Comptes Rendus
Ignition time of hydrogen–air diffusion flames
Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 882-893.

The ignition time of hydrogen–air diffusion flames is a quantity of utmost interest in a large number of applications, with implications regarding the viability of supersonic combustion and the safe operation of gas turbines. The underlying chemistry and the associated ignition history are very different depending on the initial temperature and pressure. This article addresses conditions that place the system above the so-called second explosion limit, as is typically the case in SCRAMJET operation, so that a branched-chain explosion characterizes the ignition process. The roles of local radical accumulation, molecular transport, and chemical reaction in nonpremixed ignition are clarified by considering the temporal evolution of an unstrained mixing layer formed between two semi-infinite spaces of hydrogen and air. The problem is formulated in terms of a radical-pool mass fraction, whose evolution in time is studied with a WKB expansion that exploits the disparity of chemical time scales present in the problem, leading to an explicit expression for the ignition time. The applicability of the analytical results for obtaining predictions of ignition distances in supersonic-combustion applications is also considered.

Publié le :
DOI : 10.1016/j.crme.2012.10.035
Mots clés : Hydrogen ignition, Supersonic combustion, SCRAMJETS
Antonio L. Sánchez 1, 2 ; Eduardo Fernández-Tarrazo 2 ; Pierre Boivin 2 ; Amable Liñán 3 ; Forman A. Williams 1

1 Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
2 Grupo de Mecánica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganés, Spain
3 ETSI Aeronáuticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
@article{CRMECA_2012__340_11-12_882_0,
     author = {Antonio L. S\'anchez and Eduardo Fern\'andez-Tarrazo and Pierre Boivin and Amable Li\~n\'an and Forman A. Williams},
     title = {Ignition time of hydrogen{\textendash}air diffusion flames},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {882--893},
     publisher = {Elsevier},
     volume = {340},
     number = {11-12},
     year = {2012},
     doi = {10.1016/j.crme.2012.10.035},
     language = {en},
}
TY  - JOUR
AU  - Antonio L. Sánchez
AU  - Eduardo Fernández-Tarrazo
AU  - Pierre Boivin
AU  - Amable Liñán
AU  - Forman A. Williams
TI  - Ignition time of hydrogen–air diffusion flames
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 882
EP  - 893
VL  - 340
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2012.10.035
LA  - en
ID  - CRMECA_2012__340_11-12_882_0
ER  - 
%0 Journal Article
%A Antonio L. Sánchez
%A Eduardo Fernández-Tarrazo
%A Pierre Boivin
%A Amable Liñán
%A Forman A. Williams
%T Ignition time of hydrogen–air diffusion flames
%J Comptes Rendus. Mécanique
%D 2012
%P 882-893
%V 340
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2012.10.035
%G en
%F CRMECA_2012__340_11-12_882_0
Antonio L. Sánchez; Eduardo Fernández-Tarrazo; Pierre Boivin; Amable Liñán; Forman A. Williams. Ignition time of hydrogen–air diffusion flames. Comptes Rendus. Mécanique, Volume 340 (2012) no. 11-12, pp. 882-893. doi : 10.1016/j.crme.2012.10.035. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.035/

[1] F.A. Williams Combustion Theory, Benjamin Cummings, Menlo Park, CA, 1985

[2] A. Liñán Ignition and flame spread in laminar mixing layers (J. Buckmaster; T.L. Jackson; A. Kumar, eds.), Combustion in High-Speed Flows, Kluwer Academic Publ., 1994, pp. 461-476

[3] T. Niioka Ignition time in the stretched flow field, Proc. Combust. Inst., Volume 18 (1981), pp. 1807-1813

[4] E. Mastorakos Ignition of turbulent non-premixed flames, Progr. Energy Combust. Sci., Volume 35 (2009), pp. 57-97

[5] A. Liñán; A. Crespo An asymptotic analysis of unsteady diffusion flames for large activation energies, Combust. Sci. Technol., Volume 14 (1976), pp. 95-117

[6] B. Lewis; G. Von Elbe Combustion, Flames and Explosions in Gases, Pergamon Press, New York, 1951

[7] P. Boivin; A.L. Sánchez; F.A. Williams Explicit analytic prediction for hydrogen–oxygen ignition times at temperatures below crossover, Combust. Flame, Volume 159 (2012), pp. 748-752

[8] P. Boivin; A. Dauptain; C. Jimenez; B. Cuenot Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry, Combust. Flame, Volume 159 (2012), pp. 1779-1790

[9] P. Boivin, Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Universidad Carlos III de Madrid, 2011.

[10] T.S. Cheng; J.A. Wehrmeyer; R.W. Pitz; O. Jarret; G.B. Northam Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen–air diffusion flame, Combust. Flame, Volume 99 (1994), pp. 157-173

[11] A.L. Sánchez; A. Liñán; F.A. Williams A WKB analysis of radical growth in the hydrogen–air mixing layer, J. Engrg. Math., Volume 31 (1997), pp. 119-130

[12] A.L. Sánchez; A. Liñán; F.A. Williams Chain-branching explosions in mixing layers, SIAM J. Appl. Math., Volume 59 (1999), pp. 1335-1355

[13] J.D. Mellado; A.L. Sánchez; J.S. Kim; A. Liñán Branched-chain ignition in strained mixing layers, Combust. Theory Model., Volume 4 (2000), pp. 265-288

[14] P. Saxena; F.A. Williams Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide, Combust. Flame, Volume 145 (2006), pp. 316-323 http://maemail.ucsd.edu/combustion/cermech (also available at)

[15] G. del Álamo; F.A. Williams; A.L. Sánchez Hydrogen–oxygen induction times above crossover temperatures, Combust. Sci. Technol., Volume 176 (2004), pp. 1599-1626

[16] D. Fernández-Galisteo; A.L. Sánchez; A. Liñán; F.A. Williams One-step reduced kinetics for lean hydrogen–air deflagration, Combust. Flame, Volume 156 (2009), pp. 985-996

[17] D. Fernández-Galisteo; A.L. Sánchez; A. Liñán; F.A. Williams The hydrogen–air burning rate near the lean flammability limit, Combust. Theory Model., Volume 13 (2009), pp. 741-761

[18] F. Mauss; N. Peters; B. Rogg; F.A. Williams Reduced kinetic mechanisms for premixed hydrogen flames (N. Peters; B. Rogg, eds.), Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag, Heidelberg, 1993, pp. 29-43

[19] P. Boivin; C. Jiménez; A.L. Sánchez; F.A. Williams An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst., Volume 33 (2011), pp. 517-523

[20] D.E. Rosner Transport Processes in Chemically Reacting Flows, Dover, 2000

[21] A.L. Sánchez; M. Vera; A. Liñán Exact solutions for transient mixing of two gases of different density, Phys. Fluids, Volume 18 (2006), p. 078102

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Stabilization of non-premixed flames in supersonic reactive flows

Jean-Francois Izard; Arnaud Mura

C. R. Méca (2009)


Laser-based measurements of gas-phase chemistry in non-equilibrium pulsed nanosecond discharges

Frédéric Grisch; Guy-Alexandre Grandin; Dominique Messina; ...

C. R. Méca (2009)


Impact of the chemical description on a Large Eddy Simulation of a lean partially premixed swirled flame

Benedetta Franzelli; Eleonore Riber; Bénédicte Cuenot

C. R. Méca (2013)