The ignition time of hydrogen–air diffusion flames is a quantity of utmost interest in a large number of applications, with implications regarding the viability of supersonic combustion and the safe operation of gas turbines. The underlying chemistry and the associated ignition history are very different depending on the initial temperature and pressure. This article addresses conditions that place the system above the so-called second explosion limit, as is typically the case in SCRAMJET operation, so that a branched-chain explosion characterizes the ignition process. The roles of local radical accumulation, molecular transport, and chemical reaction in nonpremixed ignition are clarified by considering the temporal evolution of an unstrained mixing layer formed between two semi-infinite spaces of hydrogen and air. The problem is formulated in terms of a radical-pool mass fraction, whose evolution in time is studied with a WKB expansion that exploits the disparity of chemical time scales present in the problem, leading to an explicit expression for the ignition time. The applicability of the analytical results for obtaining predictions of ignition distances in supersonic-combustion applications is also considered.
Antonio L. Sánchez 1, 2; Eduardo Fernández-Tarrazo 2; Pierre Boivin 2; Amable Liñán 3; Forman A. Williams 1
@article{CRMECA_2012__340_11-12_882_0, author = {Antonio L. S\'anchez and Eduardo Fern\'andez-Tarrazo and Pierre Boivin and Amable Li\~n\'an and Forman A. Williams}, title = {Ignition time of hydrogen{\textendash}air diffusion flames}, journal = {Comptes Rendus. M\'ecanique}, pages = {882--893}, publisher = {Elsevier}, volume = {340}, number = {11-12}, year = {2012}, doi = {10.1016/j.crme.2012.10.035}, language = {en}, }
TY - JOUR AU - Antonio L. Sánchez AU - Eduardo Fernández-Tarrazo AU - Pierre Boivin AU - Amable Liñán AU - Forman A. Williams TI - Ignition time of hydrogen–air diffusion flames JO - Comptes Rendus. Mécanique PY - 2012 SP - 882 EP - 893 VL - 340 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2012.10.035 LA - en ID - CRMECA_2012__340_11-12_882_0 ER -
%0 Journal Article %A Antonio L. Sánchez %A Eduardo Fernández-Tarrazo %A Pierre Boivin %A Amable Liñán %A Forman A. Williams %T Ignition time of hydrogen–air diffusion flames %J Comptes Rendus. Mécanique %D 2012 %P 882-893 %V 340 %N 11-12 %I Elsevier %R 10.1016/j.crme.2012.10.035 %G en %F CRMECA_2012__340_11-12_882_0
Antonio L. Sánchez; Eduardo Fernández-Tarrazo; Pierre Boivin; Amable Liñán; Forman A. Williams. Ignition time of hydrogen–air diffusion flames. Comptes Rendus. Mécanique, Out of Equilibrium Dynamics, Volume 340 (2012) no. 11-12, pp. 882-893. doi : 10.1016/j.crme.2012.10.035. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.10.035/
[1] Combustion Theory, Benjamin Cummings, Menlo Park, CA, 1985
[2] Ignition and flame spread in laminar mixing layers (J. Buckmaster; T.L. Jackson; A. Kumar, eds.), Combustion in High-Speed Flows, Kluwer Academic Publ., 1994, pp. 461-476
[3] Ignition time in the stretched flow field, Proc. Combust. Inst., Volume 18 (1981), pp. 1807-1813
[4] Ignition of turbulent non-premixed flames, Progr. Energy Combust. Sci., Volume 35 (2009), pp. 57-97
[5] An asymptotic analysis of unsteady diffusion flames for large activation energies, Combust. Sci. Technol., Volume 14 (1976), pp. 95-117
[6] Combustion, Flames and Explosions in Gases, Pergamon Press, New York, 1951
[7] Explicit analytic prediction for hydrogen–oxygen ignition times at temperatures below crossover, Combust. Flame, Volume 159 (2012), pp. 748-752
[8] Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry, Combust. Flame, Volume 159 (2012), pp. 1779-1790
[9] P. Boivin, Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Universidad Carlos III de Madrid, 2011.
[10] Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen–air diffusion flame, Combust. Flame, Volume 99 (1994), pp. 157-173
[11] A WKB analysis of radical growth in the hydrogen–air mixing layer, J. Engrg. Math., Volume 31 (1997), pp. 119-130
[12] Chain-branching explosions in mixing layers, SIAM J. Appl. Math., Volume 59 (1999), pp. 1335-1355
[13] Branched-chain ignition in strained mixing layers, Combust. Theory Model., Volume 4 (2000), pp. 265-288
[14] Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide, Combust. Flame, Volume 145 (2006), pp. 316-323 http://maemail.ucsd.edu/combustion/cermech (also available at)
[15] Hydrogen–oxygen induction times above crossover temperatures, Combust. Sci. Technol., Volume 176 (2004), pp. 1599-1626
[16] One-step reduced kinetics for lean hydrogen–air deflagration, Combust. Flame, Volume 156 (2009), pp. 985-996
[17] The hydrogen–air burning rate near the lean flammability limit, Combust. Theory Model., Volume 13 (2009), pp. 741-761
[18] Reduced kinetic mechanisms for premixed hydrogen flames (N. Peters; B. Rogg, eds.), Reduced Kinetic Mechanisms for Applications in Combustion Systems, Springer-Verlag, Heidelberg, 1993, pp. 29-43
[19] An explicit reduced mechanism for H2–air combustion, Proc. Combust. Inst., Volume 33 (2011), pp. 517-523
[20] Transport Processes in Chemically Reacting Flows, Dover, 2000
[21] Exact solutions for transient mixing of two gases of different density, Phys. Fluids, Volume 18 (2006), p. 078102
Cited by Sources:
Comments - Policy