[Stabilité globale et asymptotique de l'équilibre sans maladie des modèles épidémiologiques]
For a general class of models, we prove the global asymptotic stability (GAS) of the disease free equilibrium (DFE) under general assumptions. These conditions are related to the basic reproductive ratio
Pour une classe générale de modèles, nous prouvons la globale asymptotique stabilité de l'équilibre sans maladie sous des hypothèses générales. Ces conditions sont relatives au nombre de reproduction de base
Accepté le :
Publié le :
Jean Claude Kamgang 1 ; Gauthier Sallet 2
@article{CRMATH_2005__341_7_433_0, author = {Jean Claude Kamgang and Gauthier Sallet}, title = {Global asymptotic stability for the disease free equilibrium for epidemiological models}, journal = {Comptes Rendus. Math\'ematique}, pages = {433--438}, publisher = {Elsevier}, volume = {341}, number = {7}, year = {2005}, doi = {10.1016/j.crma.2005.07.015}, language = {en}, }
TY - JOUR AU - Jean Claude Kamgang AU - Gauthier Sallet TI - Global asymptotic stability for the disease free equilibrium for epidemiological models JO - Comptes Rendus. Mathématique PY - 2005 SP - 433 EP - 438 VL - 341 IS - 7 PB - Elsevier DO - 10.1016/j.crma.2005.07.015 LA - en ID - CRMATH_2005__341_7_433_0 ER -
Jean Claude Kamgang; Gauthier Sallet. Global asymptotic stability for the disease free equilibrium for epidemiological models. Comptes Rendus. Mathématique, Volume 341 (2005) no. 7, pp. 433-438. doi : 10.1016/j.crma.2005.07.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.07.015/
[1] To treat or not to treat: The case of tuberculosis, J. Math. Biol., Volume 35 (1997), pp. 629-656
[2] On the computation of
[3] Evaluation of bovine diarrhea virus control using a mathematical model of infection dynamics, Prev. Vet. Med., Volume 33 (1998), pp. 91-108
[4] Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000
[5] On the definition and the computation of the basic reproduction ratio
[6] Qualitative theory of compartmental systems, SIAM Rev., Volume 35 (1993) no. 1, pp. 43-79
[7] Stability theory for ordinary differential equations, J. Differential Equations, Volume 4 (1968), pp. 57-65
[8] Global stability of an SEIS model with recruitment varying total population, Math. Biosci., Volume 170 (2001), pp. 199-208
[9] Global dynamic of an SEIR epidemic model with vertical transmission, SIAM J. Appl. Math., Volume 62 (2001), pp. 58-69
[10] Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., Volume 25 (1987), pp. 359-380
[11] Dynamics of HIV infection of CD4+ T cells, Math. Biosci., Volume 114 (1993), pp. 81-125
Cité par Sources :
Commentaires - Politique