Comptes Rendus
Subgrid models preserving the symmetry group of the Navier–Stokes equations
Comptes Rendus. Mécanique, Volume 333 (2005) no. 6, pp. 481-486.

In order to preserve the physical properties of the flow (scaling laws, conservation laws, …) during the simulation, a class of subgrid models respecting the symmetry group of the Navier–Stokes equations is built. The class is then refined such that models satisfy the second law of thermodynamics and are suited to take into account the inverse energy cascade. A simple model belonging to the class is tested and a better result than those provided by Smagorinsky and dynamic models is obtained.

Dans le but de respecter les propriétés physiques de l'écoulement (lois d'échelle, lois de conservation, …) lors de la simulation, on construit une classe de modèles de sous-maille conservant le groupe de symétrie des équations de Navier–Stokes. On raffine ensuite cette classe de telle sorte que les modèles satisfassent le second principe de la thermodynamique et qu'ils soient capables de prendre en compte la cascade inverse d'énergie. Un modèle simple de la classe est testé dans le cas d'un écoulement dans une chambre ventilée. Les premiers calculs donnent un résultat nettement meilleur que ceux obtenus avec le modèle de Smagorinsky et le modèle dynamique.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2005.04.002
Keywords: Computational fluid mechanics, Turbulence, Subgrid models, Symmetry group
Mot clés : Mécanique des fluides numérique, Turbulence, Modèles de sous-maille, Groupe de symétrie

Dina Razafindralandy 1; Aziz Hamdouni 1

1 LEPTAB, université de La Rochelle, avenue Michel-Crépeau, 17042 La Rochelle cedex 01, France
@article{CRMECA_2005__333_6_481_0,
     author = {Dina Razafindralandy and Aziz Hamdouni},
     title = {Subgrid models preserving the symmetry group of the {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {481--486},
     publisher = {Elsevier},
     volume = {333},
     number = {6},
     year = {2005},
     doi = {10.1016/j.crme.2005.04.002},
     language = {en},
}
TY  - JOUR
AU  - Dina Razafindralandy
AU  - Aziz Hamdouni
TI  - Subgrid models preserving the symmetry group of the Navier–Stokes equations
JO  - Comptes Rendus. Mécanique
PY  - 2005
SP  - 481
EP  - 486
VL  - 333
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2005.04.002
LA  - en
ID  - CRMECA_2005__333_6_481_0
ER  - 
%0 Journal Article
%A Dina Razafindralandy
%A Aziz Hamdouni
%T Subgrid models preserving the symmetry group of the Navier–Stokes equations
%J Comptes Rendus. Mécanique
%D 2005
%P 481-486
%V 333
%N 6
%I Elsevier
%R 10.1016/j.crme.2005.04.002
%G en
%F CRMECA_2005__333_6_481_0
Dina Razafindralandy; Aziz Hamdouni. Subgrid models preserving the symmetry group of the Navier–Stokes equations. Comptes Rendus. Mécanique, Volume 333 (2005) no. 6, pp. 481-486. doi : 10.1016/j.crme.2005.04.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.04.002/

[1] P. Olver Applications of Lie Groups to Differential Equations, Graduate Texts in Math., Springer-Verlag, New-York, 1986

[2] M. Oberlack Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows, Flow, Turbulence and Combustion, Volume 62 (1999) no. 2, pp. 111-135

[3] M. Oberlack Invariant modeling in large-eddy simulation of turbulence, Annual Research Briefs, Stanford University, 1997

[4] N.H. Ibragimov CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 1: Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994

[5] N.H. Ibragimov CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2: Applications in Engineering and Physical Sciences, CRC Press, Boca Raton, 1995

[6] G. Ünal Application of equivalence transformations to inertial subrange of turbulence, Lie Group Appl., Volume 1 (1994) no. 1, pp. 232-240

[7] P. Sagaut Large Eddy Simulation for Incompressible Flows. An Introduction, Scientific Computation, Springer, 2004

[8] O. Métais; M. Lesieur Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., Volume 256 (1992), pp. 157-194

Cited by Sources:

Comments - Policy