In order to preserve the physical properties of the flow (scaling laws, conservation laws, …) during the simulation, a class of subgrid models respecting the symmetry group of the Navier–Stokes equations is built. The class is then refined such that models satisfy the second law of thermodynamics and are suited to take into account the inverse energy cascade. A simple model belonging to the class is tested and a better result than those provided by Smagorinsky and dynamic models is obtained.
Dans le but de respecter les propriétés physiques de l'écoulement (lois d'échelle, lois de conservation, …) lors de la simulation, on construit une classe de modèles de sous-maille conservant le groupe de symétrie des équations de Navier–Stokes. On raffine ensuite cette classe de telle sorte que les modèles satisfassent le second principe de la thermodynamique et qu'ils soient capables de prendre en compte la cascade inverse d'énergie. Un modèle simple de la classe est testé dans le cas d'un écoulement dans une chambre ventilée. Les premiers calculs donnent un résultat nettement meilleur que ceux obtenus avec le modèle de Smagorinsky et le modèle dynamique.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Turbulence, Modèles de sous-maille, Groupe de symétrie
Dina Razafindralandy 1; Aziz Hamdouni 1
@article{CRMECA_2005__333_6_481_0, author = {Dina Razafindralandy and Aziz Hamdouni}, title = {Subgrid models preserving the symmetry group of the {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {481--486}, publisher = {Elsevier}, volume = {333}, number = {6}, year = {2005}, doi = {10.1016/j.crme.2005.04.002}, language = {en}, }
Dina Razafindralandy; Aziz Hamdouni. Subgrid models preserving the symmetry group of the Navier–Stokes equations. Comptes Rendus. Mécanique, Volume 333 (2005) no. 6, pp. 481-486. doi : 10.1016/j.crme.2005.04.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2005.04.002/
[1] Applications of Lie Groups to Differential Equations, Graduate Texts in Math., Springer-Verlag, New-York, 1986
[2] Symmetries, invariance and scaling-laws in inhomogeneous turbulent shear flows, Flow, Turbulence and Combustion, Volume 62 (1999) no. 2, pp. 111-135
[3] Invariant modeling in large-eddy simulation of turbulence, Annual Research Briefs, Stanford University, 1997
[4] CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 1: Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994
[5] CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2: Applications in Engineering and Physical Sciences, CRC Press, Boca Raton, 1995
[6] Application of equivalence transformations to inertial subrange of turbulence, Lie Group Appl., Volume 1 (1994) no. 1, pp. 232-240
[7] Large Eddy Simulation for Incompressible Flows. An Introduction, Scientific Computation, Springer, 2004
[8] Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., Volume 256 (1992), pp. 157-194
Cited by Sources:
Comments - Policy