[Une approche d'homogénéisation stochastique pour estimer les propriétés élastiques de l'os]
Les propriétés mécaniques du tissu osseux dépendent de sa structure hiérarchisée, de l'échelle de l'organe à celle de ses constituants élémentaires (nano-échelle). En se basant sur la connaissance de la morphologie, de l'organisation et des propriétés mécaniques de ces derniers, des modèles multi-échelles permettent d'estimer les propriétés mécaniques d'ensemble du tissu osseux. Cependant, ces informations sont souvent partielles ou incertaines, rendant peu fiables lesdites estimations. Dans cet article, nous proposons une stratégie originale permettant de prendre en compte ces difficultés de façon efficace. Plus précisément, un modèle multi-échelles du tissu osseux basé sur la théorie de la micromécanique des milieux continus est associé à un traitement probabiliste de certaines des variables du modèle (notamment, les propriétés mécaniques des constituants élémentaires du tissu osseux). Le modèle multi-échelle permet de prendre en compte la microarchitecture et l'organisation du tissu osseux aux petites échelles pour estimer les coefficients élastiques de l'ultrastructure osseuse (la matrice solide du tissu osseux). Les incertitudes sur les variables d'entrée sont prises en compte en construisant des lois de probabilités pertinentes basées sur le principe du maximum d'entropie. Quelques résultats numériques sont montrés pour étayer l'intérêt de cette approche.
The mechanical properties of bone tissue depend on its hierarchical structure spanning many length scales, from the organ down to the nanoscale. Multiscale models allow estimating bone mechanical properties at the macroscale based on information on bone organization and composition at the lower scales. However, the reliability of these estimates can be questioned in view of the many uncertainties affecting the information which they are based on. In this paper, a new methodology is proposed, coupling probabilistic modeling and micromechanical homogenization to estimate the material properties of bone while taking into account the uncertainties on the bone micro- and nanostructure. Elastic coefficients of bone solid matrix are computed using a three-scale micromechanical homogenization method. A probabilistic model of the uncertain parameters allows propagating the uncertainties affecting their actual values into the estimated material properties of bone. The probability density functions of the random variables are constructed using the Maximum Entropy principle. Numerical simulations are used to show the relevance of this approach.
Accepté le :
Publié le :
Mot clés : Biomécanique, Micromécanique des milieux continus, Modélisation stochastique, Principe du maximum d'entropie, Propriétés élastiques
Vittorio Sansalone 1, 2 ; Salah Naili 1, 2 ; Christophe Desceliers 2
@article{CRMECA_2014__342_5_326_0, author = {Vittorio Sansalone and Salah Naili and Christophe Desceliers}, title = {A stochastic homogenization approach to estimate bone elastic properties}, journal = {Comptes Rendus. M\'ecanique}, pages = {326--333}, publisher = {Elsevier}, volume = {342}, number = {5}, year = {2014}, doi = {10.1016/j.crme.2013.12.007}, language = {en}, }
TY - JOUR AU - Vittorio Sansalone AU - Salah Naili AU - Christophe Desceliers TI - A stochastic homogenization approach to estimate bone elastic properties JO - Comptes Rendus. Mécanique PY - 2014 SP - 326 EP - 333 VL - 342 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2013.12.007 LA - en ID - CRMECA_2014__342_5_326_0 ER -
Vittorio Sansalone; Salah Naili; Christophe Desceliers. A stochastic homogenization approach to estimate bone elastic properties. Comptes Rendus. Mécanique, Volume 342 (2014) no. 5, pp. 326-333. doi : 10.1016/j.crme.2013.12.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.12.007/
[1] (S.C. Cowin, ed.), Bone Mechanics Handbook, CRC Press, Boca Raton, FL, USA, 2001
[2] Building collagen molecules, fibrils, and suprafibrillar structures, J. Struct. Biol., Volume 137 (2002), pp. 2-10
[3] Structure and mechanical quality of the collagen–mineral nano-composite in bone, J. Mater. Chem., Volume 14 (2004), pp. 2115-2123
[4] ‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity, J. Theor. Biol., Volume 244 (2007) no. 4, pp. 597-620
[5] Human cortical bone: the SiNuPrOs model, Comput. Methods Biomech. Biomed. Eng., Volume 11 (2008) no. 2, pp. 169-187
[6] Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone, Biomech. Model. Mechanobiol., Volume 11 (2012) no. 6, pp. 883-901
[7] Effects of the axial variations of porosity and mineralization on the elastic properties of the human femoral neck, Comput. Model. Eng. Sci., Volume 87 (2012) no. 5, pp. 387-409
[8] The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone, J. Biomech., Volume 21 (1988) no. 2, pp. 131-139
[9] Regional differences in cortical porosity in the fractured femoral neck, Bone, Volume 24 (1999) no. 1, pp. 57-64
[10] Age-related hypermineralization in the female proximal human femur, Anat. Rec., Volume 255 (1999) no. 2, pp. 202-211
[11] Distribution of intracortical porosity in human midfemoral cortex by age and gender, J. Bone Miner. Res., Volume 16 (2001) no. 7, pp. 1308-1317
[12] Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography, J. Bone Miner. Res., Volume 16 (2001) no. 7, pp. 1318-1328
[13] Bone quality: understanding what matters, J. Musculoskelet. Neuronal Interact., Volume 4 (2004) no. 2, pp. 184-186
[14] Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone, J. Biomech., Volume 41 (2008) no. 2, pp. 347-355
[15] Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study, Lancet, Volume 375 (2010) no. 9727, pp. 1729-1736
[16] Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale, J. Biomech., Volume 43 (2010) no. 10, pp. 1857-1863
[17] Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: impact on biomechanical properties, Bone, Volume 50 (2012) no. 10, pp. 876-884
[18] Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles, Biophys. J., Volume 79 (2000) no. 4, pp. 1737-1746
[19] The effects of interphase and bonding on the elastic modulus of bone: changes with age-related osteoporosis, Med. Eng. Phys., Volume 22 (2000) no. 8, pp. 575-585
[20] Multiscale modelling of mechanical properties of bone: study at the fibrillar scale, C. R., Méc., Volume 335 (2007) no. 8, pp. 436-442
[21] Variational homogenization for modeling fibrillar structures in bone, Mech. Res. Commun., Volume 36 (2009) no. 2, pp. 265-273
[22] Nanostructure and effective elastic properties of bone fibril, Bioinsp. Biomim. Nanobiomater., Volume 1 (2012) no. 3, pp. 154-165
[23] Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogeneous microstructures analysis, Int. J. Numer. Methods Eng., Volume 91 (2012) no. 8, pp. 799-824
[24] Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probab. Eng. Mech., Volume 23 (2008) no. 2–3, pp. 307-323
[25] Micromechanics: Overall Properties of Heterogeneous Materials, Appl. Math. Mech., North-Holland, The Netherlands, 1999
[26] Continuum Micromechanics (P. Suquet, ed.), CISM Lecture Notes, vol. 377, Springer-Verlag, Wien, 1997
[27] Maximum Entropy, Information Without Probability and Complex Fractals, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000
[28] Entropy Optimization Principles with Applications, Academic Press, San Diego, 1992
[29] Continuum micromechanics: survey, J. Eng. Mech., Volume 128 (2002) no. 8, pp. 808-816
[30] The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. A, Volume 241 (1957) no. 1226, pp. 376-396
[31] Rate form of the Eshelby and Hill tensors, Int. J. Solids Struct., Volume 39 (2002) no. 21, pp. 5659-5678
[32] Mineral-collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach, Eur. J. Mech. A, Solids, Volume 23 (2004), pp. 783-810
[33] The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy, Calcif. Tissue Int., Volume 55 (1994) no. 3, pp. 180-189
[34] Stochastic Differential Equations: Theory and Applications, John Wiley and Sons, New York, 1973
[35] An Introduction to Probability Theory and Its Applications, John Wiley and Sons, New York, 1971
[36] Measure Theory, Basics, vol. 1, Springer-Verlag, Berlin, 1976
[37] Mathematics of Random Phenomena, Reidel, Dordrecht, 1986
[38] The Advanced Theory of Statistics, vol. 3, Griffin, London, 1986
[39] Approximation Theorems of Mathematical Statistics, John Wiley and Sons, 1980
[40] Information theory and statistical mechanics, Phys. Rev., Volume 106 (1957) no. 4, pp. 620-630
[41] Information theory and statistical mechanics, Phys. Rev., Volume 108 (1957) no. 2, pp. 171-190
[42] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948)
[43] Maximum entropy approach for modeling random uncertainties in transient elastodynamics, J. Acoust. Soc. Am., Volume 109 (2001) no. 5, pp. 1979-1996
[44] Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 1–3, pp. 26-64
[45] Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction: application to cortical bone evaluation, J. Acoust. Soc. Am., Volume 119 (2006) no. 2, pp. 729-740
Cité par Sources :
Commentaires - Politique