, pp. 797-800
[15] Un théorème de prolongement de sections holomorphes dʼun fibré vectoriel, Math. Z., Volume 212 (1993), pp. 107-122
[16] On the extension of holomorphic functions. II, Publ. Res. Inst. Math. Sci., Volume 24 (1988) no. 2, pp. 265-275
[17] On the extension of holomorphic functions. III. Negligible weights, Math. Z., Volume 219 (1995) no. 2, pp. 215-225
[18] On the extension of holomorphic functions. IV. A new density concept, Geometry and Analysis on Complex Manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 157-170
[19] Erratum to: “On the extension of holomorphic functions. V. Effects of generalization” [Nagoya Math. J. 161 (2001) 1–21], Nagoya Math. J., Volume 161 (2001), pp. 1-21
[20] On the extension of holomorphic functions, Math. Z., Volume 195 (1987), pp. 197-204
[21] Capacity Functions, Die Grundlehren der mathematischen Wissenschaften, vol. 149, Springer-Verlag New York Inc., New York, 1969
[22] Functionals of Finite Riemann Surfaces, Princeton University Press, Princeton, NJ, 1954 (x+451 p)
[23] The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi, Geometric Complex Analysis, World Scientific, Hayama, 1996, pp. 577-592
[24] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, Göttingen, 2000, Springer, Berlin (2002), pp. 223-277
[25] Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., Volume 46 (1972), pp. 212-217
[26] On the Lu Qi-keng conjecture, Proc. Am. Math. Soc., Volume 59 (1976) no. 2, pp. 222-224
[27] Topics related to reproducing kernels, theta functions and the Suita conjecture (Japanese), Kyoto, 1998 (Su-rikaisekikenkyu-sho Ko-kyu-roku), Volume vol. 1067 (1998), pp. 39-47
[28] Exactness of multiplicative Bergman kernels, unpublished paper, Fifth World Congress of Nonlinear Analysts, Hyatt Grand Cypress Hotel, Orlando, USA, 2008
[29] -extension theorem: revisited, Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., vol. 51, Amer. Math. Soc., Providence, RI, 2012, pp. 475-490
[30] On the Ohsawa–Takegoshi extension theorem and the Bochner–Kodaira identity with non-smooth twist factor, J. Math. Pures Appl., Volume 97 (2012) no. 6, pp. 579-601
Cited by Sources:
Comments - Policy