Comptes Rendus
Partial differential equations
Leray's problem for the Navier–Stokes equations revisited
Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 503-509.

In a seminal work in 1934, J. Leray constructed solutions u(,t)L([0,),Lσ2(R3))Cw0([0,),L2(R3))L2([0,),H˙1(R3)) of the Navier–Stokes equations for arbitrary initial data u(,0)Lσ2(R3) and left it open whether u(,t)L2(R3) would necessarily tend to zero as t. This question was answered positively fifty years later by T. Kato, using a different approach. Here, we reexamine Leray's problem and solve this and other important related questions using Leray's original ideas and some standard tools (Fourier transform, Duhamel's principle, heat kernel estimates) already in use in his time.

En 1934, J. Leray a construit des solutions faibles u(,t)L([0,),Lσ2(R3))Cw0([0,),L2(R3))L2([0,),H˙1(R3)) pour les équations de Navier–Stokes avec des données initiales u(,0)Lσ2(R3) arbitraires, où il a laissé non résolue la question de savoir si u(,t)L2(R3) tendrait toujours vers zéro quand t, à laquelle a été répondu positivement en 1984 par T. Kato, au moyen d'une autre approche. Ici, on reconsidère le problème de Leray et quelques-unes de ses extensions, qui sont résolus en n'employant que des idées développées par Leray en 1934 et des techniques classiques, très utilisées déjà à cette époque.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2016.02.008

Joyce C. Rigelo 1; Lineia Schütz 2; Janaína P. Zingano 2; Paulo R. Zingano 2

1 Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, TX 78712, USA
2 Departamento de Matemática Pura e Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91509, Brazil
@article{CRMATH_2016__354_5_503_0,
     author = {Joyce C. Rigelo and Lineia Sch\"utz and Jana{\'\i}na P. Zingano and Paulo R. Zingano},
     title = {Leray's problem for the {Navier{\textendash}Stokes} equations revisited},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {503--509},
     publisher = {Elsevier},
     volume = {354},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crma.2016.02.008},
     language = {en},
}
TY  - JOUR
AU  - Joyce C. Rigelo
AU  - Lineia Schütz
AU  - Janaína P. Zingano
AU  - Paulo R. Zingano
TI  - Leray's problem for the Navier–Stokes equations revisited
JO  - Comptes Rendus. Mathématique
PY  - 2016
SP  - 503
EP  - 509
VL  - 354
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2016.02.008
LA  - en
ID  - CRMATH_2016__354_5_503_0
ER  - 
%0 Journal Article
%A Joyce C. Rigelo
%A Lineia Schütz
%A Janaína P. Zingano
%A Paulo R. Zingano
%T Leray's problem for the Navier–Stokes equations revisited
%J Comptes Rendus. Mathématique
%D 2016
%P 503-509
%V 354
%N 5
%I Elsevier
%R 10.1016/j.crma.2016.02.008
%G en
%F CRMATH_2016__354_5_503_0
Joyce C. Rigelo; Lineia Schütz; Janaína P. Zingano; Paulo R. Zingano. Leray's problem for the Navier–Stokes equations revisited. Comptes Rendus. Mathématique, Volume 354 (2016) no. 5, pp. 503-509. doi : 10.1016/j.crma.2016.02.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.02.008/

[1] P. Braz e Silva; L. Schütz; P.R. Zingano On some energy inequalities and supnorm estimates for advection–diffusion equations in Rn, Nonlinear Anal., Volume 93 (2013), pp. 90-96

[2] T. Gallay; C.E. Wayne Long-time asymptotics of the Navier–Stokes and vorticity equations on R3, Philos. Trans. R. Soc. Lond., Volume 360 (2002), pp. 2155-2188

[3] R. Kajikiya; T. Miyakawa On the L2 decay of weak solutions of the Navier–Stokes equations in Rn, Math. Z., Volume 192 (1986), pp. 135-148

[4] T. Kato Strong Lp-solutions of the Navier–Stokes equations in Rm, with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471-480

[5] H.-O. Kreiss; T. Hagstrom; J. Lorenz; P.R. Zingano Decay in time of incompressible flows, J. Math. Fluid Mech., Volume 5 (2003), pp. 231-244

[6] J. Leray Essai sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., Volume 63 (1934), pp. 193-248

[7] J. Lorenz, P.R. Zingano, The Navier–Stokes equations for incompressible flows: solution properties at potential blow-up times, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 2003, freely available at: . | arXiv

[8] K. Masuda Weak solutions of the Navier–Stokes equations, Tohoku Math. J., Volume 36 (1984), pp. 623-646

[9] M.E. Schonbek Large time behaviour of solutions of the Navier–Stokes equations, Commun. Partial Differ. Equ., Volume 11 (1986), pp. 733-763

[10] L. Schütz; J.P. Zingano; P.R. Zingano On the supnorm form of Leray's problem for the incompressible Navier–Stokes equations, J. Math. Phys., Volume 56 (2015)

[11] M. Wiegner Decay results for weak solutions of the Navier–Stokes equations on Rn, J. Lond. Math. Soc. (2), Volume 35 (1987), pp. 303-313

Cited by Sources:

Comments - Policy