We consider the elliptic–elliptic, focussing Davey–Stewartson equations, which have an explicit bright line soliton solution. The existence of a family of periodic solitons, which have the profile of the line soliton in the longitudinal spatial direction and are periodic in the transverse spatial direction, is established using dynamical systems arguments. We also show that the line soliton is linearly unstable with respect to perturbations in the transverse direction.
Nous considérons les équations de Davey–Stewartson focalisantes dans le cas elliptique–elliptique, lorsqu'elles possèdent une solution unidimensionnelle de type soliton. En utilisant des méthodes de la théorie des systèmes dynamiques, nous montrons l'existence d'une famille de solutions bidimensionnelles qui ont le profil d'un soliton dans la direction spatiale longitudinale et sont périodiques dans la direction spatiale transverse. Nous montrons également que le soliton unidimensionnel est linéairement instable vis-à-vis des perturbations transverses.
Accepted:
Published online:
Mark D. Groves 1, 2; Shu-Ming Sun 3; Erik Wahlén 4
@article{CRMATH_2016__354_5_486_0, author = {Mark D. Groves and Shu-Ming Sun and Erik Wahl\'en}, title = {Periodic solitons for the elliptic{\textendash}elliptic focussing {Davey{\textendash}Stewartson} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {486--492}, publisher = {Elsevier}, volume = {354}, number = {5}, year = {2016}, doi = {10.1016/j.crma.2016.02.005}, language = {en}, }
TY - JOUR AU - Mark D. Groves AU - Shu-Ming Sun AU - Erik Wahlén TI - Periodic solitons for the elliptic–elliptic focussing Davey–Stewartson equations JO - Comptes Rendus. Mathématique PY - 2016 SP - 486 EP - 492 VL - 354 IS - 5 PB - Elsevier DO - 10.1016/j.crma.2016.02.005 LA - en ID - CRMATH_2016__354_5_486_0 ER -
Mark D. Groves; Shu-Ming Sun; Erik Wahlén. Periodic solitons for the elliptic–elliptic focussing Davey–Stewartson equations. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 486-492. doi : 10.1016/j.crma.2016.02.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.005/
[1] Solitons, Nonlinear Evolution Equations and Inverse Scattering, Lond. Math. Soc. Lect. Note Ser., vol. 149, Cambridge University Press, Cambridge, UK, 1991
[2] On the evolution of packets of water waves, J. Fluid Mech., Volume 92 (1979), pp. 691-715
[3] Note on periodic soliton resonance: solutions to the Davey–Stewartson II equation, J. Phys. Soc. Jpn., Volume 70 (2001), pp. 55-59
[4] Solitons, Lond. Math. Soc. Lect. Note Ser., vol. 85, Cambridge University Press, Cambridge, UK, 1983
[5] A simple criterion for transverse linear instability of nonlinear waves, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016), pp. 175-179
[6] A dimension-breaking phenomenon for water waves with weak surface tension, Arch. Ration. Mech. Anal., Volume 220 (2016), pp. 747-807
[7] Gravity and capillary-gravity periodic travelling waves for two superposed fluid layers, one being of infinite depth, J. Math. Fluid Mech., Volume 1 (1999), pp. 24-63
[8] Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1976
[9] Periodic soliton resonance: solutions to the Davey–Stewartson I equation, J. Phys. Soc. Jpn., Volume 67 (1998), pp. 705-708
Cited by Sources:
Comments - Policy