[Construction de suites exactes sur des espaces discrets non conformes]
Dans cette note, nous proposons un procédé général pour construire des suites exactes autour d'un espace non conforme, et nous montrons comment ce procédé peut servir à écrire une loi de Gauss discrète convenable dans le cadre d'approximations Galerkin discontinues (DG) des équations de Maxwell temporelles en 2d.
In this note, we propose a general procedure to construct exact sequences involving a non-conforming function space and we show how this construction can be used to derive a proper discrete Gauss law for structure-preserving discontinuous Galerkin (DG) approximations to the time-dependent 2d Maxwell equations.
Accepté le :
Publié le :
Martin Campos Pinto 1
@article{CRMATH_2016__354_7_691_0, author = {Martin Campos Pinto}, title = {Constructing exact sequences on non-conforming discrete spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {691--696}, publisher = {Elsevier}, volume = {354}, number = {7}, year = {2016}, doi = {10.1016/j.crma.2016.03.008}, language = {en}, }
Martin Campos Pinto. Constructing exact sequences on non-conforming discrete spaces. Comptes Rendus. Mathématique, Volume 354 (2016) no. 7, pp. 691-696. doi : 10.1016/j.crma.2016.03.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2016.03.008/
[1] Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (NS), Volume 47 (2010) no. 2, pp. 281-354
[2] A note on the deRham complex and a discrete compactness property, Appl. Math. Lett., Volume 14 (January 2001) no. 1, pp. 33-38
[3] Compatible discretizations for eigenvalue problems, Compatible Spatial Discretizations, Springer New York, New York, NY, 2006, pp. 121-142
[4] Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, 2013
[5] Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, Physical Science, Measurement and Instrumentation, Management and Education – Reviews, IEE Proceedings A, 1988, pp. 493-500
[6] Un nouveau point de vue sur les éléments mixtes, Matapli (Bull. Soc. Math. Appl. Ind.), Volume 20 (1989), pp. 23-35 (in French)
[7] Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations, Appl. Math. Comput., Volume 272 (January 2016), pp. 403-419
[8] M. Campos Pinto, E. Sonnendrücker, Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law, submitted, . | HAL
[9] M. Campos Pinto, E. Sonnendrücker, Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law, submitted, . | HAL
[10] Gauss-compatible Galerkin schemes for time-dependent Maxwell equations, Math. Comput. (2016) (electronic) | DOI
[11] Approximation variationnelle des problèmes aux limites, Ann. Inst. Fourier, Volume 14 (1964) no. 2, pp. 345-444
[12] Computation of resonance frequencies for Maxwell equations in non-smooth domains, Topics in Computational Wave Propagation, Springer, Berlin, 2003, pp. 125-161
[13] Polynomial exact sequences and projection-based interpolation with application to Maxwell equations, Mixed Finite Elements, Compatibility Conditions, and Applications, Springer-Verlag, Berlin, 2008 (Fondazione C.I.M.E., Florence)
[14] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Math. Model. Numer. Anal., Volume 39 (November 2005) no. 6, pp. 1149-1176
[15] Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339
[16] Hodge decompositions and computational electromagnetics, Mc Gill University Montréal, Canada, October 1984 (PhD thesis)
[17] Mixed finite elements in
[18] Development and application of compatible discretizations of Maxwell's equations, Compatible Spatial Discretizations, Springer, New York, 2006, pp. 209-234
- An unstructured body-of-revolution electromagnetic particle-in-cell algorithm with radial perfectly matched layers and dual polarizations, Computer Physics Communications, Volume 302 (2024), p. 20 (Id/No 109247) | DOI:10.1016/j.cpc.2024.109247 | Zbl:7867591
- A Study on Particle Trajectory Error in Finite-Element Particle-in-Cell Algorithms, IEEE Transactions on Plasma Science, Volume 52 (2024) no. 4, p. 1546 | DOI:10.1109/tps.2024.3388369
- A broken FEEC framework for electromagnetic problems on mapped multipatch domains, Journal of Scientific Computing, Volume 97 (2023) no. 2, p. 53 (Id/No 52) | DOI:10.1007/s10915-023-02351-x | Zbl:1528.65071
- Moment preserving local spline projection operators, Constructive Approximation, Volume 51 (2020) no. 3, pp. 565-585 | DOI:10.1007/s00365-019-09474-1 | Zbl:7207570
- Compatible Maxwell solvers with particles. I: Conforming and non-conforming 2D schemes with a strong Ampere law, SMAI Journal of Computational Mathematics, Volume 3 (2017), pp. 53-89 | DOI:10.5802/smai-jcm.20 | Zbl:1416.78028
- Compatible Maxwell solvers with particles. II: Conforming and non-conforming 2D schemes with a strong Faraday law, SMAI Journal of Computational Mathematics, Volume 3 (2017), pp. 91-116 | DOI:10.5802/smai-jcm.21 | Zbl:1416.78029
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier