Using a linear perturbation approach, we show that under quasi-static conditions, unbounded growth of perturbations coincides with localization under drained or undrained conditions. Under dynamic loadings, unbounded growth is related either to the emergence of stationary discontinuities (and these are set by drained conditions) or to the appearance of the flutter phenomenon (acceleration waves). For associative behaviour the inception of unbounded growth is always set (under both static and dynamic conditions) by the singularity of the drained acoustic tensor. It is only for non-associative flow that unbounded growth may correspond to undrained localization in quasi-static conditions and to flutter under dynamic conditions.
En utilisant une méthode de perturbation linéaire, on montre qu'en conditions quasi-statiques la croissance illimitée de perturbations correspond exactement aux conditions de localisation en conditions drainées ou non drainées. Lorsque l'on prend en compte les effets d'inertie, elle correspond soit à l'émergence de discontinuités stationnaires ou à l'apparition du phénomène de balancement (flutter) pour les ondes d'acceleration. Pour un écoulement associé, sa première apparition correspond toujours à la singularité du tenseur acoustique drainé. Un écoulement non-associé est nécessaire pour qu'elle apparaisse en premier à la singularité du tenseur acoustique non-drainé (quasi-statique) ou à l'apparition du balancement (dynamique).
Accepted:
Published online:
Mot clés : milieux poreux, élasto-plasticité, perturbation, localisation, statique, dynamique
Ahmed Benallal 1; Claudia Comi 2
@article{CRMECA_2002__330_5_339_0, author = {Ahmed Benallal and Claudia Comi}, title = {Quasi-static versus dynamic failure instabilities in fluid-saturated porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {339--345}, publisher = {Elsevier}, volume = {330}, number = {5}, year = {2002}, doi = {10.1016/S1631-0721(02)01465-1}, language = {en}, }
TY - JOUR AU - Ahmed Benallal AU - Claudia Comi TI - Quasi-static versus dynamic failure instabilities in fluid-saturated porous media JO - Comptes Rendus. Mécanique PY - 2002 SP - 339 EP - 345 VL - 330 IS - 5 PB - Elsevier DO - 10.1016/S1631-0721(02)01465-1 LA - en ID - CRMECA_2002__330_5_339_0 ER -
Ahmed Benallal; Claudia Comi. Quasi-static versus dynamic failure instabilities in fluid-saturated porous media. Comptes Rendus. Mécanique, Volume 330 (2002) no. 5, pp. 339-345. doi : 10.1016/S1631-0721(02)01465-1. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/S1631-0721(02)01465-1/
[1] Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., Volume 26 (1955), pp. 182-185
[2] Mechanics of Porous Continua, Wiley, Chichester, 1995
[3] A. Benallal, C. Comi, Perturbation, growth and localization in fluid-saturated inelastic porous media under quasi-static loading, submitted
[4] Acceleration waves, flutter instabilities and stationary discontinuities in inelastic porous media, J. Mech. Phys. Solids, Volume 39 (1991), pp. 569-606
[5] Instabilities in elastic-plastic fluid saturated porous media: harmonic wave versus acceleration wave analysis, Internat. J. Solids Structures, Volume 36 (1999), pp. 1277-1295
[6] On localization in saturated porous continua, C. R. Acad. Sci., Série IIb, Volume 328 (2000), pp. 847-853
Cited by Sources:
Comments - Politique