Comptes Rendus
Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures
[Parallélisation de l'algorithme de décomposition asymptotique de domaine pour des cylindres minces]
Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 675-680.

La méthode de décomposition asymptotique de domaine pour des structures minces (une réunion des cylindres minces) est revisitée. Son application aux écoulements newtoniens et non newtoniens est considérée. La possibilité d'une parallélisation de son algorithme est discuté pour des modèles linéaires ainsi que non linéaires.

The method of asymptotic partial domain decomposition for thin tube structures (finite unions of thin cylinders) is revisited. Its application to the Newtonian and non-Newtonian flows in great systems of vessels is considered. The possibility of a parallelization of its algorithm is discussed for linear and non-linear models.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2010.10.007
Keywords: Computational fluid mechanics, Navier–Stokes equations, Thin structures, Method of asymptotic partial domain decomposition, Multi-scale models, Models of hybrid dimension, Parallelization
Mot clés : Mécanique des fluides numérique, Équations de Navier–Stokes, Structures minces, Méthode de décomposition asymptotique partielle de domaine, Modèles multi-échelles, Modèles de dimension hybride, Parallélisation

Grigory Panasenko 1

1 LaMUSE EA 3989, University of Lyon, 23, rue P. Michelon, 42023 Saint-Etienne, France
@article{CRMECA_2010__338_12_675_0,
     author = {Grigory Panasenko},
     title = {Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {675--680},
     publisher = {Elsevier},
     volume = {338},
     number = {12},
     year = {2010},
     doi = {10.1016/j.crme.2010.10.007},
     language = {en},
}
TY  - JOUR
AU  - Grigory Panasenko
TI  - Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures
JO  - Comptes Rendus. Mécanique
PY  - 2010
SP  - 675
EP  - 680
VL  - 338
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2010.10.007
LA  - en
ID  - CRMECA_2010__338_12_675_0
ER  - 
%0 Journal Article
%A Grigory Panasenko
%T Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures
%J Comptes Rendus. Mécanique
%D 2010
%P 675-680
%V 338
%N 12
%I Elsevier
%R 10.1016/j.crme.2010.10.007
%G en
%F CRMECA_2010__338_12_675_0
Grigory Panasenko. Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 675-680. doi : 10.1016/j.crme.2010.10.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.007/

[1] G.P. Panasenko Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005 (398 pp)

[2] G.P. Panasenko Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris Sér. IIb, Volume 326 (1998), pp. 867-872

[3] G.P. Panasenko Partial asymptotic decomposition of domain: Navier–Stokes equation in tube structure, C. R. Acad. Sci. Paris Sér. IIb, Volume 326 (1998), pp. 893-898

[4] F. Blanc; O. Gipouloux; G.P. Panasenko; A.M. Zine Asymptotic analysis and partial asymptotic decomposition of the domain for Stokes equation in tube structure, Math. Model. Meth. Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378

[5] G. Panasenko; M.C. Viallon The finite volume implementation of the partial asymptotic domain decomposition, Appl. Anal., Volume 87 (2008) no. 12, pp. 1381-1408

[6] O.A. Ladyzhenskaya The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sc. Publ., New York/London/Paris, 1969

[7] J. Malek; J. Necas; M. Rokyta; M. Ruzicka Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, London, 1996

[8] G. Galdi; R. Ramacher; A. Robertson; S. Turek Hemodynamical Flows Modelling, Analysis and Simulation, Oberwolfach Seminar, Birkhäuser/Basel, Boston/Berlin, 2008

[9] V.G. Litvinov Motion of Non-linear Viscous Fluid, Nauka, Moscow, 1982 (in Russian)

[10] J. Jung; R.W. Lyczkowski; C.P. Panchal; A. Hassanein Multiphase hemodynamic simulation of pulsatile flow in a coronary artery, J. Biomech., Volume 39 (2006), pp. 2064-2073

Cité par Sources :

Commentaires - Politique